封面
市场调查报告书
商品编码
1876548

汽车数位化工厂自动化市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Automotive Digital Factory Automation Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 235 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球汽车数位化工厂自动化市场价值为 265 亿美元,预计到 2034 年将以 10.5% 的复合年增长率成长至 708 亿美元。

汽车数位化工厂自动化市场 - IMG1

随着汽车产业日益拥抱智慧製造和数位转型,市场正呈现强劲成长动能。製造商正将营运效率、即时资料洞察和灵活的生产系统置于优先地位,以在快速变化的市场环境中保持竞争力。工业4.0技术、人工智慧和物联网监控平台的集成,正将传统的汽车工厂转变为智慧化的、数据驱动的生产环境。这些数位化工厂系统透过预测性维护和自动化过程控制,优化生产效率、减少设备停机时间并提升品质保证。透过结合数位孪生模拟、机器人技术、基于人工智慧的分析和物联网连接,企业实现了整个生产週期的无缝协调。这种融合不仅有助于实现永续发展目标和提高能源效率,还能实现全生命週期可视性、提升合规性并增强製造韧性。对互联互通、自适应和透明的製造网路日益增长的需求,正推动全球原始设备製造商 (OEM) 和供应商持续投资于数位化工厂自动化。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 265亿美元
预测值 708亿美元
复合年增长率 10.5%

2024年,硬体部分约占市场占有率的63%,预计2025年至2034年将以10.8%的复合年增长率成长。硬体仍然是汽车数位化工厂自动化的基础,在实现生产线的即时追踪、资料采集和机器控制方面发挥着至关重要的作用。关键硬体组件包括物联网感测器、PLC、RFID系统、嵌入式控制器和机器视觉设备,它们确保了无缝运作、预测性维护和高生产力。汽车製造商和供应商依靠这些系统来保持精度、减少误差并优化生产性能,同时实现跨工厂的可扩展数位转型。

2024年,乘用车市占率达到47%,预计2025年至2034年间将以11.3%的复合年增长率成长。对电动和混合动力汽车日益增长的需求,以及日益严格的环保法规,正在加速乘用车生产自动化领域的投资。汽车製造商正在利用机器人、云端整合平台和人工智慧分析等数位化工厂解决方案,以提高流程精度、确保合规性并提升生产效率。这些技术能够即时展现生产指标,并增强企业管理复杂、大量组装作业的能力,最大限度地减少停机时间。

美国汽车数位化工厂自动化市场占据88%的市场份额,预计2024年市场规模将达85亿美元。美国强大的製造业基础,加上数位化和人工智慧技术的快速普及,正在推动汽车工厂的大规模现代化改造。先进的机器人技术、物联网监控和数位孪生技术正日益融入生产和供应链系统。这种发展有助于提高资源利用率、减少浪费、提升产品质量,同时也有助于实现产业的永续发展和创新目标。

全球汽车数位化工厂自动化市场的主要参与者包括三菱电机、施耐德电气、发那科、西门子、ABB、艾默生电气、霍尼韦尔国际、JR自动化技术、罗克韦尔自动化和横河电机。这些领先企业正致力于技术创新、策略合作和全球扩张,以巩固其市场地位。他们大力投资先进机器人技术、数位孪生技术和人工智慧驱动的分析,以提高精度并简化製造流程。自动化供应商与汽车OEM厂商之间的合作正在推动客製化、端到端自动化生态系统的建构。此外,各企业也透过整合节能硬体和利用智慧监控系统优化资源利用,来强调永续发展。

目录

第一章:方法论与范围

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
    • 供应商格局
    • 利润率
    • 成本结构
    • 每个阶段的价值增加
    • 影响价值链的因素
    • 中断
  • 产业影响因素
    • 成长驱动因素
      • 缓解劳动力短缺的要求
      • 品质和一致性改进要求
      • 生产灵活性和客製化需求
      • 降低成本和提高营运效率的压力
    • 产业陷阱与挑战
      • 高额的初始资本投资要求
      • 遗留系统整合挑战
    • 市场机会
      • 工厂中的 5G 网路部署
      • 边缘运算与即时分析
      • 区块链辅助供应链可追溯性
      • 人工智慧驱动的预测性维护扩展
  • 成长潜力分析
  • 监管环境
    • 安全和品质标准
    • 环境与永续发展法规
    • 资料隐私和网路安全
    • 行业特定标准
  • 波特的分析
  • PESTEL 分析
  • 技术与创新格局
    • 5G网路在製造业的集成
    • 边缘运算与即时分析
    • 区块链辅助供应链透明化
    • 扩增实境和虚拟实境应用
    • 工业系统中的网路安全演变
    • 人机介面技术进步
    • 数位孪生演化与元宇宙融合
    • 自主工厂概念
  • 价格趋势
    • 按地区
    • 副产品
  • 生产统计
    • 生产中心
    • 消费中心
    • 进出口
  • 成本細項分析
  • 专利分析
  • 永续性和环境方面
    • 永续实践
    • 减少废弃物策略
    • 生产中的能源效率
    • 环保倡议
  • 碳足迹考量
  • 风险评估框架
    • 网路安全风险管理
    • 营运风险评估
    • 财务风险分析
    • 供应链风险缓解
  • 最佳情况
  • 未来展望与策略建议

