封面
市场调查报告书
商品编码
1740830

飞机 DC-DC 转换器市场机会、成长动力、产业趋势分析及 2025 - 2034 年预测

Aircraft DC-DC Converter Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 185 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球飞机直流-直流转换器市场价值为 9.662 亿美元,预计到 2034 年将以 10.4% 的复合年增长率成长,达到 25.7 亿美元。全球飞机产量的不断增加是推动航空系统所用直流-直流转换器需求的主要因素。这些组件对于管理日益复杂的飞机电力系统中的电压水平至关重要。然而,国际贸易政策的变化,包括对半导体和被动电子元件等关键进口产品征收关税,导致原材料成本上升。相互贸易限製造成的不确定性扰乱了全球供应链,造成采购延迟并延长生产週期。依赖将电气元件一致整合到复杂系统中的飞机製造商因这些贸易壁垒和延误而面临挑战。

飞机 DC-DC 转换器市场 - IMG1

同时,航空业的现代化进程也推动了对先进电源管理系统的需求。由于新一代飞机需要为各种机上系统提供高效、稳定的电力输送,DC-DC 转换器的角色也变得越来越重要。这些转换器有助于确保新旧飞机电气基础设施之间的兼容性,支援下一代航空电子设备和电子系统的整合。如今,飞机需要特定的电压等级来支援敏感的飞行电子设备,而 DC-DC 转换器在稳定和转换电源以满足这些需求方面发挥着至关重要的作用。随着飞机逐渐发展成为更电动化的平台,对气动和液压系统的依赖减少,电源转换技术也必须不断进步,以支援更轻、更有效率的设计。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 9.662亿美元
预测值 25.7亿美元
复合年增长率 10.4%

根据飞机类型,市场分为固定翼和旋翼。预计到2034年,固定翼市场规模将达21亿美元。固定翼飞机日益向电动系统转型,推动了DC-DC转换器的采用,这对于管理各种电压需求至关重要。这些系统对于新型飞机尤其重要,因为新型飞机越来越依赖多电架构(MEA)来提高能源效率并减轻重量。固定翼平台对先进机载系统的需求不断成长,将持续推动该领域DC-DC转换器的成长。

就输出功率而言,飞机DC-DC转换器市场细分为100W、100W-500W及500W以上三个类别。 2024年,100W细分市场占据了27.5%的市场。这一增长得益于飞机上低功耗电子设备、感测器和航空电子模组的使用日益增多。这些组件需要稳定的低输出电压,而100W转换器能够有效满足此要求。此外,老旧飞机升级为现代低功耗系统也进一步支援了对此输出类别的需求,因为它可以与现有电力基础设施无缝整合。

根据产品类别,市场进一步细分为隔离式和非隔离式转换器。 2024年,隔离式转换器占最大份额,达67.7%。这些转换器对于现代飞机至关重要,因为现代飞机需要电气隔离来确保系统的安全性和稳定性。隔离式转换器专为处理高功率应用而设计,是新型飞机设计中复杂电气操作的理想选择。它们广泛应用于推进系统,并为机载电子设备提供清洁稳定的电源,这对于维持飞机各个子系统的性能和电气安全至关重要。

按应用划分,市场涵盖航空电子、配电、照明系统、雷达和电子战系统、机载娱乐等。其中,航空电子领域预计到2034年将创造8.961亿美元的市场价值。随着航空电子系统的复杂性和精密度不断提升,对稳定、无干扰电源的需求也随之成长。 DC-DC转换器有助于为引擎控制单元、驾驶舱显示器和飞行导航系统等关键任务电子设备提供可靠的电压。随着飞机不断采用数位航空电子技术,透过先进转换器实现高效能电源管理的需求也日益增长。

从地区来看,北美在2024年以39.2%的市占率领先市场。这一领先地位得益于该地区商用航空的扩张和机队的现代化升级。航空公司和製造商越来越多地采用先进的电子飞行系统,而这些系统高度依赖高性能DC-DC转换器来确保电源稳定性。此外,在区域机队中,MEA系统的应用日益受到重视,这也进一步催生了对下一代电源转换解决方案的需求。

飞机直流-直流转换器市场竞争激烈,霍尼韦尔国际公司、村田製作所、TDK-Lambda Corporation、Advanced Energy 和 Vicor Corporation 等主要厂商合计占超过 30% 的市场份额。这些公司积极投资开发紧凑、节能且热优化的转换器解决方案,以满足严格的航空认证标准。为了支援不断发展的飞机技术,主要製造商还推出了先进的产品架构,例如基于氮化镓 (GaN) 的设计、模组化解决方案和谐振拓扑。他们的创新旨在满足商用和国防航空领域对可靠、可扩展且能够处理不同电压和功率需求的电源转换器日益增长的需求。

