封面
市场调查报告书
商品编码
1766177

分散式温度感测市场机会、成长动力、产业趋势分析及 2025 - 2034 年预测

Distributed Temperature Sensing Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 180 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024年,全球分散式温度感测市场规模达8.715亿美元,预计2034年将以7.6%的复合年增长率成长,达到18.1亿美元。工业物联网技术的日益普及,在推动该市场发展方面发挥关键作用。随着各行各业越来越多地转向数位系统以增强安全性和营运效率,对能够提供准确即时资料的温度监控解决方案的需求也日益增长。分布式温度感测透过提供长距离连续温度测量来满足这一需求。这可以提前发现异常,有助于预防系统故障并避免潜在的危险情况。

分散式温度感测市场 - IMG1

资料中心基础设施建设、城市化进程以及电动车使用率的上升推动了电力消耗的快速成长,这促使公用事业和工业营运商采用更智慧的电网解决方案。 DTS 系统对这些发展至关重要,因为它们有助于管理热负荷并提高电网可靠性。这些感测系统通常部署在具有挑战性的环境中,例如地下和架空电力线、配电节点和变电站。它们能够检测电力电缆的过热或应力,使其成为现代能源基础设施中不可或缺的一部分。随着各行各业致力于降低风险并延长资产使用寿命,对 DTS 的需求正在稳步增长。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 8.715亿美元
预测值 18.1亿美元
复合年增长率 7.6%

就光纤类型而言,单模光纤预计将实现显着成长,其市值预计到2034年将达到9.51亿美元。这类光纤尤其适用于需要长距离高速资料传输的应用。其固有的资料传输能力,讯号损耗极小,频宽容量更高,使其成为现代电信和工业设备的理想选择。随着全球网路连线的扩展,尤其是新一代宽频和无线系统的发展,单模光纤在分散式传输系统(DTS)中的应用持续成长。这些光纤使分布式感测器能够精确测量延伸电缆长度上的温度变化。

依技术分析,市场细分为光时域反射仪 (OTDR) 和光频域反射仪 (OFDR)。 OTDR 仍然是主导技术,2024 年占全球市场的 72.5%。此方法因其在光纤网路故障检测和连续性验证方面的精确性而被广泛接受。 OTDR 透过识别精确的故障点、熔接损耗或光纤断裂来实现高效维护,这对于依赖不间断运作的产业至关重要。 DTS 系统使用 OTDR 分析背向散射光来确定光纤长度上的温度曲线,从而增强即时监控能力。

根据工作原理,市场细分为基于瑞利散射、拉曼散射和布里渊散射的DTS系统。其中,基于瑞利散射的DTS在2024年占了24%的市场。此技术特别适用于需要精细温度监测的环境。其详细的热分析能力支援早期检测温度峰值至关重要的操作。在高风险区域运作的产业越来越依赖此类技术,以确保持续的监控并在重大故障发生前解决问题。

从应用角度来看,DTS 系统广泛应用于多个产业,包括电力电缆监测、火灾侦测、管道管理、环境评估等。然而,石油和天然气应用在 2024 年占据了最大的份额,达到 30.1%。这些产业需要远距离持续温度监测,以确保营运效率和安全性。 DTS 解决方案提供必要的精度和可靠性,以满足这些需求,有助于优化效能和预防性维护。

在区域分析中,美国是一个突出的主要市场,预计到2034年其市场规模将达到4.15亿美元。在美国,DTS系统广泛部署,用于井筒和电网的即时热监测。随着致力于改造老化基础设施的倡议不断涌现,先进的温度感测解决方案的应用势头强劲。这些系统支援高效的负载管理和效能问题的早期检测,从而降低意外停机的风险。

市场竞争激烈,斯伦贝谢有限公司、哈里伯顿公司、AP Sensing GmbH、Silixa Ltd. 和 Bandweaver Technologies 等主要参与者合计占全球收入的 43.3% 以上。为了保持领先地位并适应不断变化的行业需求,各公司正在大力投资下一代光纤材料和感测器技术,以提高测量精度和环境耐久性。为了满足日益增长的即时高精度监测需求,各公司正在推出紧凑、节能且分辨率更高的 DTS 系统。

