封面
市场调查报告书
商品编码
1876588

固态雷射雷达半导体元件市场机会、成长驱动因素、产业趋势分析及预测(2025-2034年)

Solid-State LiDAR Semiconductor Components Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

出版日期: | 出版商: Global Market Insights Inc. | 英文 160 Pages | 商品交期: 2-3个工作天内

价格
简介目录

2024 年全球固态雷射雷达半导体元件市场价值为 32 亿美元,预计到 2034 年将以 19.3% 的复合年增长率增长至 187 亿美元。

固态雷射雷达半导体元件市场 - IMG1

这一增长归功于雷射雷达技术在自动驾驶汽车、高级驾驶辅助系统 (ADAS) 和工业自动化流程中的快速整合。与机械式雷射雷达相比,固态雷射雷达具有更优异的性能、更高的耐用性和更低的成本,因此越来越受到製造商的青睐。其基于半导体的设计支援更快的资料采集、更高的精度以及与车辆和机器人系统的无缝整合。这些特性使得在复杂环境中实现精确的三维地图绘製、物体识别和导航成为可能,而这些特性对于下一代行动解决方案至关重要。现代车辆中 ADAS 的日益普及推动了对紧凑、节能和高解析度半导体组件的需求,这些组件能够增强即时环境感知能力。这些组件正成为车辆安全和自动化系统不可或缺的一部分,为自适应巡航控制、碰撞侦测和车道维持辅助等技术的创新提供了支援。

市场范围
起始年份 2024
预测年份 2025-2034
起始值 32亿美元
预测值 187亿美元
复合年增长率 19.3%

2024年,雷射二极体市占率达到34.2%。雷射二极体在发光和测距方面发挥核心作用,是雷射雷达(LiDAR)技术的基础。它们能够产生高密度、高强度的光束,从而实现高精度的地图绘製和目标检测,这在汽车、机器人和工业领域至关重要。半导体设计和材料工程的持续创新正在帮助提高雷射二极体的效率、热性能和使用寿命。采用氮化镓(GaN)和磷化铟(InP)等先进材料进一步优化了功率输出,降低了能耗,并提升了雷射雷达系统的整体性能。这些改进对于满足自动驾驶和智慧基础设施应用领域对可靠性和成本效益日益增长的行业需求至关重要。

2024年,短程(0-30公尺)光达系统市场规模预计将达11亿美元。这些系统因其在短距离应用中的精度和效率而备受青睐,例如高级驾驶辅助系统(ADAS)、工业机器人和自动化机械。它们能够提供高解析度资料,对于在拥挤或城市环境中进行障碍物检测、导航和碰撞预防等任务至关重要。短程光达解决方案因其体积小、功耗低和价格实惠而备受青睐,非常适合整合到车辆、无人机和小型机器人系统中。停车感应器、盲点侦测和行人安全系统等技术的日益普及正在推动其进一步应用。光学整合和半导体小型化技术的不断进步持续提升着这些短程雷射雷达组件的精度、性能和可靠性。

预计到2024年,北美固态雷射雷达半导体组件市场份额将达到29.4%。该地区市场成长的主要驱动力是自动驾驶汽车研发、高级驾驶辅助系统(ADAS)应用以及智慧基础设施项目的大力投资。先进的研究计画、政府激励措施以及技术开发商和半导体製造商之间的合作,正在加速商业化进程。该地区完善的半导体生态系统和製造技术的快速发展,为创新和规模化生产提供了强大支撑。此外,国防、工业自动化和机器人等领域日益增长的需求,也巩固了北美在高性能雷射雷达半导体组件领域的领先地位。

固态雷射测距仪半导体元件市场的主要企业包括:Aeva Technologies, Inc.、Velodyne LiDAR, Inc.、ams OSRAM AG、LeddarTech Inc.、Innoviz Technologies Ltd.、Broadcom Inc.、Luminar Technologies, Inc.、STMicroelectronics NV、RoboSense(S. Incorporated(现为Coherent Corp.)、Analog Devices, Inc.、Quanergy Systems, Inc.、索尼半导体解决方案公司、瑞萨电子、安森美半导体(onsemi)和合赛科技股份有限公司。这些企业正致力于技术创新、产品多元化和策略合作,以巩固其市场地位。业界领导者正大力投资研发,以开发高效能半导体材料,例如氮化镓(GaN)和磷化铟(InP),从而提升雷射雷达(LiDAR)性能并降低生产成本。光达开发商、汽车原始设备製造商(OEM)和半导体製造商之间的策略合作,正在推动自动驾驶和工业应用领域的整合发展。

