封面
市场调查报告书
商品编码
1858830

车载网路半导体市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

In-Vehicle Networking Semiconductors Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 220 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球车载网路半导体市场价值为 5.389 亿美元,预计到 2034 年将以 8.8% 的复合年增长率增长至 12 亿美元。

车载网路半导体市场 - IMG1

这些半导体正在革新汽车电子领域,实现现代车辆中各个子系统之间的无缝高速通讯。推动市场扩张的关键因素包括车辆电气化的快速发展、高级驾驶辅助系统 (ADAS) 的广泛应用、资讯娱乐技术的增强以及车辆架构复杂性的不断提高。随着创新加速,製造商正优先考虑节能、相容人工智慧且注重安全性的半导体解决方案。在后疫情时代,随着企业将重心转向晶片在地化并加强供应链韧性,亚洲和欧洲等地区的半导体製造业正在蓬勃发展。亚太地区凭藉其强大的电动车、电子和汽车产业,占据最大的市场份额,预计到 2024 年将达到 39%。汽车製造商和一级供应商对数位基础设施和智慧出行领域的持续投资塑造了市场格局,推动了互联和自动驾驶汽车对先进网路解决方案的需求。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 5.389亿美元
预测值 12亿美元
复合年增长率 8.8%

2024年,乘用车市占率达到60%,预计2025年至2034年间将以7.9%的复合年增长率成长。对车载互联、安全功能和复杂软体架构日益增长的需求,正促使汽车製造商在紧凑型轿车、轿车和SUV中更加依赖半导体整合。随着安全、网路安全和排放方面的监管要求日益严格,汽车製造商正转向半导体,以实现即时通讯和可靠的系统协调。这些晶片正成为实现乘用车下一代功能的核心,使其成为不断发展的汽车生态系统中不可或缺的组件。

预计2025年至2034年间,控制器区域网路(CAN)市场将以8.7%的复合年增长率成长。基于CAN的半导体装置凭藉其强大的可靠性、成本效益以及对各种车辆设计的灵活适应性,仍然是即时汽车联网的首选。这些晶片对于支援ADAS和连网汽车平台等关键应用至关重要,能够在以安全为中心的环境中提供稳定的性能。它们能够无缝整合到各种系统中,使其成为汽车电子领域不可或缺的组件。

亚太地区车载网路半导体市场预计在2024年将占据39%的市场。该地区的领先地位得益于汽车电气化的快速发展、高级驾驶辅助系统(ADAS)的日益普及以及对互联智慧出行解决方案不断增长的需求。强大的汽车和电子製造业基础,加上政府的支持性政策和本地原始设备製造OEM)的投资,持续推动区域成长。不断加强的研发投入以及对自动驾驶和连网汽车日益增长的兴趣,进一步加速了亚洲各国对高性能网路晶片的需求。该地区的企业正在加大投资,扩大生产规模,并推动创新,以满足不断变化的汽车产业需求。

微芯科技(Microchip Technology)、瑞萨电子(Renesas Electronics)、博通(Broadcom)、大陆集团(Continental)、亚德诺半导体(Analog Devices)、高通(Qualcomm)、德州仪器(Texas Instruments)和艾尔莫半导体(Elmos Semicondu)等主要领导厂商的领导装置市场领导者持续引车。为了巩固自身地位,车载网路半导体产业的企业正在采取一系列策略性措施。领先企业正致力于设计可扩展、低功耗的晶片组,以支援区域架构和多域通讯系统。随着汽车日益软体化,优先开发支援人工智慧和网路安全增强的半导体解决方案变得至关重要。此外,各厂商也正在大力投资在地化生产设施和合作伙伴关係,以增强供应链稳定性并应对疫情后带来的衝击。与原始设备製造商(OEM)和一级供应商的合作,能够提供符合区域法规和客户需求的客製化解决方案。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 全球的
    • 地区/国家
  • 基准估算和计算
    • 基准年计算
    • 市场估算的关键趋势
  • 初步研究和验证
    • 原始资料
  • 预测模型
  • 研究假设和局限性

