封面
市场调查报告书
商品编码
1699253

多模式人工智慧市场机会、成长动力、产业趋势分析及 2025-2034 年预测

Multimodal AI Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025-2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 160 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球多模式人工智慧市场价值为 16 亿美元,预计 2025 年至 2034 年的复合年增长率将达到 32.7%。成长主要得益于人工智慧和机器学习在零售、医疗保健和汽车等行业之间的日益融合,以及对人工智慧研发的投资不断增加。多模式人工智慧代表了技术能力的重大转变,实现了即时的人机协作并增强了边缘人工智慧应用。这是一个快速发展的领域,它透过允许机器处理文字、图像和语音等多种资料类型来实现更有效率的决策,从而推动创新。

多模式人工智慧市场 - IMG1

然而,道德人工智慧治理、运算效率和资料融合复杂性等挑战持续为企业带来障碍。儘管有这些障碍,世界各地的企业仍在利用多模式人工智慧来优化工作流程、减少错误并提高生产力。随着各行各业寻求自动化来提高营运效率,尤其是在医疗保健、汽车和物流领域,采用自动化的速度正在加快。个人化服务和决策对人工智慧驱动工具的日益依赖进一步推动了需求,企业优先考虑人工智慧投资以获得竞争优势。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 16亿美元
预测值 270亿美元
复合年增长率 32.7%

多模式人工智慧使机器学习模型能够分析和整合多种资料类型,包括文字、图像、视讯和音频,以提供更准确的输出。 2024 年,影像资料部分的价值达到 5.654 亿美元,这得益于卷积神经网路 (CNN) 等深度学习技术的进步,这些技术增强了影像分类和识别能力。机器学习领域在 2024 年占据了 34.5% 的最大市场份额,预计到 2034 年仍将占据主导地位。对预测分析的需求不断增长,尤其是在医疗保健和银行业,以及基于云端的 ML 解决方案的日益普及,支持了扩张。目前,超过 87% 的企业倾向于使用云端平台部署机器学习,从而促进了市场的成长。

多模式人工智慧市场分为生成型人工智慧、翻译型人工智慧、解译型人工智慧和互动式人工智慧。 2024 年,生成性多模式人工智慧领域的价值为 7.401 亿美元,这主要归因于各种数位平台对高品质内容创作的需求不断增长。该公司正在大力投资人工智慧生成的文字、视讯和音讯以用于行销​​目的,进一步推动该领域的发展。

从产业来看,多模式人工智慧的应用正在多个领域扩展,包括 BFSI、零售和电子商务、IT 和电信、政府、医疗保健和媒体。 2024 年,BFSI 产业贡献了 5.705 亿美元,这得益于人工智慧在增强金融服务和简化营运方面的日益普及。

从地理位置来看,北美预计将引领市场,预计到 2034 年市场规模将达到 117 亿美元。该地区对人工智慧投资的高度重视以及关键技术中心的存在促进了这一增长。预计到 2034 年,美国市场将以 33.6% 的复合年增长率扩张,这得益于对人工智慧新创公司的持续投资以及尖端多模式人工智慧解决方案的开发。

目录

第一章:方法论与范围

第二章:执行摘要

第三章:行业洞察

  • 产业生态系统分析
  • 产业衝击力
    • 成长动力
      • 自动化需求不断成长
      • 提升顾客体验期望
      • 采用人工智慧相关的内容创作工具
      • 政府资助人工智慧研究
      • 安全领域对人工智慧的需求增加
    • 产业陷阱与挑战
      • 资料隐私和安全问题
      • 工作替代风险
  • 成长潜力分析
  • 监管格局
  • 技术格局
  • 未来市场趋势
  • 差距分析
  • 波特的分析
  • PESTEL分析

第四章:竞争格局

  • 介绍
  • 公司市占率分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 策略仪表板

第五章:市场估计与预测:依资料形态,2021 年至 2034 年

  • 主要趋势
  • 影像资料
  • 文字资料
  • 语音和声音资料
  • 视讯资料
  • 音讯资料

第六章:市场估计与预测:按技术,2021 年至 2034 年

  • 主要趋势
  • 机器学习
  • 自然语言处理
  • 电脑视觉
  • 情境感知
  • 物联网

第七章:市场估计与预测:按类型,2021 年至 2034 年

  • 主要趋势
  • 生成式多模态人工智慧
  • 翻译多模态人工智慧
  • 解释性多模态人工智慧
  • 互动式多模态人工智慧

第八章:市场估计与预测:按产业垂直,2021 年至 2034 年

  • 主要趋势
  • 金融服务业
  • 零售与电子商务
  • 资讯科技和电信
  • 政府和公共部门
  • 卫生保健
  • 媒体和娱乐
  • 其他的

第九章:市场估计与预测:按地区,2021 年至 2034 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 西班牙
    • 义大利
    • 荷兰
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋

第十章:公司简介

  • Aiberry Inc.
  • Aimesoft Inc.
  • Amazon Web Services, Inc.
  • Archetype AI Inc.
  • Beewant SAS
  • Google Inc.
  • Habana Labs Inc.
  • Hoppr Inc.
  • Inworld AI Inc.
  • International Business Machines Corporation (IBM)
  • Jina AI GmbH
  • Jiva.ai Ltd.
  • Microsoft Corporation
  • Mobius Labs Inc.
  • Modality.AI Inc.
  • Multimodal Inc.
  • Neuraptic AI SL
  • Newsbridge SAS
  • OpenAI Inc.
  • OpenStream AI Inc.
  • Owlbot.AI Inc.
  • Perceiv AI Inc.
  • Reka AI Inc.
  • Runway AI Inc.
  • Stability AI Ltd.
简介目录
Product Code: 10071

The Global Multimodal Ai Market was valued at USD 1.6 billion in 2024 and is projected to expand at a CAGR of 32.7% from 2025 to 2034. Growth is primarily fueled by the increasing integration of AI and ML across industries, including retail, healthcare, and automotive, alongside rising investments in AI research and development. Multimodal AI represents a major shift in technological capabilities, enabling real-time human-AI collaboration and enhancing edge AI applications. It is a rapidly evolving field that drives innovation by allowing machines to process diverse data types, such as text, images, and voice, for more efficient decision-making.