目录

第一章:方法论与范围

第二章:执行摘要

第三章:行业洞察

  • 产业生态系统分析
  • 川普政府关税分析
    • 对贸易的影响
      • 贸易量中断
      • 报復措施
    • 对产业的影响
      • 供应方影响(原料)
        • 价格波动
        • 供应链重组
        • 生产成本影响
      • 需求面影响
        • 价格传导至终端市场
        • 市占率动态
        • 消费者反应模式
    • 受影响的主要公司
    • 策略产业反应
      • 供应链重组
      • 定价和产品策略
      • 政策参与
    • 展望与未来考虑
  • 产业衝击力
    • 成长动力
      • 飞机产量不断增加
      • 先进航空电子设备和电子系统的整合度不断提高
      • 对轻量化和高效能电源解决方案的需求
      • 更加重视燃油效率和减排
      • 日益关注先进的空中机动性
    • 产业陷阱与挑战
      • 监管和认证门槛高
      • 设计复杂性和整合限制
  • 成长潜力分析
  • 监管格局
  • 技术格局
  • 未来市场趋势
  • 差距分析
  • 波特的分析
  • PESTEL分析

第四章:竞争格局

  • 介绍
  • 公司市占率分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 策略仪表板

第五章:市场估计与预测:依飞机类型,2021-2034

  • 主要趋势
  • 固定翼
  • 旋翼机

第六章:市场估计与预测:按输出功率,2021-2034

  • 主要趋势
  • <100瓦
  • 100瓦–500瓦
  • >500瓦

第七章:市场估计与预测:依类别,2021-2034

  • 主要趋势
  • 孤立
  • 非隔离

第 8 章:市场估计与预测:按应用,2021 年至 2034 年

  • 主要趋势
  • 航空电子设备
  • 配电
  • 照明系统
  • 雷达和电子战系统
  • 机上娱乐(IFE)
  • 其他的

第九章:市场估计与预测:按地区,2021 年至 2034 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 西班牙
    • 义大利
    • 荷兰
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋

第十章:公司简介

  • Abbott Technologies
  • Advanced Energy
  • AJ's Power Source Inc.
  • BrightLoop
  • Crane Aerospace & Electronics
  • Helios Power Solutions
  • Honeywell International Inc.
  • KGS Electronics
  • Meggitt PLC.
  • Murata Manufacturing Co., Ltd.
  • Pico Electronics
  • SynQor, Inc.
  • Tame-Power
  • TDK-Lambda Corporation
  • Texas Instruments Incorporated
  • Vicor Corporation
  • VPT, Inc.
  • XP Power
简介目录
Product Code: 13622

The Global Aircraft DC-DC Converter Market was valued at USD 966.2 million in 2024 and is estimated to grow at a CAGR of 10.4% to reach USD 2.57 billion by 2034. The increasing number of aircraft being produced worldwide is a major factor driving demand for DC-DC converters used in aviation systems. These components are vital for managing voltage levels in increasingly sophisticated aircraft power systems. However, shifts in international trade policies, including tariffs on critical imports such as semiconductors and passive electronic components, have led to rising raw material costs. The uncertainty caused by reciprocal trade restrictions has disrupted global supply chains, creating procurement delays and extending production cycles. Aircraft manufacturers, who rely on consistent integration of electrical components into complex systems, have faced challenges as a result of these trade barriers and delays.

Aircraft DC-DC Converter Market - IMG1

At the same time, modernization efforts in the aviation sector are boosting demand for advanced power management systems. As new-generation aircraft require efficient, stable power delivery for a variety of onboard systems, the role of DC-DC converters becomes increasingly critical. These converters help ensure compatibility between older and newer aircraft electrical infrastructures, supporting the integration of next-gen avionics and electronic systems. Aircraft now require specific voltage levels to support sensitive flight electronics, and DC-DC converters fill the essential role of stabilizing and converting power to meet those needs. As aircraft evolve into more electrically driven platforms, with reduced reliance on pneumatic and hydraulic systems, power conversion technology must also advance to support lighter, more efficient designs.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$966.2 Million
Forecast Value$2.57 Billion
CAGR10.4%

Based on aircraft type, the market is categorized into fixed wing and rotary wing. The fixed wing segment is anticipated to reach USD 2.1 billion by 2034. The growing transition toward electrically powered systems in fixed wing aircraft is encouraging the adoption of DC-DC converters, which are essential for managing a wide range of voltage requirements. These systems are especially important in newer aircraft models, which increasingly rely on more electric architecture (MEA) to enhance energy efficiency and reduce weight. The rising demand for advanced onboard systems in fixed wing platforms continues to drive the growth of DC-DC converters in this segment.

In terms of output power, the aircraft DC-DC converter market is segmented into 100W, 100W-500W, and above 500W categories. The 100W segment accounted for 27.5% of the market in 2024. This growth is supported by the rising usage of low-power electronics, sensors, and avionics modules within aircraft. These components require stable, low-output voltage, and 100W converters meet this requirement effectively. Additionally, the retrofitting of older aircraft with modern low-power systems further supports the demand for this output category, as it allows for seamless integration with existing power infrastructure.

The market is further divided into isolated and non-isolated converters based on product category. In 2024, isolated converters held the largest share at 67.7%. These are essential in modern aircraft, where electrical isolation is needed to ensure system safety and stability. Isolated converters are designed to handle high-wattage applications, making them ideal for complex electrical operations in newer aircraft designs. They are used extensively in propulsion systems and to provide clean, stable power to onboard electronics, which is crucial for maintaining performance and electrical safety across various aircraft subsystems.