目录

第一章:方法论与范围

第二章:执行概要

第三章:行业洞察

  • 产业生态系分析
  • 产业影响因素
    • 成长驱动因素
      • 自动驾驶汽车的日益普及推动了对高性能固态雷射雷达感测器的需求。
      • 高级驾驶辅助系统 (ADAS) 对紧凑、节能的半导体元件的需求日益增长。
      • 光达在工业自动化和智慧基础设施项目的应用日益广泛。
      • 半导体材料(如碳化硅 (SiC) 和磷化铟 (InP))的技术进步。
    • 产业陷阱与挑战
      • 雷射二极体和光电探测器的製造成本高。
      • 光达组件供应商之间的标准化和互通性有限。
    • 市场机会
      • 自主无人机和机器人领域对固态雷射雷达的需求日益增长。
      • 政府资助的智慧城市和基础设施数位化计画。
  • 成长潜力分析
  • 监管环境
    • 北美洲
      • 我们
      • 加拿大
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 技术格局
    • 当前趋势
    • 新兴技术
  • 管道分析
  • 未来市场趋势
  • 波特的分析
  • PESTEL 分析

第四章:竞争格局

  • 介绍
  • 公司市占率分析
    • 全球的
    • 北美洲
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东和非洲
  • 公司矩阵分析
  • 主要市场参与者的竞争分析
  • 竞争定位矩阵
  • 关键进展
    • 併购
    • 伙伴关係与合作
    • 新产品发布
    • 扩张计划

第五章:市场估算与预测:依产品/组件类型划分,2021-2034年

  • 主要趋势
  • 雷射二极体
    • 边发射雷射二极体(EEL)
    • 垂直腔面发射雷射(VCSEL)
    • 分布式回馈(DFB)雷射二极体
  • 红外线感测器(固态)
    • 单光子雪崩二极体(SPAD)
    • 雪崩光电二极体(APD)
    • 硅光电倍增管(SiPM)
    • InGaAs光电侦测器
    • CMOS影像感测器
  • 积体电路
    • 时间数字转换器 (TDC)
    • 类比数位转换器(ADC)
    • 跨阻放大器(TIA)
    • 雷射驱动电路
    • 其他的
  • 光电器件

第六章:市场估算与预测:依性能等级/范围等级划分,2021-2034年

  • 主要趋势
  • 短程系统(0-30公尺)
  • 中程系统(30-150公尺)
  • 远端系统(150-300公尺)
  • 超远端系统(300公尺以上)

第七章:市场估计与预测:依应用领域划分,2021-2034年

  • 主要趋势
  • 道路车辆
  • 工业製造
  • 政府与国防

第八章:市场估算与预测:依地区划分,2021-2034年

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 荷兰
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 澳洲
    • 韩国
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
  • 中东和非洲
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第九章:公司简介

  • Velodyne LiDAR, Inc.
  • Luminar Technologies, Inc.
  • Aeva Technologies, Inc.
  • Innoviz Technologies Ltd.
  • Ouster, Inc.
  • Quanergy Systems, Inc.
  • LeddarTech Inc.
  • Hesai Technology Co., Ltd.
  • RoboSense (Suteng Innovation Technology Co., Ltd.)
  • Sony Semiconductor Solutions Corporation
  • Hamamatsu Photonics KK
  • ams OSRAM AG
  • STMicroelectronics NV
  • Infineon Technologies AG
  • ON Semiconductor Corporation (onsemi)
  • Broadcom Inc.
  • Texas Instruments Incorporated
  • Analog Devices, Inc.
  • II-VI Incorporated (now Coherent Corp.)
  • Renesas Electronics Corporation
简介目录
Product Code: 15156

The Global Solid-State LiDAR Semiconductor Components Market was valued at USD 3.2 billion in 2024 and is estimated to grow at a CAGR of 19.3% to reach USD 18.7 billion by 2034.

Solid-State LiDAR Semiconductor Components Market - IMG1

The growth is attributed to the rapid integration of LiDAR technology into autonomous vehicles, advanced driver-assistance systems (ADAS), and industrial automation processes. Solid-state LiDAR offers superior performance, greater durability, and lower costs compared to mechanical alternatives, making it increasingly preferred by manufacturers. Its semiconductor-based design supports faster data acquisition, enhanced precision, and seamless integration into vehicles and robotic systems. These features enable accurate 3D mapping, object recognition, and navigation in complex environments, all essential for next-generation mobility solutions. The growing adoption of ADAS in modern vehicles is fueling demand for compact, energy-efficient, and high-resolution semiconductor components that enhance real-time environmental awareness. These components are becoming integral to vehicle safety and automation systems, supporting innovations in adaptive cruise control, collision detection, and lane assistance technologies.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$3.2 Billion
Forecast Value$18.7 Billion
CAGR19.3%

In 2024, the laser diodes segment held a 34.2% share. Laser diodes play a central role in light emission and distance measurement, forming the backbone of LiDAR technology. Their ability to produce concentrated, high-intensity light beams allows for highly accurate mapping and object detection, which are vital in automotive, robotics, and industrial sectors. Continuous innovation in semiconductor design and material engineering is helping improve laser diode efficiency, thermal performance, and operational lifespan. The adoption of advanced materials such as gallium nitride (GaN) and indium phosphide (InP) is further optimizing power output, reducing energy consumption, and enhancing the overall performance of LiDAR systems. These improvements are essential to meet growing industry demands for reliability and cost-effectiveness across autonomous mobility and smart infrastructure applications.

