封面
市场调查报告书
商品编码
1755278

硅阳极市场机会、成长动力、产业趋势分析及2025-2034年预测

Silicone Anodes Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024年,全球硅阳极市场规模达49亿美元,预计年复合成长率将达7.1%,到2034年将达97亿美元。这得归功于高能量锂离子电池的加速转变,这些电池对能量密度和性能的要求越来越高。硅基阳极是一项重大进步,其容量可达约3,600 mAh/g,几乎是传统石墨(最大容量为372 mAh/g)的十倍。在国家製定的下一代电池性能目标的支持下,电动车需求的不断增长推动着电池技术向更高的能量门槛迈进。政府主导的措施、电池生产成本的下降以及严格的排放目标,为硅阳极的发展创造了强劲动力。

硅阳极市场 - IMG1

旨在清洁能源转型的监管计划,例如美国的《通膨削减法案》和欧盟的气候政策,支持了该领域的生产和创新。此外,由公共机构支持的研究正致力于透过探索复合材料和先进的电极设计来解决硅的技术限制,例如膨胀和降解。先进材料科学、政策支援和终端用户需求的融合,为硅基阳极在汽车、消费性电子和储能领域的商用电池系统中的快速应用创造了有利的前景。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 49亿美元
预测值 97亿美元
复合年增长率 7.1%

硅碳复合材料凭藉其增强的机械耐久性和循环效率,在2024年占据了30%的市场。这些材料有助于缓解充电过程中硅体积膨胀这一常见挑战,同时保持强大的导电性和结构弹性。碳基质提供了关键的缓衝作用,确保在电动车应用所需的高负载循环下保持可靠的性能。这种混合材料已成为可扩展商用级硅阳极的首选。

同时,由于电动车、便携式电子产品和电网储能等产业占据市场主导地位,锂离子电池在2024年的市占率将达到58.3%。硅阳极的优点在于其与现有锂离子电池系统的兼容性,无需进行大规模改造即可实现无缝整合。这有助于加速硅增强型锂离子电池的商业化和量产。这类电池具有显着的优势,例如更长的续航里程、更长的设备寿命和更高的储能密度。

2024年,电动车引领所有应用领域,成为硅阳极需求的主要驱动力。向纯电动平台的转变需要先进的电池化学技术,以提供更高的电池密度和快速充电能力。硅化合物因其卓越的容量和对续航里程的贡献而至关重要。汽车製造商正在积极探索与材料供应商的合作,以加速将硅阳极整合到下一代电动车电池系统中。

2024年,美国硅阳极市场产值达10亿美元,并持续在北美地区维持强劲成长动能。在联邦政府的大力支持下,国家政策推动了电动车电池技术的国内生产和创新。 《两党基础设施法》等立法鼓励对先进能源系统的投资,而消费者对快速充电、长续航电动车日益增长的需求,则推动着原始设备製造商(OEM)和电池製造商采用硅基材料。美国强大的研发生态系统,加上汽车製造商和电池开发商的积极参与,正在推动材料科学、商业应用和供应链整合的快速发展。

硅阳极市场的主要参与者包括安普瑞斯科技 (Amprius Technologies)、瓦克化学 (Wacker Chemie)、Enovix 和 Sila Nanotechnologies。为了巩固市场地位,硅阳极产业的公司专注于长期合作、研发规模化和垂直整合。关键策略包括开发下一代复合材料以应对硅的扩张挑战,并与电动车和电池製造商结盟以简化商业化流程。一些公司投资于专有的奈米结构设计和可扩展的製造技术,以确保产品的稳定性和成本效益。此外,一些公司正在利用公共资金和监管支援来加速创新管道的建设。