By application, the market includes avionics, power distribution, lighting systems, radar and electronic warfare systems, in-flight entertainment, and others. Among these, the avionics segment is projected to generate USD 896.1 million by 2034. As the complexity and sophistication of avionics systems continue to rise, the need for stable, interference-free power grows in parallel. DC-DC converters help provide reliable voltage for mission-critical electronics such as engine control units, cockpit displays, and flight navigation systems. As aircraft continue to adopt digital avionics technologies, the demand for efficient power management through advanced converters also increases.

Regionally, North America led the market in 2024 with a 39.2% share. This leadership position is attributed to the expansion of commercial aviation and the modernization of aircraft fleets in the region. Airlines and manufacturers are increasingly adopting advanced electronic flight systems, which rely heavily on high-performance DC-DC converters for power stability. Moreover, the growing focus on implementing MEA systems in regional fleets is creating further demand for next-gen power conversion solutions.

The aircraft DC-DC converter market is highly competitive, with major players such as Honeywell International Inc., Murata Manufacturing Co., TDK-Lambda Corporation, Ltd., Advanced Energy, and Vicor Corporation collectively accounting for over 30% of the total market share. These companies are actively investing in the development of compact, energy-efficient, and thermally optimized converter solutions that meet rigorous aviation certification standards. To support evolving aircraft technologies, key manufacturers are also introducing advanced product architectures such as gallium nitride (GaN)-based designs, modular solutions, and resonant topologies. Their innovations aim to address the growing demand from both commercial and defense aviation sectors for power converters that are reliable, scalable, and capable of handling varied voltage and wattage requirements.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Trump administration tariffs analysis
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
    • 3.2.2 Impact on the industry
      • 3.2.2.1 Supply-side impact (raw material)
        • 3.2.2.1.1 Price volatility
        • 3.2.2.1.2 Supply chain restructuring
        • 3.2.2.1.3 Production cost implications
      • 3.2.2.2 Demand-side impact
        • 3.2.2.2.1 Price transmission to end markets
        • 3.2.2.2.2 Market share dynamics
        • 3.2.2.2.3 Consumer response patterns
    • 3.2.3 Key companies impacted
    • 3.2.4 Strategic industry responses
      • 3.2.4.1 Supply chain reconfiguration
      • 3.2.4.2 Pricing and product strategies
      • 3.2.4.3 Policy engagement
    • 3.2.5 Outlook and future considerations
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
      • 3.3.1.1 Rising production of aircraft
      • 3.3.1.2 Increasing integration of advanced avionics and electronic systems
      • 3.3.1.3 Demand for lightweight and high-efficiency power solutions
      • 3.3.1.4 Increased focus on fuel efficiency and emission reduction
      • 3.3.1.5 Growing focus towards advanced air mobility
    • 3.3.2 Industry pitfalls and challenges
      • 3.3.2.1 High regulatory and certification barriers
      • 3.3.2.2 Design complexity and integration constraints
  • 3.4 Growth potential analysis
  • 3.5 Regulatory landscape
  • 3.6 Technology landscape
  • 3.7 Future market trends
  • 3.8 Gap analysis
  • 3.9 Porter's analysis
  • 3.10 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates & Forecast, By Aircraft Type, 2021-2034 (USD Million & Thousand Units)

  • 5.1 Key trends
  • 5.2 Fixed wing
  • 5.3 Rotary wing

Chapter 6 Market Estimates & Forecast, By Output Power, 2021-2034 (USD Million & Thousand Units)

  • 6.1 Key trends
  • 6.2 <100W
  • 6.3 100W–500W
  • 6.4 >500W

Chapter 7 Market Estimates & Forecast, By Category, 2021-2034 (USD Million & Thousand Units)

  • 7.1 Key trends
  • 7.2 Isolated
  • 7.3 Non-isolated

Chapter 8 Market Estimates & Forecast, By Application, 2021-2034 (USD Million & Thousand Units)

  • 8.1 Key trends
  • 8.2 Avionics
  • 8.3 Power distribution
  • 8.4 Lighting systems
  • 8.5 Radar & electronic warfare systems
  • 8.6 In-flight entertainment (IFE)
  • 8.7 Others

Chapter 9 Market Estimates and Forecast, By Region, 2021 – 2034 (USD Million & Thousand Units)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Netherlands
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 Abbott Technologies
  • 10.2 Advanced Energy
  • 10.3 AJ's Power Source Inc.
  • 10.4 BrightLoop
  • 10.5 Crane Aerospace & Electronics
  • 10.6 Helios Power Solutions
  • 10.7 Honeywell International Inc.
  • 10.8 KGS Electronics
  • 10.9 Meggitt PLC.
  • 10.10 Murata Manufacturing Co., Ltd.
  • 10.11 Pico Electronics
  • 10.12 SynQor, Inc.
  • 10.13 Tame-Power
  • 10.14 TDK-Lambda Corporation
  • 10.15 Texas Instruments Incorporated
  • 10.16 Vicor Corporation
  • 10.17 VPT, Inc.
  • 10.18 XP Power