人工智慧驱动的诊断和分析技术也被整合到DTS解决方案中,以支援预测性维护并提昇系统可靠性。行业参与者正在响应用户需求,提供针对特定行业挑战的客製化DTS配置。此外,策略合作伙伴关係、收购和协作正成为扩展技术能力和地理覆盖范围的核心。透过与监管机构和公用事业营运商合作,企业还可以确保其DTS产品符合不断发展的环境和安全标准。

目录

第一章:方法论与范围

第二章:执行摘要

第三章:行业洞察

  • 产业生态系统分析
    • 供应商概况
    • 利润率
    • 成本结构
    • 每个阶段的增值
    • 影响价值链的因素
    • 中断
  • 产业衝击力
    • 成长动力
      • 对先进管道监控的需求不断增加
      • 对火灾侦测和预防系统的需求日益增长
      • 电网基础设施投资不断增加
      • 光纤感测技术进步
      • 智慧基础设施和工业物联网(IIoT)的扩展
    • 产业陷阱与挑战
      • 初始资本投入高
      • 复杂的安装和集成
  • 成长潜力分析
  • 监管格局
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL分析
  • 技术和创新格局
    • 当前的技术趋势
    • 新兴技术
  • 价格趋势
    • 按地区
    • 按产品
  • 定价策略
  • 新兴商业模式
  • 合规性要求
  • 永续性措施
  • 消费者情绪分析
  • 专利和智慧财产权分析
  • 地缘政治与贸易动态

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 按地区
      • 北美洲
      • 欧洲
      • 亚太地区
    • 市场集中度分析
  • 关键参与者的竞争基准
    • 财务绩效比较
      • 收入
      • 利润率
      • 研发
    • 产品组合比较
      • 产品范围广度
      • 科技
      • 创新
    • 地理分布比较
      • 全球足迹分析
      • 服务网路覆盖
      • 各地区市场渗透率
    • 竞争定位矩阵
      • 领导者
      • 挑战者
      • 追踪者
      • 利基市场参与者
    • 战略展望矩阵
  • 2021-2024 年关键发展
    • 併购
    • 伙伴关係和合作
    • 技术进步
    • 扩张和投资策略
    • 永续发展倡议
    • 数位转型倡议
  • 新兴/新创企业竞争对手格局

第五章:市场估计与预测:依纤维类型,2021-2034

  • 主要趋势
  • 单模光纤
  • 多模光纤

第六章:市场估计与预测:依技术类型,2021-2034

  • 主要趋势
  • 光时域反射仪 (OTDR)
  • 光频域反射仪(OFDR)

第七章:市场估计与预测:依经营原则,2021-2034

  • 主要趋势
  • 基于瑞利散射的DTS
  • 基于拉曼散射的DTS
  • 基于布里渊散射的DTS

第 8 章:市场估计与预测:按应用,2021 年至 2034 年

  • 主要趋势
  • 石油和天然气
  • 电力电缆监控
  • 火灾侦测
  • 流程和管道监控
  • 环境监测
  • 变压器温度监测
  • 其他的

第九章:市场估计与预测:按地区,2021 年至 2034 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 西班牙
    • 义大利
    • 荷兰
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋

第十章:公司简介

  • AOMS Technologies
  • AP Sensing GmbH
  • Bandweaver Technologies
  • Fluves
  • GESO GmbH & Co.
  • Halliburton Company
  • Inventec BV
  • Micron Optics
  • NKT Photonics A/S
  • OFS Fitel, LLC
  • Omicron Electronics
  • Omnisens SA
  • Optromix, Inc.
  • Schlumberger Limited
  • Silixa Ltd.
  • Sumitomo Electric Industries, Ltd.
  • Yokogawa Electric Corporation
简介目录
Product Code: 14155

The Global Distributed Temperature Sensing Market was valued at USD 871.5 million in 2024 and is estimated to grow at a CAGR of 7.6% to reach USD 1.81 billion by 2034. The rising adoption of industrial IoT technologies is playing a key role in driving this market forward. With industries increasingly turning to digital systems for enhanced safety and operational efficiency, there is a growing need for temperature monitoring solutions that deliver accurate, real-time data. Distributed temperature sensing meets this demand by offering continuous temperature measurements over long distances. This allows early detection of anomalies, helping to prevent system failures and avoid potentially hazardous conditions.