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率分析
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
      • 成长驱动因素
      • 向车辆自动化和高级驾驶辅助系统 (ADAS) 的转变
      • 电动车和混合动力车的普及率不断提高
      • 向高速、集中式和区域式车辆架构转变
      • 消费者越来越偏爱智慧、功能丰富的车辆
      • 监管重点关注车辆安全、网路安全和通讯可靠性
    • 产业陷阱与挑战
      • 在严苛的汽车工况下,电子可靠性至关重要
      • 快速发展的通讯协定和标准
    • 市场机会
      • 与电动和混合动力汽车平台集成
      • 汽车乙太网路和高速网路晶片的进步
      • ADAS、自动驾驶和连网汽车技术的扩展
      • 软体定义和集中式车辆架构的日益普及
  • 成长潜力分析
  • 监管环境
    • 区域汽车标准差异
    • 型式认可和认证要求
    • 网路安全认证流程
    • 国际标准协调
  • 波特的分析
  • PESTEL 分析
  • 技术与创新格局
    • 当前技术趋势
    • 新兴技术
  • 专利分析
  • 成本細項分析
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
  • 碳足迹考量
  • 未来展望与路线图
    • 下一代网路协定
    • 6G整合和超低延迟
    • 量子安全密码学实现
    • 人工智慧驱动的网路优化
    • 永续网路解决方案
    • 跨产业融合趋势
    • 监管演变和标准制定
    • 市场整合与合作策略
  • 协定标准化和互通性挑战
    • 多协定共存要求
    • 传统协定迁移策略
    • 跨厂商相容性问题
    • 标准机构协调复杂性
  • 成本优化与效能权衡
    • 网路复杂度与成本分析
    • 组件整合策略
    • 批量生产经济学
    • 系统总成本最佳化

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • MEA
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金

第五章:市场估算与预测:依组件划分,2021-2034年

  • 主要趋势
  • 收发器
  • 微控制器和处理器
  • 网路交换器和网桥
  • 网关/控制器
  • 记忆体和介面积体电路
  • 其他的

第六章:市场估价与预测:依车辆类型划分,2021-2034年

  • 主要趋势
  • 搭乘用车
    • 掀背车
    • 轿车
    • SUV
  • 商用车辆
    • 轻型商用车
    • 中型商用车
    • 重型商用车辆
  • 电动车

第七章:市场估算与预测:依通讯协定划分,2021-2034年

  • 主要趋势
  • 控制器区域网路(CAN)
  • 本地互连网路(LIN)
  • FlexRay
  • 面向媒体的系统传输(MOST)
  • 汽车乙太网路
  • 其他新兴协议

第八章:市场估算与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 动力总成和底盘系统
  • 安全与ADAS(先进驾驶辅助系统)
  • 资讯娱乐和车载资讯系统
  • 车身电子设备与舒适系统
  • 电池管理系统(BMS)
  • 自动驾驶车辆资料网络

第九章:市场估算与预测:依频宽划分,2021-2034年

  • 主要趋势
  • 低速网路(最高 125 kbps)
  • 中速网路(最高 1 Mbps)
  • 高速网路(10 Mbps 至 1 Gbps)
  • 超高速(>1 Gbps)

第十章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 俄罗斯
    • 北欧
    • 葡萄牙
    • 克罗埃西亚
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 新加坡
    • 泰国
    • 印尼
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋
    • 土耳其

第十一章:公司简介

  • 全球参与者
    • Analog Devices
    • Broadcom
    • Infineon Technologies
    • Marvell Technology
    • NXP Semiconductors
    • Qualcomm Technologies
    • Renesas Electronics
    • Texas Instruments
    • Continental
    • Elmos Semiconductor
  • 区域玩家
    • Cypress Semiconductor
    • Maxim Integrated
    • Melexis
    • Microchip Technology
    • ON Semiconductor
    • Rohm Semiconductor
    • STMicroelectronics
    • Toshiba Electronic Devices
  • 新兴参与者
    • Aquantia
    • ETAS
    • Ethernovia
    • Intrepid Control Systems
    • Kvaser
    • PEAK-System Technik
    • Technica Engineering
    • TTTech Auto
    • Vector Informatik
简介目录
Product Code: 14871

The Global In-Vehicle Networking Semiconductors Market was valued at USD 538.9 million in 2024 and is estimated to grow at a CAGR of 8.8% to reach USD 1.2 billion by 2034.

In-Vehicle Networking Semiconductors Market - IMG1

These semiconductors are revolutionizing the automotive electronics landscape by enabling seamless, high-speed communication between various subsystems in modern vehicles. Key factors fueling market expansion include the rapid shift toward vehicle electrification, the widespread integration of advanced driver-assistance systems (ADAS), enhanced infotainment technologies, and increasing vehicle architecture complexity. With innovation accelerating, manufacturers are prioritizing energy-efficient, AI-compatible, and security-focused semiconductor solutions. As companies shift their focus to chip localization and strengthen supply chain resilience in the post-pandemic era, regions like Asia and Europe are witnessing a surge in semiconductor manufacturing. Asia-Pacific holds the largest market share, accounting for 39% in 2024, thanks to its robust EV, electronics, and automotive sectors. The market landscape is shaped by continued investments in digital infrastructure and smart mobility by automakers and Tier-1 suppliers, driving demand for advanced networking solutions across connected and autonomous vehicles.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$538.9 Million
Forecast Value$1.2 Billion
CAGR8.8%