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 战略展望矩阵
  • 关键进展
    • 併购
    • 合作伙伴关係与合作
    • 新产品发布
    • 扩张计划和资金

第五章:市场估算与预测:依组件划分,2021-2034年

  • 主要趋势
  • 硬体
    • 工业机器人
    • 控制系统
    • 感测器和视觉系统
    • 人机介面(HMI)
    • 其他的
  • 软体
    • 製造执行系统(MES)
    • 数位孪生与模拟软体
    • 预测性维护和分析平台
    • 人工智慧和机器学习平台
    • ERP/云端集成
  • 服务
    • 安装与调试
    • 维护与支援
    • 咨询与系统集成
    • 改造和现代化服务
    • 培训与劳动力发展

第六章:市场估价与预测:依车辆类型划分,2021-2034年

  • 主要趋势
  • 搭乘用车
    • 掀背车
    • 轿车
    • SUV
  • 商用车辆
    • 轻型商用车(LCV)
    • 中型商用车(MCV)
    • 重型商用车(HCV)
  • 两轮车

第七章:市场估计与预测:依技术划分,2021-2034年

  • 主要趋势
  • 机器人与机电一体化
  • 工业物联网及感测器
  • 人工智慧与机器学习
  • 数位孪生与仿真
  • 云端运算和边缘运算

第八章:市场估算与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 装配线自动化
  • 焊接和连接作业
  • 涂装工艺
  • 品质控制与检验
  • 物料搬运与物流

第九章:市场估算与预测:依最终用途划分,2021-2034年

  • 主要趋势
  • 原始设备製造商(OEM)
  • 一级供应商
  • 二级供应商
  • 售后市场

第十章:市场估计与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 西班牙
    • 比利时
    • 荷兰
    • 瑞典
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 新加坡
    • 韩国
    • 越南
    • 印尼
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯

第十一章:公司简介

  • Global Player
    • ABB
    • Bosch Rexroth
    • Emerson Electric
    • FANUC
    • General Electric
    • Honeywell International
    • Rockwell Automation
    • Schneider Electric
    • Siemens
  • Regional Player
    • Festo
    • JR Automation Technologies
    • Keyence
    • KUKA
    • Mitsubishi Electric
    • Omron
    • UL Solutions
    • Vention
    • Yokogawa Electric
  • 新兴参与者
    • Augury Systems
    • Bright Machines
    • MachineMetrics
    • Path Robotics
    • Sight Machine
    • Standard Bots
    • Tulip Interfaces
简介目录
Product Code: 15112

The Global Automotive Digital Factory Automation Market was valued at USD 26.5 billion in 2024 and is estimated to grow at a CAGR of 10.5% to reach USD 70.8 billion by 2034.

Automotive Digital Factory Automation Market - IMG1

The market is experiencing strong momentum as the automotive industry increasingly embraces smart manufacturing and digital transformation. Manufacturers are prioritizing operational efficiency, real-time data insights, and flexible production systems to stay competitive in a rapidly evolving landscape. The integration of Industry 4.0 technologies, artificial intelligence, and IoT-enabled monitoring platforms is transforming traditional automotive facilities into intelligent, data-driven production environments. These digital factory systems optimize productivity, reduce equipment downtime, and enhance quality assurance through predictive maintenance and automated process control. By combining digital twin simulations, robotics, AI-based analytics, and IoT connectivity, companies are achieving seamless coordination across the entire production cycle. This convergence not only supports sustainability goals and energy efficiency but also enables full lifecycle visibility, improved compliance, and greater manufacturing resilience. The growing need for interconnected, adaptive, and transparent manufacturing networks is driving continued investment in digital factory automation across both OEMs and suppliers worldwide.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$26.5 Billion
Forecast Value$70.8 Billion
CAGR10.5%

The hardware segment accounted for about 63% of the market in 2024 and is anticipated to expand at a CAGR of 10.8% from 2025 to 2034. Hardware remains the foundation of automotive digital factory automation, playing a critical role in enabling real-time tracking, data collection, and machine control throughout production lines. Key hardware elements include IoT sensors, PLCs, RFID systems, embedded controllers, and machine vision devices that ensure seamless operation, predictive maintenance, and high productivity. Automakers and suppliers depend on these systems to maintain precision, reduce errors, and optimize production performance while enabling scalable digital transformation across facilities.