目录

第一章:方法论与范围

第二章:执行摘要

第三章:行业洞察

  • 产业生态系统分析
    • 影响价值链的因素
    • 利润率分析
    • 中断
    • 未来展望
    • 製造商
    • 经销商
  • 川普政府关税
    • 对贸易的影响
      • 贸易量中断
      • 报復措施
    • 对产业的影响
      • 供给侧影响(原料)
        • 主要材料价格波动
        • 供应链重组
        • 生产成本影响
      • 需求面影响(售价)
        • 价格传导至终端市场
        • 市占率动态
        • 消费者反应模式
    • 受影响的主要公司
    • 策略产业反应
      • 供应链重组
      • 定价和产品策略
      • 政策参与
    • 展望与未来考虑
  • 贸易统计资料(HS 编码) 註:以上贸易统计仅提供主要国家。
    • 主要出口国
    • 主要进口国
  • 衝击力
    • 市场驱动因素
      • 不断成长的电动车市场
      • 高能量密度电池的需求不断增加
      • 电池成本下降
      • 政府措施和法规
      • 硅负极材料的技术进步
    • 市场限制
      • 硅阳极实施中的技术挑战
      • 生产成本高
      • 来自替代阳极材料的竞争
      • 供应链约束
      • 性能和耐用性问题
    • 市场机会
      • 融入下一代电动车
      • 消费性电子领域的新兴应用
      • 储能係统
      • 航太和国防应用
      • 硅阳极-固态电池协同作用
    • 市场挑战
      • 将生产规模扩大到商业水平
      • 实现始终如一的质量
      • 平衡性能和成本
      • 与现有製造基础设施集成
  • 监管框架和政府倡议
    • 电池安全标准
    • 运输法规
    • 环境法规
    • 製造标准
    • 测试和认证要求
    • 区域监管差异
  • 成长潜力分析
  • 2021-2034年价格分析(美元/吨)
  • 硅阳极基础知识
    • 硅阳极技术概述
      • 锂离子电池工作原理
      • 硅作为阳极材料
      • 理论容量和能量密度
      • 与石墨阳极的比较
    • 技术挑战与解决方案
      • 卷扩展问题
      • 固体电解质界面相(sei)的形成
      • 循环寿命限制
      • 电导率挑战
      • 创新设计方法
    • 绩效指标与评估
      • 特定容量
      • 骑乘稳定性
      • 倍能力
      • 库仑效率
      • 温度性能
      • 标准化测试协议
  • 材料科学与工程
    • 硅材料形态
      • 硅奈米粒子
      • 硅奈米线
      • 硅奈米管
      • 多孔硅结构
      • 硅薄膜
    • 硅碳复合材料
      • 核壳结构
      • 硅石墨复合材料
      • 硅碳奈米管复合材料
      • 硅-石墨烯复合材料
      • 其他复合架构
    • 氧化硅基材料
      • 一氧化硅(Sio)
      • 二氧化硅(Sio2)
      • Siox复合材料
      • 性能特征
    • 黏合剂和添加剂
      • 传统黏合剂(PVDF)
      • 水溶性黏合剂(CMC、PAA)
      • 弹性黏合剂
      • 导电添加剂
      • 功能添加物
    • 电解质考虑因素
      • 电解质配方
      • sei稳定添加剂
      • 固态电解质
      • 硅-电解质界面工程
  • 製造和生产技术
    • 硅材料合成
      • 化学气相沉积
      • 镁热还原
      • 电化学蚀刻
      • 球磨
      • 其他合成方法
    • 电极製造技术
      • 浆料製备
      • 涂层工艺
      • 压延
      • 电极切割
      • 品质控制方法
    • 电池组装过程
      • 软包电池组件
      • 圆柱形电池组件
      • 方形电池组件
      • 形成和老化
    • 可伸缩性注意事项
      • 实验室规模至中试生产
      • 大规模生产挑战
      • 成本分析
      • 产量优化
      • 设备要求
    • 製造业创新
      • 干电极加工
      • 增材製造
      • 卷对卷加工
      • 工业4.0集成
      • 新兴製造方法
  • 硅阳极技术的最新创新
    • 新型硅奈米结构
    • 先进的复合材料设计
    • 黏合剂和电解质创新
    • 製造工艺突破
    • 绩效提升策略
  • 波特的分析
  • PESTEL分析

