封面
市场调查报告书
商品编码
1684848

二氧化钛奈米材料市场机会、成长动力、产业趋势分析及 2025 - 2034 年预测

Titanium Dioxide Nanomaterials Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 235 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球二氧化钛奈米材料市场规模达到 220 亿美元,预计 2025 年至 2034 年期间的复合年增长率为 5.5%。多个行业对这些先进材料的需求不断增长,这可归因于其卓越的性能,包括优异的光学品质、高化学稳定性和强的抗紫外线能力。这些独特的特性使二氧化钛奈米材料用途广泛,促进了其在建筑、汽车、医疗保健、化妆品和电子等领域的广泛应用。

二氧化钛奈米材料市场 - IMG1

全球基础设施的扩张,加上对永续发展的不断推动,进一步刺激了对高性能耐用材料的需求。随着产业不断创新,奈米技术和二氧化钛等先进材料的采用预计将在塑造製造业和技术发展的未来方面发挥关键作用。新兴经济体快速工业化,促进了市场的成长,为供应商和製造商提供了新的机会。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 220亿美元
预测值 376亿美元
复合年增长率 5.5%

2024 年,二氧化钛奈米材料市场的金红石部分价值为 201 亿美元,预计未来十年的复合年增长率为 5.3%。金红石以其优异的光学性能而闻名,常用于涂料、塑胶和个人护理产品等领域。建筑业和汽车业的不断发展以及化妆品行业的快速增长推动了其需求的不断增长。随着人们转向更美观、更持久的产品,金红石继续在各个终端使用市场获得关注,为整体市场成长做出重大贡献。

氯化法在二氧化钛奈米材料市场占据主导地位,到 2024 年就占了 89.1% 的市场。这种生产方法之所以受到青睐,是因为它能够生产出具有一致尺寸和优异光学特性的高纯度奈米颗粒。这些特性使得氯化物基二氧化钛奈米材料在先进涂料、电子产品和化妆品等应用中不可或缺。随着更严格的环境法规鼓励采用更永续的生产技术,氯化物市场正在不断发展,这得益于对环保製造流程的需求。此外,航太和汽车等产业对轻质耐用材料的需求日益增长,推动了氯化物基奈米材料的进一步应用。新兴市场工业化和基础设施建设的加速也在扩大这一领域的影响力和覆盖范围方面发挥着重要作用。

在美国,二氧化钛奈米材料市场规模将在 2024 年达到 66 亿美元,到 2034 年预计将以 5.7% 的复合年增长率成长。奈米技术在电子、医疗保健和再生能源等领域的快速发展是这一成长的主要驱动力。太阳能电池生产对二氧化钛奈米材料的需求不断增加,加上国家对环境永续性的关注,引发了该领域的持续创新。研发投资是确保美国在全球市场保持竞争优势、巩固在二氧化钛奈米材料产业领先地位的关键。

目录

第 1 章:方法论与范围

  • 市场范围和定义
  • 基础估算与计算
  • 预测计算
  • 资料来源
    • 基本的
    • 次要
      • 付费来源
      • 公共资源

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
    • 影响价值链的因素
    • 利润率分析
    • 中断
    • 未来展望
    • 製造商
    • 经销商
  • 供应商概况
  • 利润率分析
  • 重要新闻及倡议
  • 监管格局
  • 衝击力
    • 成长动力
      • 电子和光电子领域需求不断成长
      • 医疗保健和生物技术领域的应用日益增多
      • 环境永续性和严格法规
    • 产业陷阱与挑战
      • 与奈米颗粒暴露有关的健康和环境问题
  • 成长潜力分析
  • 波特的分析
  • PESTEL 分析

第四章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第五章:市场估计与预测:依等级,2021-2034 年

  • 主要趋势
  • 金红石
  • 锐钛矿

第 6 章:市场估计与预测:按工艺,2021 年至 2034 年

  • 主要趋势
  • 氯化物
  • 硫酸盐

第 7 章:市场估计与预测:按应用,2021 年至 2034 年

  • 主要趋势
  • 油漆和涂料
  • 塑胶
  • 纸和纸浆
  • 印刷油墨
  • 其他的

第 8 章:市场估计与预测:按地区,2021 年至 2034 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲
  • 拉丁美洲
    • 巴西
    • 墨西哥
  • 中东及非洲
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第九章:公司简介

  • Altairnano
  • American Elements
  • Catalysis
  • CINKARNA Celje
  • Cristal
  • DuPont
  • Evonik Industries
  • Huntsman International
  • Ishihara Sangyo Kaisha
  • Kronos Worldwide
  • Nanoptek
  • Reinste Nano Ventures
  • Sakai Chemical Industry
  • Showa Denko
  • Tronox Holdings
简介目录
Product Code: 7091

The Global Titanium Dioxide Nanomaterials Market reached USD 22 billion in 2024 and is estimated to expand at a projected CAGR of 5.5% from 2025 to 2034. The growing demand for these advanced materials across multiple industries can be attributed to their remarkable properties, including excellent optical qualities, high chemical stability, and strong UV resistance. These unique characteristics make titanium dioxide nanomaterials highly versatile, fostering their widespread use in sectors like construction, automotive, healthcare, cosmetics, and electronics.