The passenger vehicle segment held 47% share in 2024 and is expected to grow at a CAGR of 11.3% between 2025 and 2034. Rising demand for electric and hybrid vehicles, coupled with stricter environmental regulations, is accelerating automation investments in passenger vehicle production. Automotive manufacturers are leveraging digital factory solutions such as robotics, cloud-integrated platforms, and AI-powered analytics to improve process accuracy, ensure compliance, and increase output efficiency. These technologies provide real-time visibility into production metrics and enhance the ability to manage complex, high-volume assembly operations with minimal downtime.

U.S. Automotive Digital Factory Automation Market held 88% share and generated USD 8.5 billion in 2024. The nation's strong manufacturing base, combined with rapid adoption of digital and AI technologies, is fueling large-scale modernization of automotive plants. Advanced robotics, IoT-enabled monitoring, and digital twin technologies are being increasingly integrated into production and supply chain systems. This expansion supports better resource utilization, reduced waste, and improved product quality while reinforcing the industry's sustainability and innovation goals.

Key players operating in the Global Automotive Digital Factory Automation Market include Mitsubishi Electric, Schneider Electric, FANUC, Siemens, ABB, Emerson Electric, Honeywell International, JR Automation Technologies, Rockwell Automation, and Yokogawa Electric. Leading companies in the Global Automotive Digital Factory Automation Market are focusing on technological innovation, strategic partnerships, and global expansion to strengthen their market presence. They are investing heavily in advanced robotics, digital twin technologies, and AI-driven analytics to enhance precision and streamline manufacturing processes. Collaborations between automation providers and automotive OEMs are enabling the creation of customized, end-to-end automation ecosystems. Companies are also emphasizing sustainability by integrating energy-efficient hardware and optimizing resource utilization through smart monitoring systems.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 3600 synopsis, 2021 - 2034
  • 2.2 Key market trends
    • 2.2.1 Regional
    • 2.2.2 Component
    • 2.2.3 Vehicle
    • 2.2.4 Technology
    • 2.2.5 Application
    • 2.2.6 End Use
  • 2.3 TAM Analysis, 2025-2034
  • 2.4 CXO perspectives: Strategic imperatives
    • 2.4.1 Executive decision points
    • 2.4.2 Critical success factors
  • 2.5 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Supplier Landscape
    • 3.1.2 Profit Margin
    • 3.1.3 Cost structure
    • 3.1.4 Value addition at each stage
    • 3.1.5 Factor affecting the value chain
    • 3.1.6 Disruptions
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Labor shortage mitigation requirements
      • 3.2.1.2 Quality & consistency improvement demands
      • 3.2.1.3 Production flexibility & customization needs
      • 3.2.1.4 Cost reduction & operational efficiency pressures
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High initial capital investment requirements
      • 3.2.2.2 Legacy system integration challenges
    • 3.2.3 Market opportunities
      • 3.2.3.1 5G network implementation in factories
      • 3.2.3.2 Edge computing & real-time analytics
      • 3.2.3.3 Blockchain for supply chain traceability
      • 3.2.3.4 AI-driven predictive maintenance expansion
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 Safety and Quality Standards
    • 3.4.2 Environmental and Sustainability Regulations
    • 3.4.3 Data Privacy and Cybersecurity
    • 3.4.4 Industry-specific Standards
  • 3.5 Porter's analysis
  • 3.6 PESTEL analysis
  • 3.7 Technology and Innovation Landscape
    • 3.7.1 5G Network Integration in Manufacturing
    • 3.7.2 Edge Computing & Real-time Analytics
    • 3.7.3 Blockchain for Supply Chain Transparency
    • 3.7.4 Augmented Reality & Virtual Reality Applications
    • 3.7.5 Cybersecurity Evolution in Industrial Systems
    • 3.7.6 Human-Machine Interface Advancements
    • 3.7.7 Digital Twin Evolution & Metaverse Integration
    • 3.7.8 Autonomous Factory Concepts
  • 3.8 Price trends
    • 3.8.1 By region
    • 3.8.2 By product
  • 3.9 Production statistics
    • 3.9.1 Production hubs
    • 3.9.2 Consumption hubs
    • 3.9.3 Export and import
  • 3.10 Cost breakdown analysis
  • 3.11 Patent analysis
  • 3.12 Sustainability and Environmental Aspects
    • 3.12.1 Sustainable practices
    • 3.12.2 Waste reduction strategies
    • 3.12.3 Energy efficiency in production
    • 3.12.4 Eco-friendly initiatives
  • 3.13 Carbon footprint considerations
  • 3.14 Risk assessment framework
    • 3.14.1 Cybersecurity risk management
    • 3.14.2 Operational risk assessment
    • 3.14.3 Financial risk analysis
    • 3.14.4 Supply chain risk mitigation
  • 3.15 Best case scenarios
  • 3.16 Future Outlook & Strategic Recommendations