Distributed Temperature Sensing Market - IMG1

The rapid increase in electricity consumption-fueled by growing data center infrastructure, urbanization, and rising electric vehicle usage-is pushing utilities and industrial operators to adopt smarter power grid solutions. DTS systems are vital to these developments, as they assist in managing thermal loads and improving grid reliability. These sensing systems are commonly deployed in challenging environments like underground and overhead power lines, distribution nodes, and substations. Their ability to detect overheating or stress in power cables makes them indispensable in modern energy infrastructure. As industries aim to mitigate risks and improve asset lifespan, the demand for DTS is steadily rising.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$871.5 Million
Forecast Value$1.81 Billion
CAGR7.6%

In terms of fiber type, single-mode fibers are expected to record significant growth, with their market value projected to reach USD 951 million by 2034. These fibers are favored for applications requiring high-speed data transfer over long distances. Their inherent ability to transmit data with minimal signal loss and higher bandwidth capacity makes them ideal for modern telecommunication and industrial setups. As network connectivity expands globally, especially with the development of next-generation broadband and wireless systems, the use of single-mode fiber in DTS applications continues to increase. These fibers enable distributed sensors to measure temperature variations accurately along extended cable lengths.

When analyzed by technology, the market is segmented into Optical Time Domain Reflectometry (OTDR) and Optical Frequency Domain Reflectometry (OFDR). OTDR remains the dominant technology, accounting for 72.5% of the global market in 2024. The method is widely accepted for its precision in detecting faults and verifying continuity in optical fiber networks. OTDR enables efficient maintenance by identifying exact fault points, splice losses, or fiber breaks, which is essential for sectors that rely on uninterrupted operations. DTS systems using OTDR analyze backscattered light to determine temperature profiles across a fiber's length, enhancing real-time monitoring capabilities.

By operating principle, the market is segmented into Rayleigh scattering-based, Raman scattering-based, and Brillouin scattering-based DTS systems. Among these, Rayleigh scattering-based DTS captured 24% of the market share in 2024. This technology is particularly suitable for environments that demand fine-grained temperature monitoring. Its capacity for detailed thermal analysis supports operations where early detection of temperature spikes is critical. Industries operating in high-risk zones are increasingly relying on such technologies to ensure consistent monitoring and issue resolution before major failures occur.

From an application standpoint, DTS systems are used across several industries, including power cable monitoring, fire detection, pipeline management, environmental assessments, and more. However, oil and gas applications held the largest share of 30.1% in 2024. These sectors require continuous temperature monitoring over long distances to ensure operational efficiency and safety. DTS solutions offer the necessary precision and reliability to support these needs, contributing to optimized performance and preventive maintenance.

In regional analysis, the United States stands out as a major market, with projections indicating it will reach USD 415 million by 2034. Within the country, DTS systems are widely deployed for real-time thermal monitoring of wellbores and electrical grids. With initiatives focused on modernizing aging infrastructure, the adoption of advanced temperature sensing solutions is gaining momentum. These systems support efficient load management and early detection of performance issues, reducing the risk of unplanned outages.

The market landscape is competitive, with key players including Schlumberger Limited, Halliburton Company, AP Sensing GmbH, Silixa Ltd., and Bandweaver Technologies collectively accounting for over 43.3% of global revenue. To maintain leadership and adapt to evolving industry demands, companies are investing heavily in next-generation fiber materials and sensor technologies that improve measurement accuracy and environmental durability. Compact and energy-efficient DTS systems with enhanced resolution are being introduced to meet the growing demand for real-time, high-precision monitoring.

