封面
市场调查报告书
商品编码
1797700

边缘 AI 硬体市场机会、成长动力、产业趋势分析及 2025 - 2034 年预测

Edge AI Hardware Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 170 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球边缘 AI 硬体市场价值 48 亿美元,预计到 2034 年将以 16.3% 的复合年增长率成长,达到 204 亿美元。对最小延迟和更高能效的即时处理的需求正在重塑企业实施 AI 的方式。越来越多的行业正在采用边缘 AI 硬体来处理本地分析、最大限度地减少对云端的依赖并提高资料安全性。这些设备采用 CPU、AI 加速器和 NPU 等整合元件设计,可直接在边缘执行处理。工业机器人、自动驾驶汽车和智慧监控等应用依靠这些晶片进行快速决策和节能性能优化,从而降低营运成本并提高生产力。从集中式运算到本地化 AI 处理的转变也产生了对能够在受限环境中处理日益复杂任务的多功能晶片组的需求。

边缘人工智慧硬体市场 - IMG1

随着运算能力日益向资料来源转移,边缘AI硬体市场正见证着智慧系统的蓬勃发展,这些系统旨在管理远超基本推理的领域。这些新一代边缘设备旨在执行即时加密、动态热管理和多层决策等复杂任务,而无需依赖外部资料中心。它们采用先进的系统单晶片 (SoC) 架构,可在严苛条件下支援AI工作负载,同时兼顾效能与能效。这些系统还具有自适应资源分配功能,可根据运作环境优先执行安全协定、异常检测和自主控制等关键功能。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 48亿美元
预测值 204亿美元
复合年增长率 16.3%

2024年,智慧型手机领域的边缘AI硬体市场以16亿美元的估值领先市场。这些设备如今具备即时语音翻译、AI增强摄影、生物辨识和设备助理等功能,这些功能减少了对云端持续互动的需求。神经引擎的广泛整合以及智慧型装置在所有消费领域的快速普及,正在推动这一发展势头。用户将受益于更快的处理速度、更高的安全性以及流畅的应用程式效能。

2024年,推理硬体市场价值达32亿美元。这些系统经过量身定制,可在本地即时执行预先训练的模型,以实现预测分析、视觉识别和人机互动等功能。由于云端连接并非始终可用或实用,这些设备可确保操作不间断,同时节省电力并保持高速性能,使其成为现代边缘环境中不可或缺的一部分。

2024年,美国边缘人工智慧硬体市场规模达15亿美元,预计到2034年将以15.4%的复合年增长率成长。由于人工智慧在工业自动化、国防技术和智慧医疗系统中的广泛应用,美国一直保持着强劲的市场地位。 5G网路的快速部署,加上即时人工智慧驱动的诊断和智慧交通基础设施,进一步支撑了边缘处理解决方案的强劲成长。美国市场受惠于技术创新、深度研发投入以及日益壮大的互联解决方案生态系统。

积极塑造全球边缘 AI 硬体市场的关键参与者包括 Hailo、NVIDIA Corporation、英特尔 Corporation、ARM、华为技术有限公司、微软公司、美光科技、三星电子有限公司、戴尔科技公司、苹果公司、联发科公司、赛灵思公司、IBM Corporation、Alphabet Inc.(Google)和高通公司。边缘 AI 硬体领域的领先公司优先开发针对低功耗、即时处理的高效能晶片。许多公司正在大力投资微型 NPU、片上 AI 训练以及对混合运算环境的支援。与云端和边缘基础设施供应商的策略合作伙伴关係有助于加速跨垂直产业的整合。参与者正在透过增强的安全性、AI 模型适应性和更好的热效率来扩展其 SoC 产品组合。

目录

第一章:方法论与范围

第二章:执行摘要

第三章:行业洞察

  • 产业生态系统分析
    • 供应商概况
    • 利润率
    • 成本结构
    • 每个阶段的增值
    • 影响价值链的因素
    • 中断
  • 产业衝击力
    • 成长动力
      • 支援人工智慧的智慧型手机和消费性设备的激增
      • 工业自动化和智慧製造的采用
      • 5G和物联网生态系的扩展
      • 边缘 AI 晶片架构的进步(NPU、设备上学习、安全处理)
      • 智慧型电源 IC 功能的进步(SoC 整合、诊断、保护)
      • 政府对半导体和人工智慧基础设施的投资
    • 产业陷阱与挑战
      • 边缘AI芯片设计和製造成本高且复杂
      • 紧凑型边缘设备的热管理和电源效率限制
  • 成长潜力分析
  • 监管格局
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL分析
  • 技术和创新格局
    • 当前的技术趋势
    • 新兴技术
  • 新兴商业模式
  • 合规性要求
  • 永续性措施
    • 永续材料评估
    • 碳足迹分析
    • 循环经济实施
    • 永续性认证和标准
    • 永续性投资报酬率分析
  • 全球消费者情绪分析
  • 专利分析