第四章:竞争格局

  • 介绍
  • 主要参与者的市占率分析
  • 竞争基准测试
  • 战略仪表板
  • 竞争定位矩阵
  • 主要参与者所采用的竞争策略
    • 併购
    • 合资企业和合作
    • 产品发布和创新
    • 扩张和投资策略

第五章:市场估计与预测:按材料,2021 - 2034 年

  • 主要趋势
  • 硅奈米粒子
  • 硅奈米线/奈米管
  • 硅碳复合材料
  • 氧化硅/SiOx
  • 硅薄膜
  • 其他的

第六章:市场估计与预测:按电池类型,2021 - 2034 年

  • 主要趋势
  • 锂离子电池
    • 圆柱形电池
    • 软包电池
    • 方形电池
  • 锂聚合物电池
  • 固态电池
  • 其他的

第七章:市场估计与预测:按应用,2021 - 2034 年

  • 主要趋势
  • 汽车
    • 纯电动车
    • 插电式混合动力电动车
    • 油电混合车
    • 商用车
  • 消费性电子产品
    • 智慧型手机
    • 笔记型电脑和平板电脑
    • 穿戴式装置
    • 其他的
  • 储能係统
    • 住宅
    • 商业的
    • 公用事业规模
    • 微电网和离网
  • 工业的
    • 电动工具
    • 物料搬运设备
    • 其他的
  • 航太和国防
  • 其他的

第八章:市场估计与预测:按地区,2021 - 2034 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 西班牙
    • 义大利
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 亚太其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋
    • 中东和非洲其他地区

第九章:公司简介

  • Advano
  • Amprius Technologies
  • BTR New Energy Material
  • Enevate Corporation
  • Enovix
  • Group14 Technologies
  • NanoGraf Corporation
  • Nexeon Limited
  • Ningbo Shanshan
  • OneD Battery Sciences
  • Shin-Etsu Chemical
  • Sila Nanotechnologies
  • Targray Technology International
  • Wacker Chemie
简介目录
Product Code: 13958

The Global Silicone Anodes Market was valued at USD 4.9 billion in 2024 and is estimated to grow at a CAGR of 7.1% to reach USD 9.7 billion by 2034, fueled by the accelerating shift toward high-energy lithium-ion batteries that demand improved energy density and performance. Silicon-based anodes are a major advancement, capable of delivering around 3,600 mAh/g-nearly ten times the capacity of conventional graphite, which maxes out at 372 mAh/g. The rising demand for electric vehicles pushes battery technologies toward higher energy thresholds, supported by national goals targeting next-generation battery performance. Government-led initiatives, declining battery production costs, and stringent emissions targets create strong momentum for silicon anode development.

Silicone Anodes Market - IMG1

Regulatory programs aimed at clean energy transition, such as the U.S. Inflation Reduction Act and the EU's climate policies, support production and innovation in this space. In addition, research backed by public agencies is focusing on resolving technical limitations of silicon, like expansion and degradation, by exploring composite materials and advanced electrode designs. The convergence of advanced materials science, policy backing, and end-user demand creates a favorable landscape for the rapid adoption of silicon-based anodes in commercial battery systems across automotive, consumer electronics, and energy storage sectors.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$4.9 Billion
Forecast Value$9.7 Billion
CAGR7.1%

Silicon-carbon composites captured a 30% share in 2024 due to their enhanced mechanical durability and cycling efficiency. These materials help mitigate the common challenge of silicon volume expansion during charging, while maintaining strong conductivity and structural resilience. The carbon matrix offers critical buffering, ensuring reliable performance under the heavy load cycles required by electric vehicle applications. This hybrid material has become the go-to option for scalable, commercial-grade silicon anodes.

Meanwhile, lithium-ion batteries accounted for a 58.3% share in 2024, as industries like EVs, portable electronics, and grid storage dominate the market. The advantage of silicon anodes lies in their compatibility with existing lithium-ion systems, allowing seamless integration without major retooling. This has helped accelerate the commercialization and mass production of silicon-enhanced lithium-ion batteries. These batteries offer significant benefits, such as extended driving range, greater device longevity, and enhanced energy storage density.

