封面
市场调查报告书
商品编码
1871073

用于 3D 生物列印的水凝胶市场机会、成长驱动因素、产业趋势分析及 2025-2034 年预测

Hydrogels for 3D Bioprinting Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 210 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球 3D 生物列印水凝胶市场价值为 2.75 亿美元,预计到 2034 年将以 11.4% 的复合年增长率增长至 8.864 亿美元。

用于 3D 生物列印的水凝胶市场 - IMG1

水凝胶是一种生物相容性好、富含水分的材料,可用作3D生物列印中的生物墨水,用于建构支持活细胞的复杂生物结构。这些水凝胶模拟天然组织环境,能够保持水分和营养,从而促进列印后细胞的存活和生长。其柔软的凝胶状特性使其能够利用生物印表机进行精确塑形和分层,从而建构用于药物测试、再生医学或医学研究的组织。对组织工程、器官再生和个人化医疗日益增长的需求正在推动市场扩张。生物列印技术的不断进步,以及生物技术和医疗保健行业不断增长的投资,正在拓展水凝胶基生物墨水的潜力。挤出和雷射辅助生物列印技术的进步提高了细胞定位和组织构建的精度,而改进的交联工艺(例如紫外线和离子键合)则使列印的水凝胶能够保持结构并确保高细胞活力。不断增加的研发合作和3D生物列印技术的持续发展正在进一步加速全球市场成长。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 2.75亿美元
预测值 8.864亿美元
复合年增长率 11.4%

2024年,天然水凝胶市场规模预计将达到1.682亿美元。其快速成长主要得益于其良好的生物相容性及与人体天然细胞外环境的相似性。这些水凝胶能够为细胞黏附、增殖和分化等功能提供强有力的支持,使其成为再生医学和组织重建应用的理想选择。与合成替代品相比,天然水凝胶与生物系统的相容性使其更具优势,从而促进了其在生物工程研究和临床应用中的广泛应用。

2024年,基于挤出技术的生物列印市场规模预计将达到1.407亿美元。该技术因其能够利用多种生物墨水列印高度精细且稳定的组织结构而备受关注。它成本低廉、操作简便,适用于製造用于组织和器官重建等的厚实复杂的生物模型。儘管挤出技术仍是主流方法,但基于液滴和雷射辅助列印技术也因其在製造精细生物结构和药物测试模型方面的精准性而日益受到重视。这些列印技术的共同作用,正在提升水凝胶基生物列印系统在医疗和研究领域的通用性和可扩展性。

2024年,美国用于3D生物列印的水凝胶市场规模达9,930万美元。美国拥有强大的生物技术基础、先进的研究基础设施,并在再生医学和3D列印技术领域投入巨资,为其市场发展提供了有利条件。北美市场的优势也体现在製药公司、大学和新创公司之间的积极合作,这些合作致力于提升水凝胶的性能,以提高其精确度和生物相容性。监管支援的不断加强和对个人化医疗解决方案需求的日益增长,预计将推动整个地区水凝胶生物列印技术的应用。

全球3D生物列印水凝胶市场的主要企业包括Cellink AB(BICO集团)、Biomason Inc.、REGENHU、Nanoscribe、FluidForm Bio、Organovo Inc.、Advanced Solutions、Lifecore Biomedical、Nordmark、Manchester BIOGEL、Aspect Biosystems、TissueLabs、RevkissueLabs Ltd. Biomedical、Mimixbio、杭州美卓生物科技有限公司、Cellntec、Inventia Life Science Pty Ltd、ViscoTec / Puredyne和XPECT INX。为了巩固在3D生物列印水凝胶市场的地位,各公司正积极推行以创新、合作和扩张为核心的策略。主要企业正大力投资研发,以提升水凝胶的生物功能性、可列印性和交联效率。生物技术公司、学术机构和医疗机构之间的合作正被充分利用,以开发下一代生物墨水和可扩展的生物列印平台。各公司也在扩大产能,并专注于客製化水凝胶配方,以满足组织特异性应用日益增长的需求。