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 按地区
      • 北美洲
      • 欧洲
      • 亚太地区
      • 拉丁美洲
      • 中东和非洲
    • 市场集中度分析
  • 关键参与者的竞争基准
    • 财务绩效比较
      • 收入
      • 利润率
      • 研发
    • 产品组合比较
      • 产品范围广度
      • 科技
      • 创新
    • 地理位置比较
      • 全球足迹分析
      • 服务网路覆盖
      • 各区域市场渗透率
    • 竞争定位矩阵
      • 领导者
      • 挑战者
      • 追踪者
      • 利基市场参与者
    • 战略展望矩阵
  • 2021-2024 年关键发展
    • 併购
    • 伙伴关係和合作
    • 技术进步
    • 扩张和投资策略
    • 永续发展倡议
    • 数位转型倡议
  • 新兴/新创企业竞争对手格局

第五章:市场估计与预测:按设备类型,2021 - 2034 年

  • 主要趋势
  • 智慧型手机
  • 相机
  • 机器人
  • 穿戴式装置
  • 智慧音箱
  • 其他设备

第六章:市场估计与预测:按工艺,2021 - 2034 年

  • 主要趋势
  • 训练
  • 推理

第七章:市场估计与预测:按最终用途产业,2021 - 2034 年

  • 主要趋势
  • 製造业
  • 卫生保健
  • 金融服务业
  • 政府
  • 零售与电子商务
  • 运输和物流
  • 其他的

第八章:市场估计与预测:按地区,2021 - 2034 年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 西班牙
    • 义大利
    • 荷兰
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋

第九章:公司简介

  • NVIDIA Corporation
  • Google (Alphabet Inc.)
  • Intel Corporation
  • Huawei Technologies Co., Ltd.
  • Apple Inc.
  • Qualcomm Incorporated
  • Samsung Electronics Co., Ltd.
  • IBM Corporation
  • Dell Technologies Inc.
  • Microsoft Corporation
  • ARM
  • Hailo
  • MediaTek Inc.
  • Xilinx Inc.
  • Micron Technology
简介目录
Product Code: 14510

The Global Edge AI Hardware Market was valued at USD 4.8 billion in 2024 and is estimated to grow at a CAGR of 16.3% to reach USD 20.4 billion by 2034. The demand for real-time processing with minimal delay and greater energy efficiency is reshaping how enterprises implement AI. More industries are adopting edge AI hardware to handle local analytics, minimize cloud dependency, and improve data security. These devices are designed with integrated components like CPUs, AI accelerators, and NPUs to perform processing directly at the edge. Applications such as industrial robotics, automated vehicles, and smart monitoring rely on these chips for quick decision-making and energy-optimized performance, which translates to lower operating costs and improved productivity. The shift from centralized computing to localized AI processing is also creating a need for multifunctional chipsets capable of handling increasingly complex tasks in constrained environments.

Edge AI Hardware Market - IMG1

As computing capabilities increasingly shift toward the data source, the edge AI hardware market is witnessing a surge in intelligent systems designed to manage far more than just basic inference. These next-generation edge devices are engineered to perform complex tasks such as real-time encryption, dynamic thermal management, and multi-layered decision-making without relying on external data centers. They incorporate advanced system-on-chip (SoC) architectures that support AI workloads under demanding conditions while balancing performance with energy efficiency. These systems also feature adaptive resource allocation, allowing them to prioritize critical functions such as security protocols, anomaly detection, and autonomous control based on the operational environment.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$4.8 Billion
Forecast Value$20.4 Billion
CAGR16.3%

In 2024, the edge AI hardware market from the smartphones segment led the market with a valuation of USD 1.6 billion. These devices now feature capabilities like real-time voice interpretation, AI-enhanced photography, biometric identification, and on-device assistants-all of which reduce the need for constant cloud interaction. Widespread integration of neural engines and rapid adoption of smart devices across all consumer segments are fueling this momentum. Users benefit from quicker processing, heightened security, and seamless app performance.

The inference hardware segment was valued at USD 3.2 billion in 2024. These systems are tailored to execute pre-trained models locally and in real time for functions like predictive analytics, visual recognition, and machine-to-human interaction. With cloud connectivity not always available or practical, these devices ensure operations continue uninterrupted while conserving power and maintaining high-speed performance-making them indispensable in modern edge environments.

United States Edge AI Hardware Market was valued at USD 1.5 billion in 2024 and is projected to grow at a CAGR of 15.4% through 2034. The U.S. has maintained a strong position thanks to widespread integration of AI in industrial automation, national defense technologies, and smart healthcare systems. The rapid rollout of 5G networks, combined with real-time, AI-driven diagnostics and intelligent transportation infrastructure, further supports robust growth in edge-based processing solutions. The U.S. market benefits from a blend of tech innovation, deep R&D investment, and a growing ecosystem of connected solutions.