The short-range systems (0-30 meters) segment generated USD 1.1 billion in 2024. These systems are favored for their precision and efficiency in short-distance applications, including ADAS, industrial robotics, and automated machinery. They provide high-resolution data critical for tasks such as obstacle detection, navigation, and collision prevention in congested or urban environments. Short-range LiDAR solutions are valued for their small form factor, lower power requirements, and affordability, making them well-suited for integration into vehicles, drones, and compact robotic systems. The growing deployment of technologies such as parking sensors, blind-spot detection, and pedestrian safety systems is driving further adoption. Ongoing progress in optical integration and semiconductor miniaturization continues to elevate the accuracy, performance, and reliability of these short-range LiDAR components.

North America Solid-State LiDAR Semiconductor Components Market held a 29.4% share in 2024. Market growth in the region is driven by strong investments in autonomous vehicle development, ADAS implementation, and smart infrastructure projects. Advanced research initiatives, coupled with government incentives and collaborations between technology developers and semiconductor manufacturers, are accelerating commercialization. The region's well-established semiconductor ecosystem and rapid advancements in manufacturing technologies are supporting innovation and scalability. Additionally, increasing demand from sectors such as defense, industrial automation, and robotics is reinforcing North America's leadership position in high-performance LiDAR semiconductor components.

Prominent companies operating in the Solid-State LiDAR Semiconductor Components Market include Aeva Technologies, Inc., Velodyne LiDAR, Inc., ams OSRAM AG, LeddarTech Inc., Innoviz Technologies Ltd., Broadcom Inc., Luminar Technologies, Inc., STMicroelectronics N.V., RoboSense (Suteng Innovation Technology Co., Ltd.), Ouster, Inc., Hamamatsu Photonics K.K., Texas Instruments Incorporated, Infineon Technologies AG, II-VI Incorporated (now Coherent Corp.), Analog Devices, Inc., Quanergy Systems, Inc., Sony Semiconductor Solutions Corporation, Renesas Electronics Corporation, ON Semiconductor Corporation (onsemi), and Hesai Technology Co., Ltd. Companies in the Solid-State LiDAR Semiconductor Components Market are focusing on technological innovation, product diversification, and strategic partnerships to strengthen their market position. Leading players are investing heavily in R&D to develop high-efficiency semiconductor materials, such as GaN and InP, that enhance LiDAR performance and reduce production costs. Strategic collaborations between LiDAR developers, automotive OEMs, and semiconductor manufacturers are expanding integration across autonomous and industrial applications.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definition
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Data mining sources
    • 1.3.1 Global
    • 1.3.2 Regional/Country
  • 1.4 Base estimates and calculations
    • 1.4.1 Base year calculation
    • 1.4.2 Key trends for market estimation
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
  • 1.6 Forecast model
  • 1.7 Research assumptions and limitations

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis
  • 2.2 Key market trends
    • 2.2.1 Regional Trends
    • 2.2.2 Product/Component Type Trends
    • 2.2.3 Performance Tier / Range Class Trends
    • 2.2.4 Application Trends
  • 2.3 CXO perspectives: Strategic imperatives
    • 2.3.1 Key decision points for industry executives
    • 2.3.2 Critical success factors for market players
  • 2.4 Future outlook and strategic recommendations