目录

第一章:方法论与范围

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 对个人化医疗的需求日益增长
      • 先进交联技术的整合
      • 再生医学应用范围的扩大
      • 多材料生物列印技术的发展
    • 产业陷阱与挑战
      • 列印过程中保持细胞活力
      • 机械强度有限
    • 市场机会
      • 智能水凝胶的开发
      • 生物技术与医疗保健之间的合作
      • 拓展至药物检测及化妆品领域
  • 成长潜力分析
  • 监管环境
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 波特的分析
  • PESTEL 分析
  • 价格趋势
    • 按地区
    • 依技术类型
  • 未来市场趋势
  • 专利格局
  • 贸易统计(HS编码)(註:仅提供重点国家的贸易统计资料)
    • 主要进口国
    • 主要出口国
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
  • 碳足迹考量

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 按地区
      • 北美洲
      • 欧洲
      • 亚太地区
      • 拉丁美洲
      • MEA
  • 公司矩阵分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划

第五章:市场估算与预测:依水凝胶类型划分,2021-2034年

  • 主要趋势
  • 天然水凝胶
    • 基于藻酸盐的系统
    • 胶原蛋白和明胶系统
    • 透明质酸基系统
    • 基于纤维蛋白的系统
    • 基于壳聚醣的系统
    • 基于琼脂糖的系统
    • 去细胞ECM系统
  • 合成水凝胶
    • 基于PEG的系统
    • PEG-PCL三嵌段共聚物
    • 聚氨酯基体系
    • PLA和PCL系统
    • 基于聚乙烯醇(PVA)的系统
  • 混合系统
    • 天然-合成复合材料
    • 多材料系统
    • 增强型水凝胶网络

第六章:市场估算与预测:依生物技术印刷产业划分,2021-2034年

  • 主要趋势
  • 基于挤出的生物列印
    • 气动挤出系统
    • 机械挤压系统
    • 同轴挤压系统
    • 多材料挤出
  • 基于液滴的生物列印
    • 喷墨生物列印
    • 按需投放系统
    • 基于微阀的系统
  • 雷射辅助生物列印
    • 雷射诱导前向转移
    • 基质辅助脉衝雷射蒸发
    • 吸收膜辅助雷射诱导前向转移
  • 立体光刻和光基方法
    • 立体光刻(SLA)
    • 数位光处理(DLP)
    • 双光子聚合
    • 体积生物列印
  • 新兴技术
    • 声学
    • 磁的
    • 电液动力学

第七章:市场估计与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 组织工程与再生医学
    • 心血管组织工程
    • 神经组织工程
    • 皮肤和伤口癒合应用
    • 骨与软骨工程
    • 肝组织工程
    • 肾臟组织工程
    • 肺组织工程
  • 药物输送系统
    • 受控释放平台
    • 标靶药物递送
    • 个人化药物检测
    • 缓释系统
  • 疾病建模与药物发现
    • 器官晶片系统
    • 癌症研究模型
    • 疾病病理模型
    • 毒性测试平台
  • 生物感测器与诊断
    • 植入式生物感测器
    • 穿戴式感测器系统
    • 即时诊断
  • 其他
    • 化妆品测试
    • 食品与农业
    • 环境应用

第八章:市场估算与预测:依最终用途划分,2021-2034年

  • 製药
    • 大的
    • 专业
    • 合约研究机构
  • 生物技术
    • 组织工程
    • 细胞疗法
    • 再生医学
  • 学术和研究机构
    • 大学和研究中心
    • 政府研究机构
    • 非营利研究机构
  • 临床和医疗保健提供者
    • 医院和医疗中心
    • 专科诊所
    • 外科中心
  • 其他
    • 合约製造
    • 材料供应商
    • 技术平台

第九章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 西班牙
    • 义大利
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
    • 亚太其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 拉丁美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋
    • 中东和非洲其他地区