Key players actively shaping this Global Edge AI Hardware Market include Hailo, NVIDIA Corporation, Intel Corporation, ARM, Huawei Technologies Co., Ltd., Microsoft Corporation, Micron Technology, Samsung Electronics Co., Ltd., Dell Technologies Inc., Apple Inc., MediaTek Inc., Xilinx Inc., IBM Corporation, Alphabet Inc. (Google), and Qualcomm Incorporated. Leading companies in the edge AI hardware space are prioritizing high-performance chip development tailored for low-power, real-time processing. Many are investing heavily in miniaturized NPUs, on-chip AI training, and support for hybrid computing environments. Strategic partnerships with cloud and edge infrastructure providers help accelerate integration across verticals. Players are expanding their SoC portfolios with enhanced security, AI model adaptability, and better thermal efficiency.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry snapshot
  • 2.2 Key market trends
  • 2.3 TAM Analysis, 2025-2034 (USD Billion)
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier Landscape
    • 3.1.2 Profit Margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Proliferation of AI-enabled smartphones and consumer devices
      • 3.2.1.2 Industrial automation and smart manufacturing adoption
      • 3.2.1.3 Expansion of 5G and IoT ecosystems
      • 3.2.1.4 Advancements in edge AI chip architecture (NPUs, on-device learning, secure processing)
      • 3.2.1.5 Advances in smart power IC features (SoC integration, diagnostics, protection)
      • 3.2.1.6 Government investments in semiconductor and AI infrastructure
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High cost and complexity of edge AI chip design and fabrication
      • 3.2.2.2 Thermal management and power efficiency limitations in compact edge devices
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Emerging business models
  • 3.9 Compliance requirements
  • 3.10 Sustainability measures
    • 3.10.1 Sustainable materials assessment
    • 3.10.2 Carbon footprint analysis
    • 3.10.3 Circular economy implementation
    • 3.10.4 Sustainability certifications and standards
    • 3.10.5 Sustainability ROI analysis
  • 3.11 Global consumer sentiment analysis
  • 3.12 Patent analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 Latin America
      • 4.2.1.5 Middle East & Africa
    • 4.2.2 Market Concentration Analysis
  • 4.3 Competitive benchmarking of key players
    • 4.3.1 Financial performance comparison
      • 4.3.1.1 Revenue
      • 4.3.1.2 Profit margin
      • 4.3.1.3 R&D
    • 4.3.2 Product portfolio comparison
      • 4.3.2.1 Product range breadth
      • 4.3.2.2 Technology
      • 4.3.2.3 Innovation
    • 4.3.3 Geographic presence comparison
      • 4.3.3.1 Global footprint analysis
      • 4.3.3.2 Service network coverage
      • 4.3.3.3 Market penetration by region
    • 4.3.4 Competitive positioning matrix
      • 4.3.4.1 Leaders
      • 4.3.4.2 Challengers
      • 4.3.4.3 Followers
      • 4.3.4.4 Niche players
    • 4.3.5 Strategic outlook matrix
  • 4.4 Key developments, 2021-2024
    • 4.4.1 Mergers and acquisitions
    • 4.4.2 Partnerships and collaborations
    • 4.4.3 Technological advancements
    • 4.4.4 Expansion and investment strategies
    • 4.4.5 Sustainability initiatives
    • 4.4.6 Digital transformation initiatives
  • 4.5 Emerging/ startup competitors landscape

Chapter 5 Market Estimates and Forecast, By Device Type, 2021 - 2034 (USD Billion and Units)

  • 5.1 Key trends
  • 5.2 Smartphones
  • 5.3 Cameras
  • 5.4 Robots
  • 5.5 Wearables
  • 5.6 Smart Speaker
  • 5.7 Other Devices

Chapter 6 Market Estimates and Forecast, By Process, 2021 - 2034 (USD Billion and Units)

  • 6.1 Key trends
  • 6.2 Training
  • 6.3 Inference

Chapter 7 Market Estimates and Forecast, By End Use Industry, 2021 - 2034 (USD Billion and Units)

  • 7.1 Key trends
  • 7.2 Manufacturing
  • 7.3 Healthcare
  • 7.4 BFSI
  • 7.5 Government
  • 7.6 Retail & e-commerce
  • 7.7 Transport and Logistics
  • 7.8 Others

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2034 (USD Billion and Units)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Spain
    • 8.3.5 Italy
    • 8.3.6 Netherlands
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
  • 8.6 Middle East and Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 South Africa
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 NVIDIA Corporation
  • 9.2 Google (Alphabet Inc.)
  • 9.3 Intel Corporation
  • 9.4 Huawei Technologies Co., Ltd.
  • 9.5 Apple Inc.
  • 9.6 Qualcomm Incorporated
  • 9.7 Samsung Electronics Co., Ltd.
  • 9.8 IBM Corporation
  • 9.9 Dell Technologies Inc.
  • 9.10 Microsoft Corporation
  • 9.11 ARM
  • 9.12 Hailo
  • 9.13 MediaTek Inc.
  • 9.14 Xilinx Inc.
  • 9.15 Micron Technology