封面
市场调查报告书
商品编码
1684562

整合式量子光学电路市场机会、成长动力、产业趋势分析与预测 2025-2034

Integrated Quantum Optical Circuits Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025-2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 212 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球整合量子光路市场规模达到 21 亿美元,预计 2025 年至 2034 年期间复合年增长率将达到惊人的 11%。 IQOC 将量子能力融入光学工程,提高运算系统的效率和功率,同时为下一代运算基础设施奠定基础。它们具有彻底改变资料传输、运算效能和整体效率的潜力,引起了各个领域的强烈兴趣,并成为未来技术的关键要素。

积体量子光学电路市场 - IMG1

IQOC 市场的成长轨迹受到大量研发投资的推动。量子运算、电信和国防领域的创新正在加速这些电路的应用,而各产业都在竞相利用它们的功能。透过将量子特性与光学元件结合,IQOC 可以实现从安全通讯到超强大资料处理系统等新应用,提供广泛的好处。随着各行各业寻求增强其技术基础设施,对 IQOC 的需求预计只会加剧。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 21亿美元
预测值 58亿美元
复合年增长率 11%

用于製造 IQOC 的材料多种多样,包括石英玻璃、硅光子学、铌酸锂、磷化铟和砷化镓。预计硅光子学领域将占据主导地位,到 2024 年将占据 36.34% 的显着市场份额。硅光子学能够与现有的半导体製造技术无缝协作,这使其成为寻求开发商业量子光路的公司的首选。

市场还根据整合度进行细分,包括单晶片整合、混合整合和基于模组的整合。到 2034 年,混合整合领域的规模预计将达到 24 亿美元。这种方法有助于推动更先进、更强大的 IQOC 的发展。

美国 IQOC 市场预计将大幅成长,到 2024 年预计复合年增长率为 11.2%。在联邦政府资金、研究网络和创业计画的大力支持下,美国正成为全球 IQOC 市场的核心参与者。国防、电信和运算领域对 IQOC 的需求正在推动创新,并帮助美国在可扩展​​量子技术开发方面处于领先地位。

目录

第 1 章:方法论与范围

  • 市场范围和定义
  • 基础估算与计算
  • 预测计算
  • 资料来源
    • 基本的
    • 次要
      • 付费来源
      • 公共资源

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
    • 影响价值链的因素
    • 利润率分析
    • 中断
    • 未来展望
    • 製造商
    • 经销商
  • 供应商概况
  • 利润率分析
  • 重要新闻及倡议
  • 监管格局
  • 衝击力
  • 成长动力
    • 安全量子通讯系统需求激增
    • 光子技术的转变
    • 高速网路连线的需求增加
    • 量子计算应用的成长
    • 政府投资增加
  • 产业陷阱与挑战
    • 实现大规模量子相干性和稳定性的复杂性
    • 研发和部署的初始成本高
  • 成长潜力分析
  • 波特的分析
  • PESTEL 分析

第四章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:按材料,2021 年至 2034 年

  • 主要趋势
  • 磷化铟
  • 石英玻璃
  • 硅光子学
  • 铌酸锂
  • 砷化镓

第六章:市场估计与预测:依组件,2021-2034 年

  • 主要趋势
  • 波导
  • 定向耦合器
  • 主动元件
  • 光源
  • 侦测器

第 7 章:市场估计与预测:按整合水平,2021 年至 2034 年

  • 主要趋势
  • 单晶片集成
  • 混合集成
  • 基于模组的集成

第 8 章:市场估计与预测:按製造技术,2021 年至 2034 年

  • 主要趋势
  • 基于光刻的工艺
  • 奈米製造技术
  • 雷射直接书写
  • 分子束外延 (MBE)
  • 其他的

第 9 章:市场估计与预测:按应用,2021 年至 2034 年

  • 主要趋势
  • 光纤通讯
  • 光学感测器
  • 生物医学
  • 量子计算
  • 其他的

第 10 章:市场估计与预测:按最终用途产业,2021-2034 年

  • 主要趋势
  • 电信
  • 航太和国防
  • 卫生保健
  • 能源和公用事业
  • 汽车
  • 学术与研究
  • 其他的

第 11 章:市场估计与预测:按地区,2021 年至 2034 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲
    • 亚太其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地区
  • 中东及非洲
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋
    • MEA 其他地区

第 12 章:公司简介

  • Aifotec
  • Bluefors
  • Broadcom
  • Enablence Technologies
  • IBM
  • Infinera Corporation
  • Intel
  • Lioni X International
  • Microsoft
  • Nanoscribe
  • QuiX Quantum Holding BV
  • QuTech
  • Sicoya GmbH
  • Tera Xion
  • Toptica Photonics
  • Toshiba
  • Xanadu
简介目录
Product Code: 12973

The Global Integrated Quantum Optical Circuits Market reached USD 2.1 billion in 2024 and is forecast to grow at an impressive CAGR of 11% from 2025 to 2034. This rapidly emerging market blends quantum mechanics with photonics and semiconductor engineering to create powerful systems that advance information processing and communication technologies. IQOCs integrate quantum capabilities into optical engineering, driving efficiency and power in computational systems while laying the foundation for the next generation of computing infrastructures. Their potential to revolutionize data transmission, computational performance, and overall efficiency has sparked intense interest across various sectors, positioning them as a key element in the future of technology.

