封面
市场调查报告书
商品编码
1405932

联邦学习市场规模、份额、趋势分析报告:按组织规模、应用程式、产业、地区和细分市场预测,2023-2030 年

Federated Learning Market Size, Share & Trends Analysis Report By Organization Size (SME, Large), By Application (Drug Discovery, Risk Management), By Industry Vertical (Automotive, BFSI), By Region, And Segment Forecasts, 2023 - 2030

出版日期: | 出版商: Grand View Research | 英文 100 Pages | 商品交期: 2-10个工作天内

价格

联邦学习市场的成长与趋势:

Grand View Research, Inc.最新报告显示,到2030年,全球联邦学习市场规模预计将达到2.975亿美元,2023年至2030年复合年增长率为12.7%。

这一成长的关键驱动力是其在分散式设备上训练机器学习(ML)模型同时保护资料隐私的独特能力。这种方法允许多个营业单位在训练模型上进行协作,而无需共用原始资料,并确保敏感资讯保留在本地设备上。这种以隐私为中心的范式与严格的资料保护条例非常一致,并解决了人们对资料安全日益增长的担忧。对资料隐私和监管合规性的担忧正在推动联邦学习的采用,因为它可以在不共用原始资料的情况下实现协作模型学习并确保用户隐私。

这种独特的方法吸引了寻求竞争优势的产业。例如,Google LLC 是联邦学习的杰出支持者和实践者。其应用程式之一,虚拟键盘应用程式 Gboard,使用联合学习来改善文字预测建议,而不会影响使用者资料。由于机器学习技术的快速发展和广泛的资料可用性,该市场正在蓬勃发展。物联网设备的普及和边缘运算的兴起正在推动联邦学习在医疗保健、金融和物联网领域的采用。这种方法支援跨分散设备的协作模型学习,提高人工智慧能力,同时确保资料隐私。在医疗保健领域,联合学习支持协作模型开发,以改善诊断和治疗,而不会损害患者资料隐私。

在金融领域,它有助于对金融机构的交易资料进行安全分析并增强诈欺侦测。物联网应用程式利用分散式设备资料为基于边缘的机器学习提供支持,以改善设备功能。北美,特别是美国,是科技创新的中心,硅谷和各种有影响力的科技巨头推动进步。该地区在人工智慧和机器学习领域开拓地位,营造了一种促进联邦学习等先进技术整合的氛围。北美消费者对资料隐私和安全的意识越来越强。联合学习是一种隐私保护技术,它引起了消费者的关注,并在各种应用程式中创造了对以隐私为中心的解决方案的需求。总的来说,这些因素促进了北美联邦学习的采用和突出,创造了有利于跨产业持续扩张的环境。

联邦学习市场报告亮点

  • 工业物联网 (IIoT) 领域在 2022 年占据主要收益占有率。 IIoT 领域的市场优势在于其使用去中心化资料来源,这与联邦学习以隐私为中心的方法非常匹配。
  • IT 和通讯在该行业占据主导地位,2022 年市场占有率为 27.3%。这是因为存在广泛的不同资料来源储存库,这对于完善人工智慧模型同时保护去中心化网路中的敏感资讯至关重要。
  • 全球市场的成长得益于联邦学习独特的能力,它可以保护资料隐私,同时实现高效的边缘运算,并满足对安全和去中心化人工智慧模型训练不断增长的需求,正在得到巨大的推动。
  • 在不依赖集中式资料储存库的情况下促进跨装置人工智慧模型持续进步的能力是联邦学习技术持续进步的驱动力。

目录

第一章调查方法与范围

第 2 章执行摘要

第三章联邦学习市场变数、趋势和范围

  • 市场体系展望
  • 市场动态
    • 市场驱动因素分析
    • 市场抑制因素分析
    • 产业挑战
  • 联邦学习市场分析工具
    • 产业分析-波特五力分析
    • PESTEL分析
  • 问题分析

第四章联邦学习市场:应用预估与趋势分析

  • 细分仪表板
  • 联邦学习市场:2022 年和 2030 年应用变化分析
  • 工业物联网
  • 药物研发
  • 危机管理
  • 扩增实境和虚拟现实
  • 资料隐私管理
  • 其他的

