封面
市场调查报告书
商品编码
1858837

用于航太航太领域的自修復聚合物市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Self-Healing Polymers for Aerospace Applications Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 184 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球航太航天应用自修復聚合物市场价值为 1.75 亿美元,预计到 2034 年将以 13.2% 的复合年增长率增长至 6.032 亿美元。

用于航空航太领域的自修復聚合物市场 - IMG1

推动市场成长的动力源自于旨在提升飞机维修效率的聚合物技术进步。自修復聚合物在航太的重要性日益凸显,因为它们能够在微裂纹和损伤被检查人员发现之前进行修復,从而减少频繁维护的需求。这些技术,例如胶囊填充环氧树脂、血管化碳纤维增强聚合物(CFRP)和动态共价热塑性塑料,已被证明能够有效延长飞机零件的使用寿命。自修復系统的应用范围已从涂层扩展到关键结构部件,主要的航太企业正在探索将其直接整合到主要结构中,以提高耐久性并减轻重量。随着法规日益严格,尤其是在航太材料对环境影响方面,对自修復聚合物的需求持续成长。欧盟提出的2035年实现50%复合材料可回收利用率的路线图等最新的永续航空倡议,进一步推动了市场成长。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 1.75亿美元
预测值 6.032亿美元
复合年增长率 13.2%

预计2025年至2034年间,外置式自癒系统市场将以13%的复合年增长率成长。该市场受益于一种混合方案,结合了舱体、血管和内源性系统,提供了更耐用、更易于製造的解决方案,可将飞机检查间隔缩短高达15%。这种整合系统有望成为预计于2028年推出的下一代窄体飞机的标准配备。

2024年,商用航空领域的市场规模预计将达到8,970万美元。在生产初期将自修復技术整合到结构部件中正日益普及。生产效率的提高、数位孪生模型的运用以及更严格的损伤容限法规,都大大推动了自修復聚合物的应用。透过从一开始就采用自修復材料,原始设备製造商(OEM)可以实现更可预测的维修週期和长期的成本节约。

2024年,北美航空航太用自修復聚合物市场规模为6,590万美元,预计2034年将达到2.198亿美元。主要驱动力是航太业,特别是美国日益增长的需求,2024年美国市场规模达5,650万美元。强劲的商用飞机生产产业以及美国军方对基于状态的维护的大力推进,都为该市场的发展提供了助力。税收优惠、研究资助以及完善的维护、修理和大修(MRO)网路正在加速先进自修復技术的应用。

全球航太航太应用自修復聚合物市场的主要企业包括Autonomic Materials Inc.、阿科玛(Arkema)、赢创工业集团(Evonik Industries AG)、巴斯夫(BASF SE)和索尔维(Solvay SA)。为了巩固市场地位,这些企业正采取多种策略,包括大力投资研发,以开发更有效率、更经济的自修復聚合物技术。他们也致力于拓展产品线,将自修復材料直接整合到飞机主要结构中,从而提高耐久性、减轻重量并提升生产效率。这些企业正与航太原始设备製造商(OEM)和供应商建立战略合作伙伴关係,以确保自修復系统能够无缝整合到飞机生产线中。此外,这些企业也积极致力于开发永续的生物基材料,以满足严格的环境和监管标准,例如可回收性目标。

目录

第一章:方法论

  • 市场范围和定义
  • 研究设计
    • 研究方法
    • 资料收集方法
  • 资料探勘来源
    • 全球的
    • 地区/国家
  • 基准估算和计算
    • 基准年计算
    • 市场估算的关键趋势
  • 初步研究和验证
    • 原始资料
  • 预测模型
  • 研究假设和局限性

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 生物製剂和生物相似药的成长
      • 自我管理和居家护理
      • 监管机构推动提高注射器安全性
    • 产业陷阱与挑战
      • 玻璃分层和破损
      • 严格的监管测试
      • 供应链的复杂性
    • 市场机会
      • 聚合物材料创新
      • 智慧型/连网注射器系统
      • 亚太新兴市场的需求
  • 成长潜力分析
  • 监管环境
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL 分析
  • 价格趋势
    • 按地区
    • 透过癒合机制
  • 未来市场趋势
  • 专利格局
  • 贸易统计(HS编码)(註:仅提供重点国家的贸易统计资料)
    • 主要进口国
    • 主要出口国
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
  • 碳足迹考量

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 按地区
      • 北美洲
      • 欧洲
      • 亚太地区
      • 拉丁美洲
      • MEA
  • 公司矩阵分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划