AI-driven diagnostics and analytics are also being integrated into DTS solutions to support predictive maintenance and extend system reliability. Industry participants are responding to user needs by offering customized DTS configurations tailored for specific industrial challenges. In addition, strategic partnerships, acquisitions, and collaborations are becoming central to expanding technological capabilities and geographic reach. By engaging with regulatory bodies and utility operators, firms are also ensuring that their DTS offerings align with evolving environmental and safety standards.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis
  • 2.2 Key market trends
  • 2.3 Fiber type
  • 2.4 Technology type
  • 2.5 Operating principle
  • 2.6 Application
  • 2.7 Regional
  • 2.8 TAM Analysis, 2025-2034 (USD Billion)
  • 2.9 CXO perspectives: Strategic imperatives
    • 2.9.1 Executive decision points
    • 2.9.2 Critical Success Factors
  • 2.10 Future Outlook and Strategic Recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier Landscape
    • 3.1.2 Profit Margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Increasing demand for advanced pipeline monitoring
      • 3.2.1.2 Growing need for fire detection and prevention systems
      • 3.2.1.3 Rising investments in power grid infrastructure
      • 3.2.1.4 Technological advancements in optical fiber sensing
      • 3.2.1.5 Expansion of smart Infrastructure and Industrial IoT (IIoT)
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High initial capital investment
      • 3.2.2.2 Complex installation and integration
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and Innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Price trends
    • 3.8.1 By region
    • 3.8.2 By product
  • 3.9 Pricing Strategies
  • 3.10 Emerging Business Models
  • 3.11 Compliance Requirements
  • 3.12 Sustainability Measures
  • 3.13 Consumer Sentiment Analysis
  • 3.14 Patent and IP analysis
  • 3.15 Geopolitical and trade dynamics

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
    • 4.2.2 Market concentration analysis
  • 4.3 Competitive benchmarking of key players
    • 4.3.1 Financial performance comparison
      • 4.3.1.1 Revenue
      • 4.3.1.2 Profit margin
      • 4.3.1.3 R&D
    • 4.3.2 Product portfolio comparison
      • 4.3.2.1 Product range breadth
      • 4.3.2.2 Technology
      • 4.3.2.3 Innovation
    • 4.3.3 Geographic Presence Comparison
      • 4.3.3.1 Global footprint analysis
      • 4.3.3.2 Service network coverage
      • 4.3.3.3 Market penetration by region
    • 4.3.4 Competitive Positioning Matrix
      • 4.3.4.1 Leaders
      • 4.3.4.2 Challengers
      • 4.3.4.3 Followers
      • 4.3.4.4 Niche Players
    • 4.3.5 Strategic outlook matrix
  • 4.4 Key developments, 2021-2024
    • 4.4.1 Mergers and acquisitions
    • 4.4.2 Partnerships and collaborations
    • 4.4.3 Technological advancements
    • 4.4.4 Expansion and investment strategies
    • 4.4.5 Sustainability initiatives
    • 4.4.6 Digital transformation initiatives
  • 4.5 Emerging/ startup competitors landscape

Chapter 5 Market Estimates & Forecast, By Fiber Type, 2021-2034 (USD Million)

  • 5.1 Key trends
  • 5.2 Single-mode fibers
  • 5.3 Multimode fibers

Chapter 6 Market Estimates & Forecast, By Technology Type, 2021-2034 (USD Million)

  • 6.1 Key trends
  • 6.2 Optical Time Domain Reflectometry (OTDR)
  • 6.3 Optical Frequency Domain Reflectometry (OFDR)

Chapter 7 Market Estimates & Forecast, By Operating Principle, 2021-2034 (USD Million)

  • 7.1 Key trends
  • 7.2 Rayleigh scattering-based DTS
  • 7.3 Raman scattering-based DTS
  • 7.4 Brillouin scattering-based DTS

Chapter 8 Market Estimates & Forecast, By Application, 2021-2034 (USD Million)

  • 8.1 Key trends
  • 8.2 Oil & gas
  • 8.3 Power cable monitoring
  • 8.4 Fire detection
  • 8.5 Process & pipeline monitoring
  • 8.6 Environmental monitoring
  • 8.7 Transformer temperature monitoring
  • 8.8 Others

Chapter 9 Market Estimates and Forecast, By Region, 2021 – 2034 (USD Million)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Netherlands
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 AOMS Technologies
  • 10.2 AP Sensing GmbH
  • 10.3 Bandweaver Technologies
  • 10.4 Fluves
  • 10.5 GESO GmbH & Co.
  • 10.6 Halliburton Company
  • 10.7 Inventec B.V.
  • 10.8 Micron Optics
  • 10.9 NKT Photonics A/S
  • 10.10 OFS Fitel, LLC
  • 10.11 Omicron Electronics
  • 10.12 Omnisens SA
  • 10.13 Optromix, Inc.
  • 10.14 Schlumberger Limited
  • 10.15 Silixa Ltd.
  • 10.16 Sumitomo Electric Industries, Ltd.
  • 10.17 Yokogawa Electric Corporation