封面
市场调查报告书
商品编码
1876582

液态空气储能市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Liquid Air Energy Storage Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 100 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球液态空气储能市场价值为 1.631 亿美元,预计到 2034 年将以 19.4% 的复合年增长率增长至 9.336 亿美元。

液态空气储能市场 - IMG1

雷射辅助储能(LAES)技术利用空气和钢等易得且无毒的材料,使其成为锂离子电池的环保且可回收的替代方案。其20-30年的使用寿命以及极低的性能衰减,降低了传统储能係统的生命週期成本和环境影响。全球向清洁能源(尤其是风能和太阳能)的转型,正在推动对LAES等长时储能技术的需求。与适用于短期应用的锂离子电池不同,LAES系统可以储存数小时甚至数天的电力,从而提供至关重要的电网稳定性和灵活性。该技术能够将功率和能量容量分离,为电力公司提供可客製化的设计方案,确保在再生能源间歇性或高能耗时期也能实现稳定的电力供应。此外,低温工程、能量回收和整合技术的不断进步正在提高系统效率,往返效率已接近70%,进一步加速了该技术在各地区的普及应用。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 1.631亿美元
预测值 9.336亿美元
复合年增长率 19.4%

2024年,电网储能市占率达到68.1%,预计到2034年将以19%的复合年增长率成长。风能和太阳能发电在电网中的日益普及,使得可靠、长时储能係统的需求不断增长。空气吸收储能(LAES)提供了一种可持续的零排放解决方案,能够储存多余的可再生能源,并在用电高峰期释放,从而提高电网可靠性。由于利用环境空气且无需稀缺材料,LAES成为大规模储能部署的经济高效且环境友善的选择。

公用事业领域占据83.1%的市场份额,预计在2025年至2034年间将以19.2%的复合年增长率成长。随着再生能源併网带来的能源生产和消费波动日益加剧,公用事业公司正越来越多地采用液态铝储能(LAES)技术来应对这一挑战。该技术具有可扩展性、长时储能能力和零排放运行等特点,使其成为实现永续发展目标和保障能源安全的理想选择。政府支持清洁能源转型的各项措施进一步推动了该技术的应用,为预测期内市场的显着扩张铺平了道路。

2024年,美国液态空气储能市场占96.7%的市场份额,预计到2034年将达到8,800万美元。再生能源基础设施投资的不断增长以及日益严格的环境法规正推动公用事业公司和各行业采用液态空气储能係统(LAES)。 LAES系统能够储存过剩的太阳能和风能,并在用电高峰期释放,从而稳定电网,使其成为国家永续能源组合的重要组成部分。此外,LAES技术还具有卓越的安全性、零排放性能以及与现有电网系统的兼容性,使其在长期能源规划中更具吸引力。

全球液态空气储能市场的主要参与者包括Chart Industries、Everllence、Huge Energy、Siemens Energy、Phelas、Solveno Technologies、Sumitomo Heavy Industries, Ltd、Highview Power、Innovatium和ENERGY DOME。为了巩固市场地位,这些公司正着力推动多项策略措施。许多公司大力投资研发,以提高液态空气储能係统的能源效率和成本效益。与公用事业公司和再生能源开发商的合作正在拓展其全球部署机会。策略伙伴关係和合资企业正被用于加速商业化进程并扩大产能。各公司也透过试点计画和示范工厂来加强区域扩张,以吸引投资并建立对液态空气储能技术的信任。此外,各公司还优先考虑永续工程实践和数位化集成,以优化系统、降低营运成本并满足全球不断变化的储能需求。

目录

第一章:方法论与范围

第二章:执行概要

第三章:行业洞察

  • 产业生态系统
  • 监管环境
  • 产业影响因素
    • 成长驱动因素
    • 产业陷阱与挑战
  • 成长潜力分析
  • 成本结构分析
  • 波特的分析
  • PESTEL 分析
  • 新兴机会与趋势
    • 数位化与物联网集成
    • 新兴市场渗透
  • 投资分析及未来展望