第十章:公司简介

  • 3DBio Therapeutics
  • Advanced Solutions
  • Aspect Biosystems
  • Cellink AB (BICO Group)
  • Cellntec
  • FluidForm Bio
  • Hangzhou Meizhuo Biotechnology Co. Ltd
  • Inventia Life Science Pty Ltd
  • Lifecore Biomedical
  • Manchester BIOGEL
  • Mimixbio
  • Nanoscribe
  • Nordmark
  • Organovo Inc.
  • REGENHU
  • Revotek Co. Ltd
  • Rousselot Biomedical
  • TissueLabs
  • ViscoTec / Puredyne
  • XPECT INX
简介目录
Product Code: 14950

The Global Hydrogels for 3D Bioprinting Market was valued at USD 275 million in 2024 and is estimated to grow at a CAGR of 11.4% to reach USD 886.4 million by 2034.

Hydrogels for 3D Bioprinting Market - IMG1

Hydrogels are biocompatible, water-rich materials used as bioinks in 3D bioprinting to create complex biological structures that support living cells. These hydrogels mimic the natural tissue environment, retaining moisture and nutrients that promote cell survival and growth after printing. Their soft, gel-like nature allows them to be precisely shaped and layered using bioprinters to form tissues for drug testing, regenerative medicine, or medical research. Increasing demand for tissue engineering, organ regeneration, and personalized medicine is fueling the market's expansion. The ongoing progress in bioprinting technologies, coupled with growing investments from the biotechnology and healthcare industries, is broadening the potential of hydrogel-based bioinks. Developments in extrusion and laser-assisted bioprinting are enhancing accuracy in cell placement and tissue fabrication, while improved crosslinking processes, such as UV and ionic bonding, allow printed hydrogels to maintain structure and ensure high cell viability. Rising R&D collaborations and the continuous evolution of 3D bioprinting techniques are further accelerating market growth globally.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$275 Million
Forecast Value$886.4 Million
CAGR11.4%

The natural hydrogels segment generated USD 168.2 million in 2024. Their rapid growth is driven by their biocompatibility and resemblance to the body's natural extracellular environment. These hydrogels provide strong support for cellular functions such as adhesion, proliferation, and differentiation, which makes them ideal for applications in regenerative medicine and tissue reconstruction. Their compatibility with living systems gives them an advantage over synthetic alternatives, contributing to their growing use in bioengineering research and clinical applications.

The extrusion-based bioprinting segment reached USD 140.7 million in 2024. This technique is gaining traction for its ability to print highly detailed, stable tissue structures using a wide range of bioinks. It is cost-effective, user-friendly, and suitable for producing thick, complex biological models such as those used for tissue and organ reconstruction. While extrusion remains the dominant approach, droplet-based and laser-assisted printing technologies are also gaining attention for their precision in fabricating delicate biological structures and drug-testing models. Together, these printing techniques are enhancing the versatility and scalability of hydrogel-based bioprinting systems across medical and research fields.

U.S. Hydrogels for 3D Bioprinting Market accounted for USD 99.3 million in 2024. The country benefits from a strong biotechnology base, advanced research infrastructure, and major investments in regenerative medicine and 3D printing technologies. North America's market strength is further reinforced by active collaborations between pharmaceutical firms, universities, and startups focused on improving hydrogel properties for greater precision and biocompatibility. Increasing regulatory support and rising demand for personalized medical solutions are expected to drive the adoption of hydrogel-based bioprinting technologies throughout the region.

