![]() |
市场调查报告书
商品编码
1797700
边缘 AI 硬体市场机会、成长动力、产业趋势分析及 2025 - 2034 年预测Edge AI Hardware Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034 |
2024 年全球边缘 AI 硬体市场价值 48 亿美元,预计到 2034 年将以 16.3% 的复合年增长率成长,达到 204 亿美元。对最小延迟和更高能效的即时处理的需求正在重塑企业实施 AI 的方式。越来越多的行业正在采用边缘 AI 硬体来处理本地分析、最大限度地减少对云端的依赖并提高资料安全性。这些设备采用 CPU、AI 加速器和 NPU 等整合元件设计,可直接在边缘执行处理。工业机器人、自动驾驶汽车和智慧监控等应用依靠这些晶片进行快速决策和节能性能优化,从而降低营运成本并提高生产力。从集中式运算到本地化 AI 处理的转变也产生了对能够在受限环境中处理日益复杂任务的多功能晶片组的需求。
随着运算能力日益向资料来源转移,边缘AI硬体市场正见证着智慧系统的蓬勃发展,这些系统旨在管理远超基本推理的领域。这些新一代边缘设备旨在执行即时加密、动态热管理和多层决策等复杂任务,而无需依赖外部资料中心。它们采用先进的系统单晶片 (SoC) 架构,可在严苛条件下支援AI工作负载,同时兼顾效能与能效。这些系统还具有自适应资源分配功能,可根据运作环境优先执行安全协定、异常检测和自主控制等关键功能。
市场范围 | |
---|---|
起始年份 | 2024 |
预测年份 | 2025-2034 |
起始值 | 48亿美元 |
预测值 | 204亿美元 |
复合年增长率 | 16.3% |
2024年,智慧型手机领域的边缘AI硬体市场以16亿美元的估值领先市场。这些设备如今具备即时语音翻译、AI增强摄影、生物辨识和设备助理等功能,这些功能减少了对云端持续互动的需求。神经引擎的广泛整合以及智慧型装置在所有消费领域的快速普及,正在推动这一发展势头。用户将受益于更快的处理速度、更高的安全性以及流畅的应用程式效能。
2024年,推理硬体市场价值达32亿美元。这些系统经过量身定制,可在本地即时执行预先训练的模型,以实现预测分析、视觉识别和人机互动等功能。由于云端连接并非始终可用或实用,这些设备可确保操作不间断,同时节省电力并保持高速性能,使其成为现代边缘环境中不可或缺的一部分。
2024年,美国边缘人工智慧硬体市场规模达15亿美元,预计到2034年将以15.4%的复合年增长率成长。由于人工智慧在工业自动化、国防技术和智慧医疗系统中的广泛应用,美国一直保持着强劲的市场地位。 5G网路的快速部署,加上即时人工智慧驱动的诊断和智慧交通基础设施,进一步支撑了边缘处理解决方案的强劲成长。美国市场受惠于技术创新、深度研发投入以及日益壮大的互联解决方案生态系统。
积极塑造全球边缘 AI 硬体市场的关键参与者包括 Hailo、NVIDIA Corporation、英特尔 Corporation、ARM、华为技术有限公司、微软公司、美光科技、三星电子有限公司、戴尔科技公司、苹果公司、联发科公司、赛灵思公司、IBM Corporation、Alphabet Inc.(Google)和高通公司。边缘 AI 硬体领域的领先公司优先开发针对低功耗、即时处理的高效能晶片。许多公司正在大力投资微型 NPU、片上 AI 训练以及对混合运算环境的支援。与云端和边缘基础设施供应商的策略合作伙伴关係有助于加速跨垂直产业的整合。参与者正在透过增强的安全性、AI 模型适应性和更好的热效率来扩展其 SoC 产品组合。
The Global Edge AI Hardware Market was valued at USD 4.8 billion in 2024 and is estimated to grow at a CAGR of 16.3% to reach USD 20.4 billion by 2034. The demand for real-time processing with minimal delay and greater energy efficiency is reshaping how enterprises implement AI. More industries are adopting edge AI hardware to handle local analytics, minimize cloud dependency, and improve data security. These devices are designed with integrated components like CPUs, AI accelerators, and NPUs to perform processing directly at the edge. Applications such as industrial robotics, automated vehicles, and smart monitoring rely on these chips for quick decision-making and energy-optimized performance, which translates to lower operating costs and improved productivity. The shift from centralized computing to localized AI processing is also creating a need for multifunctional chipsets capable of handling increasingly complex tasks in constrained environments.
As computing capabilities increasingly shift toward the data source, the edge AI hardware market is witnessing a surge in intelligent systems designed to manage far more than just basic inference. These next-generation edge devices are engineered to perform complex tasks such as real-time encryption, dynamic thermal management, and multi-layered decision-making without relying on external data centers. They incorporate advanced system-on-chip (SoC) architectures that support AI workloads under demanding conditions while balancing performance with energy efficiency. These systems also feature adaptive resource allocation, allowing them to prioritize critical functions such as security protocols, anomaly detection, and autonomous control based on the operational environment.
Market Scope | |
---|---|
Start Year | 2024 |
Forecast Year | 2025-2034 |
Start Value | $4.8 Billion |
Forecast Value | $20.4 Billion |
CAGR | 16.3% |
In 2024, the edge AI hardware market from the smartphones segment led the market with a valuation of USD 1.6 billion. These devices now feature capabilities like real-time voice interpretation, AI-enhanced photography, biometric identification, and on-device assistants-all of which reduce the need for constant cloud interaction. Widespread integration of neural engines and rapid adoption of smart devices across all consumer segments are fueling this momentum. Users benefit from quicker processing, heightened security, and seamless app performance.
The inference hardware segment was valued at USD 3.2 billion in 2024. These systems are tailored to execute pre-trained models locally and in real time for functions like predictive analytics, visual recognition, and machine-to-human interaction. With cloud connectivity not always available or practical, these devices ensure operations continue uninterrupted while conserving power and maintaining high-speed performance-making them indispensable in modern edge environments.
United States Edge AI Hardware Market was valued at USD 1.5 billion in 2024 and is projected to grow at a CAGR of 15.4% through 2034. The U.S. has maintained a strong position thanks to widespread integration of AI in industrial automation, national defense technologies, and smart healthcare systems. The rapid rollout of 5G networks, combined with real-time, AI-driven diagnostics and intelligent transportation infrastructure, further supports robust growth in edge-based processing solutions. The U.S. market benefits from a blend of tech innovation, deep R&D investment, and a growing ecosystem of connected solutions.
Key players actively shaping this Global Edge AI Hardware Market include Hailo, NVIDIA Corporation, Intel Corporation, ARM, Huawei Technologies Co., Ltd., Microsoft Corporation, Micron Technology, Samsung Electronics Co., Ltd., Dell Technologies Inc., Apple Inc., MediaTek Inc., Xilinx Inc., IBM Corporation, Alphabet Inc. (Google), and Qualcomm Incorporated. Leading companies in the edge AI hardware space are prioritizing high-performance chip development tailored for low-power, real-time processing. Many are investing heavily in miniaturized NPUs, on-chip AI training, and support for hybrid computing environments. Strategic partnerships with cloud and edge infrastructure providers help accelerate integration across verticals. Players are expanding their SoC portfolios with enhanced security, AI model adaptability, and better thermal efficiency.