Electric vehicles led all application segments in 2024, establishing themselves as the primary driver of demand for silicon anodes. The shift toward fully electric platforms requires advanced battery chemistries that deliver higher density and fast charging capabilities. Silicon compounds are crucial here, given their superior capacity and contribution to extended range. Automotive manufacturers are actively exploring partnerships with material suppliers to accelerate the integration of silicon anodes into next-gen EV battery systems.

U.S. Silicone Anodes Market generated USD 1 billion in 2024 and continues to gain strength across North America. Backed by strong federal support, national policies promote domestic production and innovation in EV battery technology. Legislation such as the Bipartisan Infrastructure Law encourages investment in advanced energy systems, while growing consumer demand for fast-charging, long-range electric vehicles pushes OEMs and battery manufacturers to incorporate silicon-based materials. The country's robust R&D ecosystem, along with active engagement from automakers and battery developers, is driving rapid advancements in material science, commercial applications, and supply chain integration.

Key players operating in the Silicone Anodes Market include Amprius Technologies, Wacker Chemie, Enovix, and Sila Nanotechnologies. To reinforce their market position, companies in the silicone anodes industry focus on long-term collaborations, R&D scaling, and vertical integration. Key strategies include developing next-generation composites to address silicon's expansion challenges and forming alliances with EV and battery manufacturers to streamline commercialization. Some players invest in proprietary nanostructure designs and scalable manufacturing techniques to ensure product stability and cost efficiency. Additionally, firms are leveraging public funding and regulatory support to fast-track innovation pipelines.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definition
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculation
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry synopsis, 2021 - 2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Future outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Trump administration tariffs
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
    • 3.2.2 Impact on the industry
      • 3.2.2.1 Supply-side impact (raw materials)
        • 3.2.2.1.1 Price volatility in key materials
        • 3.2.2.1.2 Supply chain restructuring
        • 3.2.2.1.3 Production cost implications
      • 3.2.2.2 Demand-side impact (selling price)
        • 3.2.2.2.1 Price transmission to end markets
        • 3.2.2.2.2 Market share dynamics
        • 3.2.2.2.3 Consumer response patterns
    • 3.2.3 Key companies impacted
    • 3.2.4 Strategic industry responses
      • 3.2.4.1 Supply chain reconfiguration
      • 3.2.4.2 Pricing and product strategies
      • 3.2.4.3 Policy engagement
    • 3.2.5 Outlook and future considerations
  • 3.3 Trade statistics (HS Code) Note: the above trade statistics will be provided for key countries only.
    • 3.3.1 Major exporting countries
    • 3.3.2 Major importing countries
  • 3.4 Impact forces
    • 3.4.1 Market drivers
      • 3.4.1.1 Growing electric vehicle market
      • 3.4.1.2 Increasing demand for high-energy density batteries
      • 3.4.1.3 Declining battery costs
      • 3.4.1.4 Government initiatives and regulations
      • 3.4.1.5 Technological advancements in silicon anode materials
    • 3.4.2 Market restraints
      • 3.4.2.1 Technical challenges in silicon anode implementation
      • 3.4.2.2 High production costs
      • 3.4.2.3 Competition from alternative anode materials
      • 3.4.2.4 Supply chain constraints
      • 3.4.2.5 Performance and durability concerns
    • 3.4.3 Market opportunities
      • 3.4.3.1 Integration in next-generation EVs
      • 3.4.3.2 Emerging applications in consumer electronics
      • 3.4.3.3 Energy storage systems
      • 3.4.3.4 Aerospace and defense applications
      • 3.4.3.5 Silicon anode-solid state battery synergies
    • 3.4.4 Market challenges
      • 3.4.4.1 Scaling production to commercial levels
      • 3.4.4.2 Achieving consistent quality
      • 3.4.4.3 Balancing performance and cost
      • 3.4.4.4 Integration with existing manufacturing infrastructure