The passenger vehicles segment held a 60% share in 2024 and is expected to grow at a CAGR of 7.9% between 2025 and 2034. Increasing demand for in-car connectivity, safety features, and sophisticated software architecture is pushing automakers to rely more heavily on semiconductor integration in compact cars, sedans, and SUVs. As regulatory requirements tighten around safety, cybersecurity, and emissions, vehicle manufacturers are turning to semiconductors for real-time communication and reliable system coordination. These chips are becoming central to enabling next-generation features in passenger vehicles, positioning them as essential components in the evolving automotive ecosystem.

The controller area network (CAN) segment is projected to grow at a CAGR of 8.7% from 2025 to 2034. CAN-based semiconductors continue to be the preferred choice for real-time automotive networking due to their robust reliability, cost efficiency, and flexibility in adapting to a wide range of vehicle designs. These chips are particularly vital in supporting critical applications such as ADAS and connected car platforms, offering consistent performance in safety-centric environments. Their ability to integrate seamlessly across diverse systems makes them an indispensable component in automotive electronics.

Asia-Pacific In-Vehicle Networking Semiconductors Market held a 39% share in 2024. The region's dominance is supported by rapid advancements in vehicle electrification, increasing adoption of ADAS, and growing demand for connected and smart mobility solutions. Strong automotive and electronics manufacturing bases, along with supportive government policies and local OEM investments, continue to drive regional growth. Enhanced R&D initiatives and rising interest in autonomous and connected vehicles are further accelerating the need for high-performance networking chips in countries across Asia. Companies across the region are investing in scaling production and pushing innovation forward to meet evolving automotive requirements.

Major players like Microchip Technology, Renesas Electronics, Broadcom, Continental, Analog Devices, Qualcomm, Texas Instruments, and Elmos Semiconductor continue to shape the In-Vehicle Networking Semiconductors Market. To reinforce their position, companies in the in-vehicle networking semiconductors industry are adopting a range of strategic initiatives. Leading firms are focusing on designing scalable, low-power chipsets that support zonal architectures and multi-domain communication systems. Prioritizing AI-ready and cybersecurity-enhanced semiconductor solutions has become central as vehicles become increasingly software-defined. Additionally, players are investing heavily in localized production facilities and partnerships to enhance supply chain stability and address post-pandemic disruptions. Collaborations with OEMs and Tier-1 suppliers enable tailored solutions that align with regional regulations and customer demands.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Component
    • 2.2.3 Vehicle
    • 2.2.4 Communication Protocol
    • 2.2.5 Application
    • 2.2.6 Bandwidth
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin analysis
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
      • 3.2.1.1 Growth drivers
      • 3.2.1.2 Shifts toward vehicle automation and ADAS
      • 3.2.1.3 Growing adoption of electric and hybrid vehicles
      • 3.2.1.4 Shift toward high-speed, centralized, and zonal vehicle architectures
      • 3.2.1.5 Increasing consumer preference for smart, feature-rich vehicles
      • 3.2.1.6 Regulatory focus on vehicle safety, cybersecurity, and communication reliability
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Electronic reliability under harsh automotive conditions
      • 3.2.2.2 Rapidly evolving communication protocols and standards
    • 3.2.3 Market opportunities
      • 3.2.3.1 Integration with electric and hybrid vehicle platforms
      • 3.2.3.2 Advancements in automotive Ethernet and high-speed networking chips
      • 3.2.3.3 Expansion of ADAS, autonomous, and connected vehicle technologies
      • 3.2.3.4 Rising adoption of software-defined and centralized vehicle architectures
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 Regional automotive standards variations
    • 3.4.2 Type approval and homologation requirements
    • 3.4.3 Cybersecurity certification processes
    • 3.4.4 International standards harmonization
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and innovation landscape
    • 3.7.1 Current technological trends
    • 3.7.2 Emerging technologies
  • 3.8 Patent analysis
  • 3.9 Cost breakdown analysis
  • 3.10 Sustainability and environmental aspects
    • 3.10.1 Sustainable practices
    • 3.10.2 Waste reduction strategies
    • 3.10.3 Energy efficiency in production
    • 3.10.4 Eco-friendly Initiatives
  • 3.11 Carbon footprint considerations
  • 3.12 Future outlook and roadmap
    • 3.12.1 Next-generation networking protocols
    • 3.12.2. 6 G integration and ultra-low latency
    • 3.12.3 Quantum-safe cryptography implementation
    • 3.12.4 AI-driven network optimization
    • 3.12.5 Sustainable networking solutions
    • 3.12.6 Cross-industry convergence trends
    • 3.12.7 Regulatory evolution and standards development
    • 3.12.8 Market consolidation and partnership strategies
  • 3.13 Protocol standardization and interoperability challenges
    • 3.13.1 Multi-protocol coexistence requirements
    • 3.13.2 Legacy protocol migration strategies
    • 3.13.3 Cross-vendor compatibility issues
    • 3.13.4 Standards body coordination complexity
  • 3.14 Cost optimization vs performance trade-offs
    • 3.14.1 Network complexity vs cost analysis
    • 3.14.2 Component integration strategies
    • 3.14.3 Volume production economics
    • 3.14.4 Total system cost optimization