第四章:竞争格局

  • 介绍
  • 按地区分類的公司市占率分析
    • 北美洲
    • 欧洲
    • 亚太地区
    • 世界其他地区
  • 战略仪錶板
  • 策略倡议
  • 公司标竿分析
  • 创新与技术格局

第五章:市场规模及预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 电网储能
  • 再生能源併网
  • 备用电源
  • 其他的

第六章:市场规模及预测:依最终用途划分,2021-2034年

  • 主要趋势
  • 公用事业
  • 商业和工业
  • 住宅

第七章:市场规模及预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 波兰
    • 西班牙
  • 亚太地区
    • 中国
    • 日本
    • 印度
  • 世界其他地区

第八章:公司简介

  • Chart Industries
  • ENERGY DOME
  • Everllence
  • Highview Power
  • Huge Energy
  • Innovatium
  • Phelas
  • Siemens Energy
  • Solveno Technologies
  • Sumitomo Heavy Industries Ltd
简介目录
Product Code: 15155

The Global Liquid Air Energy Storage Market was valued at USD 163.1 million in 2024 and is estimated to grow at a CAGR of 19.4% to reach USD 933.6 million by 2034.

Liquid Air Energy Storage Market - IMG1

LAES technology utilizes readily available and non-toxic materials such as air and steel, making it an eco-friendly and recyclable alternative to lithium-ion batteries. Its operational life span of 20-30 years with minimal performance degradation reduces lifecycle costs and environmental impacts associated with conventional energy storage systems. The global transition toward clean energy, particularly wind and solar, is fueling the demand for long-duration storage technologies like LAES. Unlike lithium-ion batteries suited for short-term applications, LAES systems can store power for several hours or even days, providing essential grid stability and flexibility. The technology's ability to separate power and energy capacity offers utilities a customizable design, ensuring a consistent power supply during periods of renewable intermittency or high energy demand. Moreover, continuous advancements in cryogenic engineering, energy recovery, and integration are improving system efficiency, with round-trip efficiency levels approaching 70%, further accelerating adoption across regions.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$163.1 Million
Forecast Value$933.6 Million
CAGR19.4%

In 2024, the grid energy storage segment held a 68.1% share and is forecasted to grow at a CAGR of 19% through 2034. The rising integration of wind and solar power across energy grids is increasing the necessity for dependable, long-duration storage systems. LAES provides a sustainable, emission-free solution capable of storing surplus renewable energy and discharging it during demand peaks, thereby enhancing grid reliability. The use of ambient air and the absence of scarce materials make it a cost-effective and environmentally responsible choice for large-scale storage deployment.

The utility segment held 83.1% share, and is expected to grow at a CAGR of 19.2% between 2025 and 2034. Utilities are increasingly turning to LAES technology to handle the growing fluctuations in energy production and consumption resulting from renewable energy integration. Its scalability, long-duration storage capabilities, and zero-emission operation make it an attractive alternative for meeting sustainability goals and ensuring energy security. Government initiatives supporting clean energy transition further encourage the adoption of this technology, paving the way for significant market expansion throughout the forecast period.

United States Liquid Air Energy Storage Market held a 96.7% share in 2024 and is projected to reach USD 88 million by 2034. Increasing investments in renewable infrastructure and stricter environmental regulations are pushing utilities and industries to adopt LAES systems. Their ability to stabilize the grid by storing excess solar and wind energy and releasing it during demand surges positions them as an essential component of the nation's sustainable energy portfolio. Furthermore, LAES technology offers superior safety, zero-emission performance, and compatibility with existing grid systems, enhancing its appeal for long-term energy planning.