第五章:市场估计与预测:依治疗机制划分,2025-2034年

  • 主要趋势
  • 外在自癒系统
    • 基于胶囊的系统
    • 血管系统
  • 内在自癒系统
    • 可逆共价键
    • 超分子/非共价键

第六章:市场估算与预测:依应用领域划分,2025-2034年

  • 主要趋势
  • 结构部件
    • 机身和机身面板
    • 机翼结构
    • 控制面
    • 引擎室
  • 非结构性和半结构性零件
    • 内部组件
    • 雷达罩
    • 整流罩和检修面板
  • 涂层和表面
    • 耐侵蚀及耐腐蚀涂层
    • 耐刮且美观的涂层
  • 功能组件

第七章:市场估算与预测:依最终用途划分,2025-2034年

  • 主要趋势
  • 商业航空
    • 窄体飞机
    • 宽体飞机
    • 支线喷射机
  • 军事与国防
    • 战斗机
    • 运输和货运飞机
  • 无人驾驶飞行器(UAV)
    • 通用航空
    • 公务机
    • 私人飞机
  • 空间系统

第八章:市场估算与预测:依地区划分,2025-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 亚太其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋
    • 中东和非洲其他地区

第九章:公司简介

  • SCHOTT Pharma AG & Co. KGaA
  • Gerresheimer AG
  • Stevanato Group SpA
  • West Pharmaceutical Services, Inc.
  • Becton, Dickinson and Company (BD)
  • Ypsomed AG
  • Owen Mumford Ltd.
  • SHL Medical AG
  • Haselmeier GmbH
  • Phillips-Medisize (a Molex company)
  • Nemera
  • Credence MedSystems, Inc.
  • Terumo Corporation
  • Kraton Corporation
  • Datwyler Holding Inc.
简介目录
Product Code: 14858

The Global Self-Healing Polymers for Aerospace Applications Market was valued at USD 175 million in 2024 and is estimated to grow at a CAGR of 13.2% to reach USD 603.2 million by 2034.

Self-Healing Polymers for Aerospace Applications Market - IMG1

The growth is driven by advancements in polymer technology aimed at improving aircraft maintenance. Self-healing polymers are becoming increasingly important in aerospace as they are designed to repair micro-cracks and damage before it is visible to inspectors, reducing the need for frequent maintenance. These technologies, such as capsule-filled epoxies, vascular carbon-fiber reinforced polymers (CFRPs), and dynamic covalent thermoplastics, are proving effective in extending the life cycle of aircraft parts. The adoption of self-healing systems has expanded from coatings to critical structural components, and major aerospace players are now exploring their integration directly into primary structures to improve durability and reduce weight. As regulations become stricter, especially regarding the environmental impact of aerospace materials, the demand for self-healing polymers continues to rise. The latest sustainable aviation initiatives, such as the EU's roadmap targeting 50% composite recyclability by 2035, are further propelling market growth.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$175 Million
Forecast Value$603.2 Million
CAGR13.2%

The extrinsic self-healing systems segment is forecasted to grow at a CAGR of 13% from 2025 to 2034. This segment benefits from a hybrid approach that combines capsule, vascular, and intrinsic systems, offering a more durable and manufacturable solution that reduces aircraft inspection intervals by up to 15%. This integrated system is poised to become a standard feature in next-generation narrow-body aircraft expected to launch in 2028.

The commercial aviation segment was valued at USD 89.7 million in 2024. The integration of self-healing technology into structural components during early production stages is gaining momentum. The adoption of self-healing polymers is increasingly driven by production-rate increases, digital twin models, and stricter damage-tolerance regulations. By incorporating self-healing materials from the outset, OEMs can achieve more predictable repair cycles and long-term cost savings.

North America Self-Healing Polymers for Aerospace Applications Market generated USD 65.9 million in 2024 and is expected to reach USD 219.8 million by 2034. The primary driver is the growing demand from the aerospace industry, particularly in the U.S., which accounted for USD 56.5 million in 2024. This market is benefiting from a robust commercial aircraft production sector, alongside the U.S. military's push for condition-based maintenance. The adoption of advanced self-healing technologies is being accelerated by tax incentives, research grants, and a well-established maintenance, repair, and overhaul (MRO) network.

The leading companies in the Global Self-Healing Polymers for Aerospace Applications Market include Autonomic Materials Inc., Arkema, Evonik Industries AG, BASF SE, and Solvay SA. To enhance their market position, companies are pursuing multiple strategies, including investing heavily in R&D to develop more efficient and cost-effective self-healing polymer technologies. They are also focusing on expanding their product offerings by integrating self-healing materials directly into primary aircraft structures, thereby improving durability, reducing weight, and increasing manufacturing efficiency. Strategic partnerships with aerospace OEMs and suppliers are being forged to ensure the seamless integration of self-healing systems into aircraft production lines. Furthermore, these companies are actively working to meet stringent environmental and regulatory standards, such as recyclability goals, by developing sustainable, bio-based materials.