Integrated Quantum Optical Circuits Market - IMG1

The growth trajectory of the IQOCs market is fueled by substantial investments in research and development. Innovations in quantum computing, telecommunication, and defense are accelerating the adoption of these circuits, with various industries racing to harness their capabilities. By combining quantum properties with optical components, IQOCs enable new applications, from secure communication to ultra-powerful data processing systems, offering a vast range of benefits. As industries seek to enhance their technological infrastructures, the demand for IQOCs is only expected to intensify.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$2.1 Billion
Forecast Value$5.8 Billion
CAGR11%

Materials used in the construction of IQOCs vary, including silica glass, silicon photonics, lithium niobate, indium phosphide, and gallium arsenide. The silicon photonics segment is projected to dominate, holding a significant market share of 36.34% in 2024. This material is favored for its cost-effectiveness and ease of integration with complementary metal-oxide-semiconductor (CMOS) processes, enabling scalability and consistent quality. Silicon photonics' ability to work seamlessly with existing semiconductor manufacturing technologies makes it a go-to choice for companies looking to develop commercial quantum optical circuits.

The market is also segmented by integration level, which includes monolithic integration, hybrid integration, and module-based integration. The hybrid integration segment is poised to reach USD 2.4 billion by 2034. Hybrid integration offers flexibility by combining various materials to optimize quantum circuit performance, allowing for customized designs that cater to specific application needs. This approach is helping drive the development of more advanced and capable IQOCs.

The U.S. IQOCs market is poised for substantial growth, with a projected CAGR of 11.2% through 2024. This growth is supported by significant technological advancements, extensive research funding, and collaborative efforts between academic institutions and tech companies. With strong backing from federal funding, research networks, and entrepreneurial initiatives, the U.S. is emerging as a central player in the global IQOC market. The demand for IQOCs in defense, telecommunications, and computing is driving innovation and helping the U.S. lead the charge in scalable quantum technology development.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definitions
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculations
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry synopsis, 2021-2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Future outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Supplier landscape
  • 3.3 Profit margin analysis
  • 3.4 Key news & initiatives
  • 3.5 Regulatory landscape
  • 3.6 Impact forces
  • 3.7 Growth drivers
    • 3.7.1 Surge in demand for secure quantum communication systems
    • 3.7.2 Shift in photonic technology
    • 3.7.3 Increase in demand for high-speed internet connectivity
    • 3.7.4 Growth of quantum computing applications
    • 3.7.5 Rising government investments
  • 3.8 Industry pitfalls & challenges
    • 3.8.1 Complexity of achieving quantum coherence and stability at scale
    • 3.8.2 High initial cost of R&D and deployment
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Material, 2021-2034 (USD billion)

  • 5.1 Key trends
  • 5.2 Indium phosphide
  • 5.3 Silica glass
  • 5.4 Silicon photonics
  • 5.5 Lithium niobate
  • 5.6 Gallium arsenide

Chapter 6 Market Estimates & Forecast, By Component, 2021-2034 (USD billion)

  • 6.1 Key trends
  • 6.2 Waveguides
  • 6.3 Directional coupler
  • 6.4 Active components
  • 6.5 Light sources
  • 6.6 Detectors

Chapter 7 Market Estimates & Forecast, By Integration Level, 2021-2034 (USD billion)

  • 7.1 Key trends
  • 7.2 Monolithic integration
  • 7.3 Hybrid integration
  • 7.4 Module-Based integration

Chapter 8 Market Estimates & Forecast, By Fabrication Technology, 2021-2034 (USD billion)

  • 8.1 Key trends
  • 8.2 Lithography-Based processes
  • 8.3 Nanofabrication techniques
  • 8.4 Direct laser writing
  • 8.5 Molecular Beam Epitaxy (MBE)
  • 8.6 Others

Chapter 9 Market Estimates & Forecast, By Application, 2021-2034 (USD billion)

  • 9.1 Key trends
  • 9.2 Optical fiber communication
  • 9.3 Optical sensors
  • 9.4 Bio medical
  • 9.5 Quantum computing
  • 9.6 Others

Chapter 10 Market Estimates & Forecast, By End Use Industry, 2021-2034 (USD billion)

  • 10.1 Key trends
  • 10.2 Telecommunications
  • 10.3 Aerospace and defense
  • 10.4 Healthcare
  • 10.5 Energy and utilities
  • 10.6 Automotive
  • 10.7 Academia and research
  • 10.8 Others

Chapter 11 Market Estimates & Forecast, By Region, 2021-2034 (USD billion)

  • 11.1 Key trends
  • 11.2 North America
    • 11.2.1 U.S.
    • 11.2.2 Canada
  • 11.3 Europe
    • 11.3.1 UK
    • 11.3.2 Germany
    • 11.3.3 France
    • 11.3.4 Italy
    • 11.3.5 Spain
    • 11.3.6 Russia
  • 11.4 Asia Pacific
    • 11.4.1 China
    • 11.4.2 India
    • 11.4.3 Japan
    • 11.4.4 South Korea
    • 11.4.5 Australia
    • 11.4.6 Rest of Asia Pacific
  • 11.5 Latin America
    • 11.5.1 Brazil
    • 11.5.2 Mexico
    • 11.5.3 Rest of Latin America
  • 11.6 MEA
    • 11.6.1 South Africa
    • 11.6.2 Saudi Arabia
    • 11.6.3 UAE
    • 11.6.4 Rest of MEA

Chapter 12 Company Profiles

  • 12.1 Aifotec
  • 12.2 Bluefors
  • 12.3 Broadcom
  • 12.4 Enablence Technologies
  • 12.5 IBM
  • 12.6 Infinera Corporation
  • 12.7 Intel
  • 12.8 Lioni X International
  • 12.9 Microsoft
  • 12.10 Nanoscribe
  • 12.11 QuiX Quantum Holding BV
  • 12.12 QuTech
  • 12.13 Sicoya GmbH
  • 12.14 Tera Xion
  • 12.15 Toptica Photonics
  • 12.16 Toshiba
  • 12.17 Xanadu