第五章 联邦学习市场:组织规模估算及趋势分析

  • 细分仪表板
  • 联邦学习市场:2022 年和 2030 年组织规模变化分析
  • 大公司
  • 中小企业

第六章 联邦学习市场:产业预估与趋势分析

  • 细分仪表板
  • 联邦学习市场:2022 年和 2030 年产业变化分析
  • 资讯科技和通讯
  • 医疗保健和生命科学
  • BFSI
  • 零售与电子商务
  • 其他的

第七章联邦学习市场:区域估算与趋势分析

  • 2022 年及 2030 年联邦学习市场占有率(按地区)
  • 北美洲
    • 2017-2030 年北美联邦学习市场估计与预测
    • 美国
    • 加拿大
  • 欧洲
    • 欧盟学习市场估计与预测,2017-2030
    • 英国
    • 德国
    • 法国
  • 亚太地区
    • 2017-2030 年亚太地区联邦学习市场估计与预测
    • 中国
    • 日本
    • 印度
    • 韩国
    • 澳洲
  • 拉丁美洲
    • 2017-2030 年拉丁美洲联邦学习市场估计与预测
    • 巴西
    • 墨西哥
  • 中东和非洲
    • 2017-2030 年中东和非洲联邦学习市场估计和预测
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 南非

第八章竞争形势

  • 公司分类
  • 公司市场地位
  • 参与企业概况
  • 财务绩效
  • 产品基准评效
  • 企业热力图分析
  • 策略规划
  • 公司简介/名单
    • Acuratio Inc.
    • Cloudera Inc.
    • Edge Delta
    • Enveil
    • FedML
    • Google LLC
    • IBM Corporation
    • Intel Corporation
    • Lifebit
    • NVIDIA Corporation
Product Code: GVR-4-68040-162-2

Federated Learning Market Growth & Trends:

The global federated learning market size is expected to reach USD 297.5 million by 2030, growing at a CAGR of 12.7% from 2023 to 2030, according to a new report by Grand View Research, Inc. The growth is primarily fueled by its unique capability to train machine learning (ML) models across decentralized devices while preserving data privacy. This approach allows multiple entities to collaborate on model training without sharing raw data, ensuring sensitive information remains on local devices. This privacy-centric paradigm aligns well with stringent data protection regulations and addresses growing concerns about data security. Concerns over data privacy and compliance with regulations drive the adoption of federated learning, as it allows for collaborative model training without sharing raw data, ensuring user privacy.

This unique approach attracts industries seeking a competitive edge. For instance, Google LLC has been a prominent advocate and practitioner of federated learning. One of its applications, Gboard, the virtual keyboard app, uses federated learning to improve predictive text suggestions without compromising user data. The market thrives due to fast-progressing ML methods and wider data availability. The proliferation of IoT devices and the rise of edge computing have propelled federated learning's adoption in the healthcare, finance, and IoT sectors. This approach allows collaborative model training across decentralized devices, ensuring data privacy while advancing AI capabilities. In healthcare, federated learning enables joint model development, improving diagnostics & treatments without compromising patient data privacy.

In finance, it facilitates secure analysis of transactional data across institutions, enhancing fraud detection. Its application in IoT utilizes distributed device data, empowering edge-based ML for improved device functionalities. North America, especially the U.S., is a center for technological innovation, led by Silicon Valley and various influential tech giants that propel progress. The region pioneers AI & ML advancements, cultivating an atmosphere that encourages the integration of advanced technologies, such as federated learning. There is a rising awareness among consumers in North America about data privacy & security. Federated learning, being a privacy-preserving technology, resonates with consumers' concerns, creating a demand for such privacy-centric solutions in various applications. These factors collectively contribute to the growing adoption & prominence of federated learning in North America, fostering an environment conducive to its continued expansion across industries.

Federated Learning Market Report Highlights:

  • The Industrial Internet of Things (IIoT) segment held a significant revenue share in 2022. The dominance of IIoT segment within the market uses decentralized data sources, which match well with the privacy-focused approach of federated learning
  • The IT & telecommunications dominated the industry and held a market share of 27.3% in 2022 due to their extensive reservoirs of diverse data sources, essential for refining AI models while safeguarding sensitive information across distributed networks
  • The global market growth is largely fueled by the unique capacity of federated learning to preserve data privacy while also enabling efficient edge computing, meeting the rising demand for secure & decentralized AI model training
  • The ability to foster ongoing advancements in AI models across devices, without relying on centralized data repositories, serves as a driving force for continual progress in federated learning methodologies