Multimodal AI Market - IMG1

However, challenges such as ethical AI governance, computational efficiency, and data fusion complexity continue to pose obstacles for companies. Despite these hurdles, businesses worldwide are leveraging multimodal AI to optimize workflows, reduce errors, and improve productivity. Adoption is accelerating as industries seek automation to enhance operational efficiency, particularly in healthcare, automotive, and logistics. The growing reliance on AI-driven tools for personalized services and decision-making further propels demand, with enterprises prioritizing AI investment to gain a competitive edge.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$1.6 Billion
Forecast Value$27 Billion
CAGR32.7%

Multimodal AI enables machine learning models to analyze and integrate multiple data types, including text, images, video, and audio, to deliver more accurate outputs. The image data segment accounted for USD 565.4 million in 2024, driven by advancements in deep learning techniques, such as Convolutional Neural Networks (CNN), which have enhanced image classification and recognition capabilities. The machine learning segment held the largest market share of 34.5% in 2024 and is projected to dominate through 2034. Growing demand for predictive analytics, particularly in healthcare and banking, as well as the increasing adoption of cloud-based ML solutions, supports expansion. More than 87% of enterprises now prefer cloud platforms for machine learning deployment, reinforcing market growth.

The multimodal AI market is categorized into generative, translative, explanatory, and interactive AI. The generative multimodal AI segment was valued at USD 740.1 million in 2024, largely due to rising demand for high-quality content creation across various digital platforms. Companies are investing significantly in AI-generated text, video, and audio for marketing purposes, further boosting the segment.

Industry-wise, multimodal AI adoption is expanding across multiple sectors, including BFSI, retail and e-commerce, IT and telecommunications, government, healthcare, and media. The BFSI sector contributed USD 570.5 million in 2024, driven by the increasing use of AI to enhance financial services and streamline operations.

Geographically, North America is expected to lead the market, with projections estimating a market size of USD 11.7 billion by 2034. The region's strong focus on AI investment and the presence of key technology hubs contribute to this growth. The US market is anticipated to expand at a CAGR of 33.6% in 2034, driven by continuous investment in AI startups and the development of cutting-edge multimodal AI solutions.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Rising demand for automation
      • 3.2.1.2 Enhance customer experience expectations
      • 3.2.1.3 Adoption of AI related content creation tools
      • 3.2.1.4 Government funding in AI research
      • 3.2.1.5 Increase in demand for AI in security
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Data privacy and security concerns
      • 3.2.2.2 Risk of job replacement
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
  • 3.5 Technology landscape
  • 3.6 Future market trends
  • 3.7 Gap analysis
  • 3.8 Porter's analysis
  • 3.9 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates and Forecast, By Data Modality, 2021 – 2034 ($ Mn)

  • 5.1 Key trends
  • 5.2 Image data
  • 5.3 Text data
  • 5.4 Speech & voice data
  • 5.5 Video data
  • 5.6 Audio data

Chapter 6 Market Estimates and Forecast, By Technology, 2021 – 2034 ($ Mn)

  • 6.1 Key trends
  • 6.2 Machine learning
  • 6.3 Natural language processing
  • 6.4 Computer vision
  • 6.5 Context awareness
  • 6.6 Internet of things

Chapter 7 Market Estimates and Forecast, By Type, 2021 – 2034 ($ Mn)

  • 7.1 Key trends
  • 7.2 Generative Multimodal AI
  • 7.3 Translative Multimodal AI
  • 7.4 Explanatory Multimodal AI
  • 7.5 Interactive Multimodal AI

Chapter 8 Market Estimates and Forecast, By Industry Vertical, 2021 – 2034 ($ Mn)

  • 8.1 Key trends
  • 8.2 BFSI
  • 8.3 Retail & ecommerce
  • 8.4 IT & Telecommunication
  • 8.5 Government & public sector
  • 8.6 Healthcare
  • 8.7 Media & entertainment
  • 8.8 Others

Chapter 9 Market Estimates and Forecast, By Region, 2021 – 2034 ($ Mn)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Netherlands
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 Aiberry Inc.
  • 10.2 Aimesoft Inc.
  • 10.3 Amazon Web Services, Inc.
  • 10.4 Archetype AI Inc.
  • 10.5 Beewant SAS
  • 10.6 Google Inc.
  • 10.7 Habana Labs Inc.
  • 10.8 Hoppr Inc.
  • 10.9 Inworld AI Inc.
  • 10.10 International Business Machines Corporation (IBM)
  • 10.11 Jina AI GmbH
  • 10.12 Jiva.ai Ltd.
  • 10.13 Microsoft Corporation
  • 10.14 Mobius Labs Inc.
  • 10.15 Modality.AI Inc.
  • 10.16 Multimodal Inc.
  • 10.17 Neuraptic AI S.L.
  • 10.18 Newsbridge SAS
  • 10.19 OpenAI Inc.
  • 10.20 OpenStream AI Inc.
  • 10.21 Owlbot.AI Inc.
  • 10.22 Perceiv AI Inc.
  • 10.23 Reka AI Inc.
  • 10.24 Runway AI Inc.
  • 10.25 Stability AI Ltd.