Key companies operating in the Global Liquid Air Energy Storage Market include Chart Industries, Everllence, Huge Energy, Siemens Energy, Phelas, Solveno Technologies, Sumitomo Heavy Industries, Ltd, Highview Power, Innovatium, and ENERGY DOME. To strengthen their foothold, these companies are focusing on several strategic initiatives. Many are investing heavily in research and development to enhance the energy efficiency and cost performance of LAES systems. Collaborations with utilities and renewable energy developers are expanding their deployment opportunities globally. Strategic partnerships and joint ventures are being used to accelerate commercialization and scale up production capacity. Companies are also emphasizing regional expansion through pilot projects and demonstration plants to attract investments and build trust in LAES technology. Additionally, firms are prioritizing sustainable engineering practices and digital integration to improve system optimization, reduce operational costs, and meet evolving energy storage demands worldwide.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research design
    • 1.1.1 Research approach
    • 1.1.2 Data collection methods
    • 1.1.3 Base estimates and calculations
    • 1.1.4 Base year calculation
    • 1.1.5 Key trends for market estimates
  • 1.2 Forecast model
  • 1.3 Primary research & validation
    • 1.3.1 Primary sources
  • 1.4 Data mining sources
  • 1.5 Market definitions

Chapter 2 Executive Summary

  • 2.1 Industry synopsis, 2021 - 2034
  • 2.2 Business trends
  • 2.3 Application trends
  • 2.4 End use trends
  • 2.5 Regional trends

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem
  • 3.2 Regulatory landscape
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
    • 3.3.2 Industry pitfalls & challenges
  • 3.4 Growth potential analysis
  • 3.5 Cost structure analysis
  • 3.6 Porter's analysis
    • 3.6.1 Bargaining power of suppliers
    • 3.6.2 Bargaining power of buyers
    • 3.6.3 Threat of new entrants
    • 3.6.4 Threat of substitutes
  • 3.7 PESTEL analysis
    • 3.7.1 Political factors
    • 3.7.2 Economic factors
    • 3.7.3 Social factors
    • 3.7.4 Technological factors
    • 3.7.5 Legal factors
    • 3.7.6 Environmental factors
  • 3.8 Emerging opportunities & trends
    • 3.8.1 Digitalization & IoT integration
    • 3.8.2 Emerging market penetration
  • 3.9 Investment analysis and future outlook

Chapter 4 Competitive landscape, 2025

  • 4.1 Introduction
  • 4.2 Company market share analysis, by region, 2024
    • 4.2.1 North America
    • 4.2.2 Europe
    • 4.2.3 Asia Pacific
    • 4.2.4 Rest of World
  • 4.3 Strategic dashboard
  • 4.4 Strategic initiatives
  • 4.5 Company benchmarking
  • 4.6 Innovation & technology landscape

Chapter 5 Market Size and Forecast, By Application, 2021 - 2034 (USD Million)

  • 5.1 Key trends
  • 5.2 Grid energy storage
  • 5.3 Renewable energy integration
  • 5.4 Backup power
  • 5.5 Others

Chapter 6 Market Size and Forecast, By End Use, 2021 - 2034 (USD Million)

  • 6.1 Key trends
  • 6.2 Utility
  • 6.3 Commercial & industrial
  • 6.4 Residential

Chapter 7 Market Size and Forecast, By Region, 2021 - 2034 (USD Million)

  • 7.1 Key trends
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
  • 7.3 Europe
    • 7.3.1 UK
    • 7.3.2 Germany
    • 7.3.3 Poland
    • 7.3.4 Spain
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 Japan
    • 7.4.3 India
  • 7.5 Rest of World

Chapter 8 Company Profiles

  • 8.1 Chart Industries
  • 8.2 ENERGY DOME
  • 8.3 Everllence
  • 8.4 Highview Power
  • 8.5 Huge Energy
  • 8.6 Innovatium
  • 8.7 Phelas
  • 8.8 Siemens Energy
  • 8.9 Solveno Technologies
  • 8.10 Sumitomo Heavy Industries Ltd