Table of Contents

Chapter 1. Methodology and Scope

  • 1.1. Market Segmentation and Scope
  • 1.2. Research Methodology
    • 1.2.1. Information Procurement
  • 1.3. Information or Data Analysis
  • 1.4. Methodology
  • 1.5. Research Scope and Assumptions
  • 1.6. Market Formulation & Validation
  • 1.7. Country Based Segment Share Calculation
  • 1.8. List of Data Sources

Chapter 2. Executive Summary

  • 2.1. Market Outlook
  • 2.2. Segment Outlook
  • 2.3. Competitive Insights

Chapter 3. Federated Learning Market Variables, Trends, & Scope

  • 3.1. Market Lineage Outlook
  • 3.2. Market Dynamics
    • 3.2.1. Market Driver Analysis
    • 3.2.2. Market Restraint Analysis
    • 3.2.3. Industry Challenge
  • 3.3. Federated Learning Market Analysis Tools
    • 3.3.1. Industry Analysis - Porter's
      • 3.3.1.1. Bargaining power of the suppliers
      • 3.3.1.2. Bargaining power of the buyers
      • 3.3.1.3. Threats of substitution
      • 3.3.1.4. Threats from new entrants
      • 3.3.1.5. Competitive rivalry
    • 3.3.2. PESTEL Analysis
      • 3.3.2.1. Political landscape
      • 3.3.2.2. Economic and Social landscape
      • 3.3.2.3. Technological landscape
  • 3.4. Pain Point Analysis

Chapter 4. Federated Learning Market: Application Estimates & Trend Analysis

  • 4.1. Segment Dashboard
  • 4.2. Federated Learning Market: Application Movement Analysis, 2022 & 2030 (USD Million)
  • 4.3. Industrial Internet of Things
    • 4.3.1. Industrial Internet of Things Federated Learning Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 4.4. Drug Discovery
    • 4.4.1. Drug Discovery Federated Learning Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 4.5. Risk Management
    • 4.5.1. Risk Management Federated Learning Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 4.6. Augmented and Virtual Reality
    • 4.6.1. Augmented and Virtual Reality Federated Learning Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 4.7. Data Privacy Management
    • 4.7.1. Data Privacy Management Federated Learning Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 4.8. Others
    • 4.8.1. Others Federated Learning Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 5. Federated Learning Market: Organization Size Estimates & Trend Analysis

  • 5.1. Segment Dashboard
  • 5.2. Federated Learning Market: Organization Size Movement Analysis, 2022 & 2030 (USD Million)
  • 5.3. Large Enterprises
    • 5.3.1. Large Enterprises Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 5.4. SMEs
    • 5.4.1. SMEs Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 6. Federated Learning Market: Industry Vertical Estimates & Trend Analysis

  • 6.1. Segment Dashboard
  • 6.2. Federated Learning Market: Industry Vertical Movement Analysis, 2022 & 2030 (USD Million)
  • 6.3. IT & Telecommunications
    • 6.3.1. IT & Telecommunications Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.4. Healthcare & Life Sciences
    • 6.4.1. Healthcare & Life Sciences Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.5. BFSI
    • 6.5.1. BFSI Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.6. Retail & E-commerce
    • 6.6.1. Retail & E-commerce Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.7. Automotive
    • 6.7.1. Automotive Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.8. Others
    • 6.8.1. Others Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 7. Federated Learning Market: Regional Estimates & Trend Analysis

  • 7.1. Federated Learning Market Share, By Region, 2022 & 2030 (USD Million)
  • 7.2. North America
    • 7.2.1. North America Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.2.2. U.S.
      • 7.2.2.1. U.S. Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.2.3. Canada
      • 7.2.3.1. Canada Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.3. Europe
    • 7.3.1. Europe Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.3.2. UK
      • 7.3.2.1. UK Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.3.3. Germany
      • 7.3.3.1. Germany Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.3.4. France
      • 7.3.4.1. France Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.4. Asia Pacific
    • 7.4.1. Asia Pacific Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.4.2. China
      • 7.4.2.1. China Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.4.3. Japan
      • 7.4.3.1. Japan Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.4.4. India
      • 7.4.4.1. India Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.4.5. South Korea
      • 7.4.5.1. South Korea Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.4.6. Australia
      • 7.4.6.1. Australia Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.5. Latin America
    • 7.5.1. Latin America Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.5.2. Brazil
      • 7.5.2.1. Brazil Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.5.3. Mexico
      • 7.5.3.1. Mexico Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.6. Middle East and Africa
    • 7.6.1. Middle East and Africa Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.6.2. KSA
      • 7.6.2.1. KSA Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.6.3. UAE
      • 7.6.3.1. UAE Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 7.6.4. South Africa
      • 7.6.4.1. South Africa Federated Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 8. Competitive Landscape