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Industry impact forces
    • 3.2.1 Growth drivers
      • 3.2.1.1 Growing adoption of autonomous vehicles fueling demand for high-performance solid-state LiDAR sensors.
      • 3.2.1.2 Rising need for compact, energy-efficient semiconductor components in advanced driver-assistance systems (ADAS).
      • 3.2.1.3 Increasing integration of LiDAR in industrial automation and smart infrastructure projects.
      • 3.2.1.4 Technological advancements in semiconductor materials such as silicon carbide (SiC) and indium phosphide (InP).
    • 3.2.2 Industry pitfalls and challenges
      • 3.2.2.1 High manufacturing costs of laser diodes and photodetectors.
      • 3.2.2.2 Limited standardization and interoperability across LiDAR component suppliers.
    • 3.2.3 Market opportunities
      • 3.2.3.1 Growing demand for solid-state LiDAR in autonomous drones and robotics.
      • 3.2.3.2 Government-funded smart city and infrastructure digitization projects.
  • 3.3 Growth potential analysis
  • 3.4 Regulatory landscape
    • 3.4.1 North America
      • 3.4.1.1 U.S.
      • 3.4.1.2 Canada
    • 3.4.2 Europe
    • 3.4.3 Asia Pacific
    • 3.4.4 Latin America
    • 3.4.5 Middle East and Africa
  • 3.5 Technology landscape
    • 3.5.1 Current trends
    • 3.5.2 Emerging technologies
  • 3.6 Pipeline analysis
  • 3.7 Future market trends
  • 3.8 Porter's analysis
  • 3.9 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
    • 4.2.1 Global
    • 4.2.2 North America
    • 4.2.3 Europe
    • 4.2.4 Asia Pacific
    • 4.2.5 Latin America
    • 4.2.6 Middle East and Africa
  • 4.3 Company matrix analysis
  • 4.4 Competitive analysis of major market players
  • 4.5 Competitive positioning matrix
  • 4.6 Key developments
    • 4.6.1 Merger and acquisition
    • 4.6.2 Partnership and collaboration
    • 4.6.3 New product launches
    • 4.6.4 Expansion plans

Chapter 5 Market Estimates and Forecast, By Product/Component Type, 2021 - 2034 ($ Mn)

  • 5.1 Key trends
  • 5.2 Laser Diodes
    • 5.2.1 Edge-Emitting Laser Diodes (EEL)
    • 5.2.2 Vertical-Cavity Surface-Emitting Lasers (VCSEL)
    • 5.2.3 Distributed Feedback (DFB) Laser Diodes
  • 5.3 Infrared Sensors (Solid-State)
    • 5.3.1 Single Photon Avalanche Diodes (SPAD)
    • 5.3.2 Avalanche Photodiodes (APD)
    • 5.3.3 Silicon Photomultipliers (SiPM)
    • 5.3.4 InGaAs Photodetectors
    • 5.3.5 CMOS Image Sensors
  • 5.4 Integrated Microcircuits
    • 5.4.1 Time-to-Digital Converters (TDC)
    • 5.4.2 Analog-to-Digital Converters (ADC)
    • 5.4.3 Transimpedance Amplifiers (TIA)
    • 5.4.4 Laser Driver Circuits
    • 5.4.5 Others
  • 5.5 Optoelectronic Devices

Chapter 6 Market Estimates and Forecast, By Performance Tier / Range Class, 2021 - 2034 ($ Mn)

  • 6.1 Key trends
  • 6.2 Short-Range Systems (0-30 meters)
  • 6.3 Medium-Range Systems (30-150 meters)
  • 6.4 Long-Range Systems (150-300 meters)
  • 6.5 Ultra-Long-Range Systems (300+ meters)

Chapter 7 Market Estimates and Forecast, By Application, 2021 - 2034 ($ Mn)

  • 7.1 Key trends
  • 7.2 Road vehicles
  • 7.3 Industrial manufacturing
  • 7.4 Government & defense

Chapter 8 Market Estimates and Forecast, By Region, 2021 - 2034 ($ Mn)

  • 8.1 Key trends
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 France
    • 8.3.4 Italy
    • 8.3.5 Spain
    • 8.3.6 Netherlands
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 India
    • 8.4.3 Japan
    • 8.4.4 Australia
    • 8.4.5 South Korea
  • 8.5 Latin America
    • 8.5.1 Brazil
    • 8.5.2 Mexico
    • 8.5.3 Argentina
  • 8.6 Middle East and Africa
    • 8.6.1 South Africa
    • 8.6.2 Saudi Arabia
    • 8.6.3 UAE

Chapter 9 Company Profiles

  • 9.1 Velodyne LiDAR, Inc.
  • 9.2 Luminar Technologies, Inc.
  • 9.3 Aeva Technologies, Inc.
  • 9.4 Innoviz Technologies Ltd.
  • 9.5 Ouster, Inc.
  • 9.6 Quanergy Systems, Inc.
  • 9.7 LeddarTech Inc.
  • 9.8 Hesai Technology Co., Ltd.
  • 9.9 RoboSense (Suteng Innovation Technology Co., Ltd.)
  • 9.10 Sony Semiconductor Solutions Corporation
  • 9.11 Hamamatsu Photonics K.K.
  • 9.12 ams OSRAM AG
  • 9.13 STMicroelectronics N.V.
  • 9.14 Infineon Technologies AG
  • 9.15 ON Semiconductor Corporation (onsemi)
  • 9.16 Broadcom Inc.
  • 9.17 Texas Instruments Incorporated
  • 9.18 Analog Devices, Inc.
  • 9.19 II-VI Incorporated (now Coherent Corp.)
  • 9.20 Renesas Electronics Corporation