  • 3.5 Regulatory framework and government initiatives
    • 3.5.1 Battery safety standards
    • 3.5.2 Transportation regulations
    • 3.5.3 Environmental regulations
    • 3.5.4 Manufacturing standards
    • 3.5.5 Testing and certification requirements
    • 3.5.6 Regional regulatory variations
  • 3.6 Growth potential analysis
  • 3.7 Pricing analysis (USD/Tons) 2021-2034
  • 3.8 Fundamentals of silicon anodes
    • 3.8.1 Silicon anode technology overview
      • 3.8.1.1 Lithium-ion battery working principles
      • 3.8.1.2 Silicon as anode material
      • 3.8.1.3 Theoretical capacity and energy density
      • 3.8.1.4 Comparison with graphite anodes
    • 3.8.2 Technical challenges and solutions
      • 3.8.2.1 Volume expansion issues
      • 3.8.2.2 Solid electrolyte interphase (sei) formation
      • 3.8.2.3 Cycle life limitations
      • 3.8.2.4 Electrical conductivity challenges
      • 3.8.2.5 Innovative design approaches
    • 3.8.3 Performance metrics and evaluation
      • 3.8.3.1 Specific capacity
      • 3.8.3.2 Cycling stability
      • 3.8.3.3 Rate capability
      • 3.8.3.4 Coulombic efficiency
      • 3.8.3.5 Temperature performance
      • 3.8.3.6 Standardized testing protocols
  • 3.9 Materials science and engineering
    • 3.9.1 Silicon material forms
      • 3.9.1.1 Silicon nanoparticles
      • 3.9.1.2 Silicon nanowires
      • 3.9.1.3 Silicon nanotubes
      • 3.9.1.4 Porous silicon structures
      • 3.9.1.5 Silicon thin films
    • 3.9.2 Silicon-carbon composites
      • 3.9.2.1 Core-shell structures
      • 3.9.2.2 Silicon-graphite composites
      • 3.9.2.3 Silicon-carbon nanotubes composites
      • 3.9.2.4 Silicon-graphene composites
      • 3.9.2.5 Other composite architectures
    • 3.9.3 Silicon oxide-based materials
      • 3.9.3.1 Silicon monoxide (Sio)
      • 3.9.3.2 Silicon dioxide (Sio2)
      • 3.9.3.3 Siox composites
      • 3.9.3.4 Performance characteristics
    • 3.9.4 Binders and additives
      • 3.9.4.1 Conventional binders (PVDF)
      • 3.9.4.2 Water-soluble binders (CMC, PAA)
      • 3.9.4.3 Elastomeric binders
      • 3.9.4.4 Conductive additives
      • 3.9.4.5 Functional additives
    • 3.9.5 Electrolyte considerations
      • 3.9.5.1 Electrolyte formulations
      • 3.9.5.2 Additives for sei stabilization
      • 3.9.5.3 Solid-state electrolytes
      • 3.9.5.4 Silicon-electrolyte interface engineering
  • 3.10 Manufacturing and production technologies
    • 3.10.1 Silicon material synthesis
      • 3.10.1.1 Chemical vapor deposition
      • 3.10.1.2 Magnesiothermic reduction
      • 3.10.1.3 Electrochemical etching
      • 3.10.1.4 Ball milling
      • 3.10.1.5 Other synthesis methods
    • 3.10.2 Electrode fabrication techniques
      • 3.10.2.1 Slurry preparation
      • 3.10.2.2 Coating processes
      • 3.10.2.3 Calendering
      • 3.10.2.4 Electrode cutting
      • 3.10.2.5 Quality control methods
    • 3.10.3 Cell assembly processes
      • 3.10.3.1 Pouch cell assembly
      • 3.10.3.2 Cylindrical cell assembly
      • 3.10.3.3 Prismatic cell assembly
      • 3.10.3.4 Formation and aging
    • 3.10.4 Scalability considerations
      • 3.10.4.1 Lab-scale to pilot production
      • 3.10.4.2 Mass production challenges
      • 3.10.4.3 Cost analysis
      • 3.10.4.4 Yield optimization
      • 3.10.4.5 Equipment requirements
    • 3.10.5 Manufacturing innovations
      • 3.10.5.1 Dry electrode processing
      • 3.10.5.2 Additive manufacturing
      • 3.10.5.3 Roll-to-roll processing
      • 3.10.5.4 Industry 4.0 integration
      • 3.10.5.5 Emerging manufacturing approaches
  • 3.11 Recent innovations in silicon anode technology
    • 3.11.1 Novel silicon nanostructures
    • 3.11.2 Advanced composite designs
    • 3.11.3 Binder and electrolyte innovations
    • 3.11.4 Manufacturing process breakthroughs
    • 3.11.5 Performance enhancement strategies
  • 3.12 Porter's analysis
  • 3.13 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Market share analysis of key players
  • 4.3 Competitive benchmarking
  • 4.4 Strategic dashboard
  • 4.5 Competitive positioning matrix
  • 4.6 Competitive strategies adopted by key players
    • 4.6.1 Mergers and acquisitions
    • 4.6.2 Ventures and collaborations
    • 4.6.3 Product launches and innovations
    • 4.6.4 Expansion and investment strategies