Table of Contents

Chapter 1 Methodology

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Healing Mechanism
    • 2.2.3 Application
    • 2.2.4 End Use
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future Outlook and Strategic Recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier Landscape
    • 3.1.2 Profit Margin
    • 3.1.3 Value addition at each stage
    • 3.1.4 Factor affecting the value chain
    • 3.1.5 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Rise in biologics and biosimilars
      • 3.2.1.2 Self-administration & home care
      • 3.2.1.3 Regulatory push for syringe safety
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Glass delamination & breakage
      • 3.2.2.2 Stringent regulatory testing
      • 3.2.2.3 Supply chain complexity
    • 3.2.3 Market opportunities
      • 3.2.3.1 Polymer material innovation
      • 3.2.3.2 Smart/connected syringe systems
      • 3.2.3.3 Demand in APAC emerging markets
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
    • 3.6.1 Technology and Innovation landscape
    • 3.6.2 Current technological trends
    • 3.6.3 Emerging technologies
  • 3.7 Price trends
    • 3.7.1 By region
    • 3.7.2 By Healing Mechanism
  • 3.8 Future market trends
  • 3.9 Patent Landscape
  • 3.10 Trade statistics (HS code) (Note: the trade statistics will be provided for key countries only)
    • 3.10.1 Major importing countries
    • 3.10.2 Major exporting countries
  • 3.11 Sustainability and Environmental Aspects
    • 3.11.1 Sustainable Practices
    • 3.11.2 Waste Reduction Strategies
    • 3.11.3 Energy Efficiency in Production
    • 3.11.4 Eco-friendly Initiatives
  • 3.12 Carbon Footprint Considerations

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 LATAM
      • 4.2.1.5 MEA
  • 4.3 Company matrix analysis
  • 4.4 Competitive analysis of major market players
  • 4.5 Competitive positioning matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New Product Launches
    • 4.6.4 Expansion Plans

Chapter 5 Market Estimates and Forecast, By Healing Mechanism, 2025 - 2034 (USD Million, Tons)

  • 5.1 Key trends
  • 5.2 Extrinsic self-healing systems
    • 5.2.1 Capsule-based systems
    • 5.2.2 Vascular systems
  • 5.3 Intrinsic self-healing systems
    • 5.3.1 Reversible covalent bonds
    • 5.3.2 Supramolecular / non-covalent bonds

Chapter 6 Market Estimates and Forecast, By Application, 2025 - 2034 (USD Million, Tons)

  • 6.1 Key trends
  • 6.2 Structural components
    • 6.2.1 Fuselage and airframe panels
    • 6.2.2 Wing structures
    • 6.2.3 Control surfaces
    • 6.2.4 Engine nacelles
  • 6.3 Non-structural & semi-structural components
    • 6.3.1 Interior components
    • 6.3.2 Radomes
    • 6.3.3 Fairings and access panels
  • 6.4 Coatings & surfaces
    • 6.4.1 Erosion and corrosion resistant coatings
    • 6.4.2 Scratch-resistant & aesthetic coatings
  • 6.5 Functional components

Chapter 7 Market Estimates and Forecast, By End Use, 2025 - 2034 (USD Million, Tons)

  • 7.1 Key trends
  • 7.2 Commercial aviation
    • 7.2.1 Narrow-body aircraft
    • 7.2.2 Wide-body aircraft
    • 7.2.3 Regional jets
  • 7.3 Military & defense
    • 7.3.1 Fighter jets
    • 7.3.2 Transport & cargo aircraft
  • 7.4 Unmanned aerial vehicles (UAVs)
    • 7.4.1 General aviation
    • 7.4.2 Business jets
    • 7.4.3 Private aircraft
  • 7.5 Space systems

Chapter 8 Market Estimates and Forecast, By Region, 2025 - 2034 (USD Million, Tons)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
    • 8.4.6 Rest of Asia Pacific
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
    • 8.5.4 Rest of Latin America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 South Africa
    • 8.6.3 UAE
    • 8.6.4 Rest of Middle East & Africa

Chapter 9 Company Profiles

  • 9.1 SCHOTT Pharma AG & Co. KGaA
  • 9.2 Gerresheimer AG
  • 9.3 Stevanato Group S.p.A.
  • 9.4 West Pharmaceutical Services, Inc.
  • 9.5 Becton, Dickinson and Company (BD)
  • 9.6 Ypsomed AG
  • 9.7 Owen Mumford Ltd.
  • 9.8 SHL Medical AG
  • 9.9 Haselmeier GmbH
  • 9.10 Phillips-Medisize (a Molex company)
  • 9.11 Nemera
  • 9.12 Credence MedSystems, Inc.
  • 9.13 Terumo Corporation
  • 9.14 Kraton Corporation
  • 9.15 Datwyler Holding Inc.