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 LATAM
    • 4.2.5 MEA
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans and funding

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 (USD Mn, Units)

  • 5.1 Key trends
  • 5.2 Transceivers
  • 5.3 Microcontrollers & processors
  • 5.4 Network switches & bridges
  • 5.5 Gateways / controllers
  • 5.6 Memory & interface ICs
  • 5.7 Others

Chapter 6 Market Estimates & Forecast, By Vehicle, 2021 - 2034 (USD Mn, Units)

  • 6.1 Key trends
  • 6.2 Passenger cars
    • 6.2.1 Hatchbacks
    • 6.2.2 Sedans
    • 6.2.3 SUVS
  • 6.3 Commercial vehicles
    • 6.3.1 Light commercial vehicles
    • 6.3.2 Medium commercial vehicles
    • 6.3.3 Heavy commercial vehicles
  • 6.4 Electric vehicles

Chapter 7 Market Estimates & Forecast, By Communication Protocol, 2021 - 2034 (USD Mn, Units)

  • 7.1 Key trends
  • 7.2 Controller area network (CAN)
  • 7.3 Local interconnect network (LIN)
  • 7.4 FlexRay
  • 7.5 Media oriented systems transport (MOST)
  • 7.6 Automotive ethernet
  • 7.7 Other emerging protocols

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2034 (USD Mn, Units)

  • 8.1 Key trends
  • 8.2 Powertrain & chassis systems
  • 8.3 Safety & ADAS (advanced driver assistance systems)
  • 8.4 Infotainment & telematics
  • 8.5 Body electronics & comfort systems
  • 8.6 Battery management systems (BMS)
  • 8.7 Autonomous vehicle data networking

Chapter 9 Market Estimates & Forecast, By Bandwidth, 2021 - 2034 (USD Mn, Units)

  • 9.1 Key trends
  • 9.2 Low-speed networks (up to 125 kbps)
  • 9.3 Mid-speed networks (up to 1 Mbps)
  • 9.4 High-speed networks (10 Mbps to 1 Gbps)
  • 9.5 Ultra-high speed (>1 Gbps)

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2034 (USD Mn, Units)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 France
    • 10.3.4 Italy
    • 10.3.5 Spain
    • 10.3.6 Russia
    • 10.3.7 Nordics
    • 10.3.8 Portugal
    • 10.3.9 Croatia
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 Australia
    • 10.4.5 South Korea
    • 10.4.6 Singapore
    • 10.4.7 Thailand
    • 10.4.8 Indonesia
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Argentina
  • 10.6 MEA
    • 10.6.1 South Africa
    • 10.6.2 Saudi Arabia
    • 10.6.3 UAE
    • 10.6.4 Turkey

Chapter 11 Company Profiles

  • 11.1 Global Players
    • 11.1.1 Analog Devices
    • 11.1.2 Broadcom
    • 11.1.3 Infineon Technologies
    • 11.1.4 Marvell Technology
    • 11.1.5 NXP Semiconductors
    • 11.1.6 Qualcomm Technologies
    • 11.1.7 Renesas Electronics
    • 11.1.8 Texas Instruments
    • 11.1.9 Continental
    • 11.1.10 Elmos Semiconductor
  • 11.2 Regional Players
    • 11.2.1 Cypress Semiconductor
    • 11.2.2 Maxim Integrated
    • 11.2.3 Melexis
    • 11.2.4 Microchip Technology
    • 11.2.5 ON Semiconductor
    • 11.2.6 Rohm Semiconductor
    • 11.2.7 STMicroelectronics
    • 11.2.8 Toshiba Electronic Devices
  • 11.3 Emerging Players
    • 11.3.1 Aquantia
    • 11.3.2 ETAS
    • 11.3.3 Ethernovia
    • 11.3.4 Intrepid Control Systems
    • 11.3.5 Kvaser
    • 11.3.6 PEAK-System Technik
    • 11.3.7 Technica Engineering
    • 11.3.8 TTTech Auto
    • 11.3.9 Vector Informatik