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Latin America
    • 4.2.5 Middle East & Africa
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategic outlook matrix
  • 4.6 Key developments
    • 4.6.1 Mergers & acquisitions
    • 4.6.2 Partnerships & collaborations
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans and funding

Chapter 5 Market Estimates & Forecast, By Component, 2021 - 2034 ($ Bn, Units)

  • 5.1 Key trends
  • 5.2 Hardware
    • 5.2.1 Industrial robots
    • 5.2.2 Control systems
    • 5.2.3 Sensors & vision systems
    • 5.2.4 Human-machine interface (HMI)
    • 5.2.5 Others
  • 5.3 Software
    • 5.3.1 Manufacturing execution systems (MES)
    • 5.3.2 Digital twin & simulation software
    • 5.3.3 Predictive maintenance & analytics platforms
    • 5.3.4 AI & machine learning platforms
    • 5.3.5 ERP / cloud integration
  • 5.4 Services
    • 5.4.1 Installation & commissioning
    • 5.4.2 Maintenance & support
    • 5.4.3 Consulting & system integration
    • 5.4.4 Retrofit & modernization services
    • 5.4.5 Training & workforce development

Chapter 6 Market Estimates & Forecast, By Vehicle, 2021 - 2034 ($ Bn, Units)

  • 6.1 Key trends
  • 6.2 Passenger vehicles
    • 6.2.1 Hatchbacks
    • 6.2.2 Sedans
    • 6.2.3 SUV
  • 6.3 Commercial vehicles
    • 6.3.1 Light commercial vehicles (LCV)
    • 6.3.2 Medium commercial vehicles (MCV)
    • 6.3.3 Heavy commercial vehicles (HCV)
  • 6.4 Two-Wheelers

Chapter 7 Market Estimates & Forecast, By Technology, 2021 - 2034 ($ Bn, Units)

  • 7.1 Key trends
  • 7.2 Robotics & mechatronics
  • 7.3 Industrial IoT & sensors
  • 7.4 AI & machine learning
  • 7.5 Digital twin & simulation
  • 7.6 Cloud & edge computing

Chapter 8 Market Estimates & Forecast, By Application, 2021 - 2034 ($ Bn, Units)

  • 8.1 Key trends
  • 8.2 Assembly line automation
  • 8.3 Welding & joining operations
  • 8.4 Painting & coating processes
  • 8.5 Quality control & inspection
  • 8.6 Material handling & logistics

Chapter 9 Market Estimates & Forecast, By End Use, 2021 - 2034 ($ Bn, Units)

  • 9.1 Key trends
  • 9.2 Original equipment manufacturers (OEMs)
  • 9.3 Tier 1 Suppliers
  • 9.4 Tier 2 Suppliers
  • 9.5 Aftermarket

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2034 ($ Bn, Units)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 UK
    • 10.3.2 Germany
    • 10.3.3 France
    • 10.3.4 Italy
    • 10.3.5 Spain
    • 10.3.6 Belgium
    • 10.3.7 Netherlands
    • 10.3.8 Sweden
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 Australia
    • 10.4.5 Singapore
    • 10.4.6 South Korea
    • 10.4.7 Vietnam
    • 10.4.8 Indonesia
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Argentina
  • 10.6 MEA
    • 10.6.1 UAE
    • 10.6.2 South Africa
    • 10.6.3 Saudi Arabia

Chapter 11 Company Profiles

  • 11.1 Global Player
    • 11.1.1 ABB
    • 11.1.2 Bosch Rexroth
    • 11.1.3 Emerson Electric
    • 11.1.4 FANUC
    • 11.1.5 General Electric
    • 11.1.6 Honeywell International
    • 11.1.7 Rockwell Automation
    • 11.1.8 Schneider Electric
    • 11.1.9 Siemens
  • 11.2 Regional Player
    • 11.2.1 Festo
    • 11.2.2 JR Automation Technologies
    • 11.2.3 Keyence
    • 11.2.4 KUKA
    • 11.2.5 Mitsubishi Electric
    • 11.2.6 Omron
    • 11.2.7 UL Solutions
    • 11.2.8 Vention
    • 11.2.9 Yokogawa Electric
  • 11.3 Emerging Players
    • 11.3.1 Augury Systems
    • 11.3.2 Bright Machines
    • 11.3.3 MachineMetrics
    • 11.3.4 Path Robotics
    • 11.3.5 Sight Machine
    • 11.3.6 Standard Bots
    • 11.3.7 Tulip Interfaces