Key companies in the Global Hydrogels for 3D Bioprinting Market include Cellink AB (BICO Group), Biomason Inc., REGENHU, Nanoscribe, FluidForm Bio, Organovo Inc., Advanced Solutions, Lifecore Biomedical, Nordmark, Manchester BIOGEL, Aspect Biosystems, TissueLabs, Revotek Co. Ltd, 3DBio Therapeutics, Rousselot Biomedical, Mimixbio, Hangzhou Meizhuo Biotechnology Co. Ltd, Cellntec, Inventia Life Science Pty Ltd, ViscoTec / Puredyne, and XPECT INX. To strengthen their foothold in the Hydrogels for 3D Bioprinting Market, companies are pursuing strategies focused on innovation, collaboration, and expansion. Major players are investing heavily in R&D to enhance the biofunctionality, printability, and crosslinking efficiency of hydrogels. Partnerships between biotechnology firms, academic institutions, and healthcare organizations are being leveraged to develop next-generation bioinks and scalable bioprinting platforms. Firms are also expanding production capacities and focusing on customized hydrogel formulations to meet the growing demand for tissue-specific applications.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Hydrogel type
    • 2.2.3 Bioprinting technology
    • 2.2.4 Application
    • 2.2.5 End Use
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future Outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier landscape
    • 3.1.2 Profit margin
    • 3.1.3 Value addition at each stage
    • 3.1.4 Factor affecting the value chain
    • 3.1.5 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Rising demand for personalized medicine
      • 3.2.1.2 Integration of advanced crosslinking techniques
      • 3.2.1.3 Expansion of regenerative medicine applications
      • 3.2.1.4 Development of multi-material bioprinting
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 Maintaining cell viability during printing
      • 3.2.2.2 Limited mechanical strength
    • 3.2.3 Market opportunities
      • 3.2.3.1 Development of smart hydrogels
      • 3.2.3.2 Collaboration between biotech and healthcare
      • 3.2.3.3 Expansion into Drug Testing and Cosmetics
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East & Africa
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
    • 3.6.1 Technology and innovation landscape
    • 3.6.2 Current technological trends
    • 3.6.3 Emerging technologies
  • 3.7 Price trends
    • 3.7.1 By region
    • 3.7.2 By technology type
  • 3.8 Future market trends
  • 3.9 Patent Landscape
  • 3.10 Trade statistics (HS code) (Note: the trade statistics will be provided for key countries only)
    • 3.10.1 Major importing countries
    • 3.10.2 Major exporting countries
  • 3.11 Sustainability and environmental aspects
    • 3.11.1 Sustainable practices
    • 3.11.2 Waste reduction strategies
    • 3.11.3 Energy efficiency in production
    • 3.11.4 Eco-friendly initiatives
  • 3.12 Carbon footprint considerations

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 By region
      • 4.2.1.1 North America
      • 4.2.1.2 Europe
      • 4.2.1.3 Asia Pacific
      • 4.2.1.4 LATAM
      • 4.2.1.5 MEA
  • 4.3 Company matrix analysis
  • 4.4 Competitive analysis of major market players
  • 4.5 Competitive positioning matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans

Chapter 5 Market Estimates and Forecast, By Hydrogel Type, 2021 - 2034 (USD Million) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 Natural hydrogels
    • 5.2.1 Alginate-based systems
    • 5.2.2 Collagen & gelatin systems
    • 5.2.3 Hyaluronic acid-based systems
    • 5.2.4 Fibrin-based systems
    • 5.2.5 Chitosan-based systems
    • 5.2.6 Agarose-based systems
    • 5.2.7 Decellularized ECM systems
  • 5.3 Synthetic hydrogel
    • 5.3.1 PEG-based systems
    • 5.3.2 PEG-PCL triblock copolymers
    • 5.3.3 Polyurethane-based systems
    • 5.3.4 PLA & PCL systems
    • 5.3.5 PVA-based systems
  • 5.4 Hybrid systems
    • 5.4.1 Natural-synthetic composites
    • 5.4.2 Multi-material systems
    • 5.4.3 Reinforced hydrogel networks