Titanium Dioxide Nanomaterials Market - IMG1

The expansion of the global infrastructure, coupled with an increasing push towards sustainability, has further fueled the demand for high-performance, durable materials. As industries continue to innovate, the adoption of nanotechnology and advanced materials like titanium dioxide is expected to play a crucial role in shaping the future of manufacturing and technological development. Emerging economies, with their rapid industrialization, are contributing to the market's growth, offering new opportunities for suppliers and manufacturers alike.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$22 Billion
Forecast Value$37.6 Billion
CAGR5.5%

The rutile segment of the titanium dioxide nanomaterials market was valued at USD 20.1 billion in 2024 and is forecast to grow at a CAGR of 5.3% during the upcoming decade. Rutile, known for its superior optical properties, is commonly used in applications such as coatings, plastics, and personal care products. Its increasing demand is driven by the expanding construction and automotive industries, as well as the rapidly growing cosmetics sector. With a shift toward more aesthetic, long-lasting products, rutile continues to gain traction across various end-use markets, contributing significantly to overall market growth.

The chloride method dominated the titanium dioxide nanomaterials market, holding a commanding 89.1% market share in 2024. This production method is preferred for its ability to create high-purity nanoparticles that exhibit consistent size and excellent optical characteristics. These qualities make chloride-based titanium dioxide nanomaterials indispensable in applications like advanced coatings, electronics, and cosmetics. With stricter environmental regulations encouraging more sustainable production techniques, the chloride segment is evolving, driven by the demand for environmentally friendly manufacturing processes. In addition, the growing need for lightweight and durable materials in industries like aerospace and automotive is fueling further adoption of chloride-based nanomaterials. The acceleration of industrialization and infrastructure development in emerging markets is also playing a significant role in expanding the reach and impact of this segment.

In the United States, the titanium dioxide nanomaterials market reached USD 6.6 billion in 2024 and is set to grow at a CAGR of 5.7% through 2034. The rapid advancement of nanotechnology in sectors like electronics, healthcare, and renewable energy is a major driver of this growth. The increasing demand for titanium dioxide nanomaterials in solar cell production, combined with the nation's focus on environmental sustainability, is sparking ongoing innovation in this field. Investments in research and development are key to ensuring that the U.S. maintains a competitive edge in the global market, strengthening its position as a leading player in the titanium dioxide nanomaterials industry.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definitions
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculations
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry synopsis, 2021-2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Future outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Supplier landscape
  • 3.3 Profit margin analysis
  • 3.4 Key news & initiatives
  • 3.5 Regulatory landscape
  • 3.6 Impact forces
    • 3.6.1 Growth drivers
      • 3.6.1.1 Increasing demand in electronics and optoelectronics
      • 3.6.1.2 Growing applications in healthcare and biotechnology
      • 3.6.1.3 Environmental sustainability and stringent regulations
    • 3.6.2 Industry pitfalls & challenges
      • 3.6.2.1 Health and environmental concerns regarding nanoparticle exposure
  • 3.7 Growth potential analysis
  • 3.8 Porter’s analysis
  • 3.9 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Grade, 2021-2034 (USD Billion) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 Rutile
  • 5.3 Anatase

Chapter 6 Market Estimates & Forecast, By Process, 2021-2034 (USD Billion) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 Chloride
  • 6.3 Sulfate

Chapter 7 Market Estimates & Forecast, By Application, 2021-2034 (USD Billion) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 Paints & coatings
  • 7.3 Plastic
  • 7.4 Paper and pulp
  • 7.5 Printing inks
  • 7.6 Others

Chapter 8 Market Estimates & Forecast, By Region, 2021-2034 (USD Billion) (Kilo Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 UK
    • 8.3.2 Germany
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
    • 8.3.6 Russia
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 South Korea
    • 8.4.5 Australia
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
  • 8.6 MEA
    • 8.6.1 South Africa
    • 8.6.2 Saudi Arabia
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 Altairnano
  • 9.2 American Elements
  • 9.3 Catalysis
  • 9.4 CINKARNA Celje
  • 9.5 Cristal
  • 9.6 DuPont
  • 9.7 Evonik Industries
  • 9.8 Huntsman International
  • 9.9 Ishihara Sangyo Kaisha
  • 9.10 Kronos Worldwide
  • 9.11 Nanoptek
  • 9.12 Reinste Nano Ventures
  • 9.13 Sakai Chemical Industry
  • 9.14 Showa Denko
  • 9.15 Tronox Holdings