  • 8.1. Company Categorization
  • 8.2. Company Market Positioning
  • 8.3. Participant's Overview
  • 8.4. Financial Performance
  • 8.5. Product Benchmarking
  • 8.6. Company Heat Map Analysis
  • 8.7. Strategy Mapping
  • 8.8. Company Profiles/Listing
    • 8.8.1. Acuratio Inc.
    • 8.8.2. Cloudera Inc.
    • 8.8.3. Edge Delta
    • 8.8.4. Enveil
    • 8.8.5. FedML
    • 8.8.6. Google LLC
    • 8.8.7. IBM Corporation
    • 8.8.8. Intel Corporation
    • 8.8.9. Lifebit
    • 8.8.10. NVIDIA Corporation

List of Tables

  • Table 1 Global Federated Learning market by Application, 2017 - 2030 (USD Million)
  • Table 2 Global Federated Learning market by Organization Size, 2017 - 2030 (USD Million)
  • Table 3 Global Federated Learning market by Industry Vertical, 2017 - 2030 (USD Million)
  • Table 4 Global Federated Learning market by region, 2017 - 2030 (USD Million)
  • Table 5 North America Federated Learning market by country, 2017 - 2030 (USD Million)
  • Table 6 Europe Federated Learning market by country, 2017 - 2030 (USD Million)
  • Table 7 Asia Pacific Federated Learning market by country, 2017 - 2030 (USD Million)
  • Table 8 Latin America Federated Learning market by country, 2017 - 2030 (USD Million)
  • Table 9 MEA Federated Learning market by country, 2017 - 2030 (USD Million)
  • Table 10 Key companies launching new products/services
  • Table 11 Key companies engaged in mergers & acquisition.
  • Table 12 Key companies engaged in Research & development
  • Table 13 Key Companies engaged in expansion

List of Figures

  • Fig. 1 Information procurement
  • Fig. 2 Primary research pattern
  • Fig. 3 Market research approaches
  • Fig. 4 Value chain-based sizing & forecasting
  • Fig. 5 QFD modelling for market share assessment.
  • Fig. 6 Parent market analysis
  • Fig. 7 Patient-population model
  • Fig. 8 Market formulation & validation
  • Fig. 9 Federated Learning market snapshot
  • Fig. 10 Federated Learning market segment snapshot
  • Fig. 11 Federated Learning market competitive landscape snapshot
  • Fig. 12 Market research process
  • Fig. 13 Market driver relevance analysis (Current & future impact)
  • Fig. 14 Market restraint relevance analysis (Current & future impact)
  • Fig. 15 Federated Learning Market: Application outlook key takeaways (USD Million)
  • Fig. 16 Federated Learning Market: Application movement analysis 2022 & 2030 (USD Million)
  • Fig. 17 Industrial Internet of Things Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 18 Drug Discovery Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 19 Risk Management Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 20 Augmented and Virtual Reality Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 21 Data Privacy Management Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 22 Others Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 23 Federated Learning Market: Organization Size outlook key takeaways (USD Million)
  • Fig. 24 Federated Learning Market: Organization Size movement analysis 2022 & 2030 (USD Million)
  • Fig. 25 Large Enterprises Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 26 SMEs Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 27 Federated Learning Market: Industry Vertical outlook key takeaways (USD Million)
  • Fig. 28 Federated Learning Market: Industry Vertical movement analysis 2022 & 2030 (USD Million)
  • Fig. 29 IT & Telecommunications Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 30 Healthcare & Life Sciences Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 31 BFSI Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 32 Retail & E-commerce Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 33 Automotive Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 34 Others Federated Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 35 Regional marketplace: Key takeaways
  • Fig. 36 Federated Learning Market: Regional outlook, 2022 & 2030 (USD Million)
  • Fig. 37 North America Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 38 U.S. Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 39 Canada Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 40 Europe Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 41 UK Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 42 Germany Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 43 France Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 44 Asia Pacific Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 45 Japan Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 46 China Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 47 India Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 48 South Korea Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 49 Australia Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 50 Latin America Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 51 Brazil Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 52 Mexico Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 53 MEA Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 54 KSA Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 55 UAE Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 56 South Africa Federated Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 57 Strategy framework
  • Fig. 58 Company Categorization