Chapter 6 Market Estimates and Forecast, By Biotechnology Printing, 2021 - 2034 (USD Million) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 Extrusion-based bioprinting
    • 6.2.1 Pneumatic extrusion systems
    • 6.2.2 Mechanical extrusion systems
    • 6.2.3 Coaxial extrusion systems
    • 6.2.4 Multi-material extrusion
  • 6.3 Droplet-based bioprinting
    • 6.3.1 Inkjet bioprinting
    • 6.3.2 Drop-on-demand systems
    • 6.3.3 Microvalve-based systems
  • 6.4 Laser-assisted bioprinting
    • 6.4.1 Laser-induced forward transfer
    • 6.4.2 Matrix-assisted pulsed laser evaporation
    • 6.4.3 Absorbing film-assisted laser-induced forward transfer
  • 6.5 Stereolithography & light-based methods
    • 6.5.1 Stereolithography (SLA)
    • 6.5.2 Digital Light Processing (DLP)
    • 6.5.3 Two-photon polymerization
    • 6.5.4 Volumetric bioprinting
  • 6.6 Emerging technologies
    • 6.6.1 Acoustic
    • 6.6.2 Magnetic
    • 6.6.3 Electrohydrodynamic

Chapter 7 Market Estimates and Forecast, By Application, 2021 - 2034 (USD Million) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 Tissue engineering & regenerative medicine
    • 7.2.1 Cardiovascular tissue engineering
    • 7.2.2 Neural tissue engineering
    • 7.2.3 Skin & wound healing applications
    • 7.2.4 Bone & cartilage engineering
    • 7.2.5 Liver tissue engineering
    • 7.2.6 Kidney tissue engineering
    • 7.2.7 Lung tissue engineering
  • 7.3 Drug delivery systems
    • 7.3.1 Controlled release platforms
    • 7.3.2 Targeted drug delivery
    • 7.3.3 Personalized drug testing
    • 7.3.4 Sustained release systems
  • 7.4 Disease modeling & drug discovery
    • 7.4.1 Organ-on-chip systems
    • 7.4.2 Cancer research models
    • 7.4.3 Disease pathology models
    • 7.4.4 Toxicity testing platforms
  • 7.5 Biosensors & diagnostics
    • 7.5.1 Implantable biosensors
    • 7.5.2 Wearable sensor systems
    • 7.5.3 Point-of-care diagnostics
  • 7.6 Other
    • 7.6.1 Cosmetics testing
    • 7.6.2 Food & agriculture
    • 7.6.3 Environmental applications

Chapter 8 Market Estimates and Forecast, By End Use, 2021 - 2034 (USD Million) (Kilo Tons)

  • 8.1 Pharmaceutical
    • 8.1.1 Large
    • 8.1.2 Specialty
    • 8.1.3 Contract research organizations
  • 8.2 Biotechnology
    • 8.2.1 Tissue engineering
    • 8.2.2 Cell therapy
    • 8.2.3 Regenerative medicine
  • 8.3 Academic & research institutions
    • 8.3.1 Universities & research centers
    • 8.3.2 Government research institutes
    • 8.3.3 Non-profit research organizations
  • 8.4 Clinical & healthcare providers
    • 8.4.1 Hospitals & medical centers
    • 8.4.2 Specialized clinics
    • 8.4.3 Surgical centers
  • 8.5 Other
    • 8.5.1 Contract manufacturing
    • 8.5.2 Material suppliers
    • 8.5.3 Technology platform

Chapter 9 Market Estimates and Forecast, By Region, 2021 - 2034 (USD Million) (Kilo Tons)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
    • 9.4.6 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Rest of Latin America
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE
    • 9.6.4 Rest of Middle East and Africa

Chapter 10 Company Profiles

  • 10.1 3DBio Therapeutics
  • 10.2 Advanced Solutions
  • 10.3 Aspect Biosystems
  • 10.4 Cellink AB (BICO Group)
  • 10.5 Cellntec
  • 10.6 FluidForm Bio
  • 10.7 Hangzhou Meizhuo Biotechnology Co. Ltd
  • 10.8 Inventia Life Science Pty Ltd
  • 10.9 Lifecore Biomedical
  • 10.10 Manchester BIOGEL
  • 10.11 Mimixbio
  • 10.12 Nanoscribe
  • 10.13 Nordmark
  • 10.14 Organovo Inc.
  • 10.15 REGENHU
  • 10.16 Revotek Co. Ltd
  • 10.17 Rousselot Biomedical
  • 10.18 TissueLabs
  • 10.19 ViscoTec / Puredyne
  • 10.20 XPECT INX