Chapter 5 Market Estimates and Forecast, By Material, 2021 - 2034 (USD Billion) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 Silicon nanoparticles
  • 5.3 Silicon nanowires/nanotubes
  • 5.4 Silicon-carbon composites
  • 5.5 Silicon oxide/SiOx
  • 5.6 Silicon thin films
  • 5.7 Others

Chapter 6 Market Estimates and Forecast, By Battery Type, 2021 - 2034 (USD Billion) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 Lithium-ion batteries
    • 6.2.1 Cylindrical cells
    • 6.2.2 Pouch cells
    • 6.2.3 Prismatic cells
  • 6.3 Lithium-polymer batteries
  • 6.4 Solid-state batteries
  • 6.5 Others

Chapter 7 Market Estimates and Forecast, By Application, 2021 - 2034 (USD Billion) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 Automotive
    • 7.2.1 Battery electric vehicles
    • 7.2.2 Plug-in hybrid electric vehicles
    • 7.2.3 Hybrid electric vehicles
    • 7.2.4 Commercial vehicles
  • 7.3 Consumer electronics
    • 7.3.1 Smartphones
    • 7.3.2 Laptops and tablets
    • 7.3.3 Wearable devices
    • 7.3.4 Others
  • 7.4 Energy storage systems
    • 7.4.1 Residential
    • 7.4.2 Commercial
    • 7.4.3 Utility-Scale
    • 7.4.4 Microgrid and off-grid
  • 7.5 Industrial
    • 7.5.1 Power tools
    • 7.5.2 Material handling equipment
    • 7.5.3 Others
  • 7.6 Aerospace and defense
  • 7.7 Others

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2034 (USD Billion) (Kilo Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Spain
    • 8.3.5 Italy
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
    • 8.4.6 Rest of Asia Pacific
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
    • 8.5.4 Rest of Latin America
  • 8.6 Middle East and Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 South Africa
    • 8.6.3 UAE
    • 8.6.4 Rest of Middle East and Africa

Chapter 9 Company Profiles

  • 9.1 Advano
  • 9.2 Amprius Technologies
  • 9.3 BTR New Energy Material
  • 9.4 Enevate Corporation
  • 9.5 Enovix
  • 9.6 Group14 Technologies
  • 9.7 NanoGraf Corporation
  • 9.8 Nexeon Limited
  • 9.9 Ningbo Shanshan
  • 9.10 OneD Battery Sciences
  • 9.11 Shin-Etsu Chemical
  • 9.12 Sila Nanotechnologies
  • 9.13 Targray Technology International
  • 9.14 Wacker Chemie