![]() |
市场调查报告书
商品编码
1771685
美国汽车动力系统感测器市场规模、份额、趋势分析报告(按感测器类型、车辆类型、推进类型及细分市场预测,2025-2030 年)U.S. Automotive Powertrain Sensors Market Size, Share & Trends Analysis Report By Sensor Type (Pressure Sensors, Temperature Sensors, Position Sensors, Speed Sensors), By Vehicle Type (LCVs, HCVs), By Propulsion Type, And Segment Forecasts, 2025 - 2030 |
预计 2024 年美国汽车动力系统感测器市场规模将达到 40.601 亿美元,预计 2025 年至 2030 年的复合年增长率为 7.6%。美国向电动车 (EV) 的快速转变极大地推动了先进动力传动系统感测器市场的成长。
根据美国能源部 (DOE) 2022 年年度电气化进度报告,政府正在大力投资增强感测器技术,以提高锂离子电池的效率和温度控管。即时电压和电流感测器现在可以为电池管理系统 (BMS) 提供精确数据,从而延长电池寿命并优化充电週期。电池组内建的温度感测器有助于防止过热,尤其是在极端气候条件下,这使其成为提高电动车可靠性的关键因素。电动马达内的扭力感测器可实现无缝、节能的电力传输。这些创新是美国能源部资助的一项计画的一部分,该计画的目标是到 2025 年将动力传动系统能耗降低 15%,从而推动高性能电动车零件市场的发展。
旨在减少车辆排放气体的联邦法规正在推动对内燃机 (ICE) 车辆的高精度后处理感测器的需求。美国环保署 (EPA) 的 2023 年清洁卡车计画要求到 2027 年将重型车辆的氮氧化物排放减少 90%,这将推动宽频氧气感测器和颗粒物 (PM) 感测器等技术的市场成长。这些感测器在维持空燃比和监测柴油引擎废气过滤器方面发挥关键作用,确保符合严格的排放基准值。此外,美国能源部的高效引擎技术计画正在鼓励开发用于混合动力引擎的耐硫氮氧化物感测器,在低温排气情况下尤其有用。这些监管压力正在推动市场迈向可改善环境性能和车辆寿命的传感器解决方案迈进。
ADAS(高级驾驶辅助系统)和动力传动系统控制的日益整合为感测器部署创造了新的机会,推动了该领域的市场成长。 ADAS 的雷达和雷射雷达输入目前被用于预测性动力传动系统操作,例如内燃机和混合动力汽车的前视换檔和再生煞车控制。美国联邦公路管理局的 2023 年 V2X 采用指南强调了车辆到基础设施 (V2I)通讯的重要性,使用曲轴和节气门位置监视器等感测器根据即时交通数据调整节气门和变速箱操作。 NREL 进行的现场试验表明,这种整合可以将重型卡车的燃油经济性提高 6-8%,从而推动基于感测器的能源优化系统市场的发展。
人们对汽车电子设备嵌入式能耗的日益担忧,推动了市场对低功耗感测器解决方案的需求。美国能源部 (DOE) 的《2024 年永续交通战略》和美国橡树岭国家实验室 (ORNL) 的一项 2023 年研究显示,感测器製造对电动车的整体能源足迹贡献巨大,高达 12%。因此,感测器开发人员正在转向基于碳化硅 (SiC) 的感测器等创新技术,与传统硅元件相比,其功耗降低了 40%。同样,牵引马达中的霍尔效应感测器现在可以在更低的电压下工作,而 CAN FD通讯协定可以最大限度地减少感测器唤醒週期,从而提高能源效率。这些趋势与美国环保署 (EPA) 的 2025 年 CAFE 标准一致,该标准要求车辆整体燃油经济性在 2022 年的基础上提高 32%,从而推动市场向节能型感测器技术迈进。
The U.S. automotive powertrain sensors market size was estimated at USD 4,060.1 million in 2024 and is projected to grow at a CAGR of 7.6% from 2025 to 2030. The rapid shift toward electric vehicles (EVs) in the U.S. has significantly boosted the market growth of advanced powertrain sensors.
According to the Department of Energy's (DOE) 2022 Electrification Annual Progress Report, substantial investments are being made to enhance sensor technologies that improve lithium-ion battery efficiency and thermal management. Real-time voltage and current sensors now provide accurate data to battery management systems (BMS), extending battery life and optimizing charge cycles. Temperature sensors embedded within battery packs help prevent overheating, particularly in extreme climates a critical factor in enhancing EV reliability. Torque sensors in electric motors are enabling seamless and energy-efficient power delivery. These innovations are part of DOE-funded programs targeting a 15% reduction in powertrain energy consumption by 2025, which has propelled the market toward high-performance EV components.
Federal regulations aimed at reducing vehicle emissions have driven the demand for highly accurate aftertreatment sensors in internal combustion engine (ICE) vehicles. The EPA's 2023 Clean Trucks Plan, which mandates a 90% reduction in NOx emissions from heavy-duty vehicles by 2027, has boosted the market growth of technologies like wide-band lambda sensors and particulate matter (PM) sensors. These sensors play a vital role in maintaining air-fuel ratios and monitoring diesel exhaust filters, ensuring compliance with strict emission thresholds. In addition, the DOE's High-Efficiency Engine Technologies program is fostering the development of sulfur-resistant NOx sensors for hybrid engines, particularly useful in low-temperature exhaust scenarios. These regulatory pressures have propelled the market toward sensor solutions that improve environmental performance and vehicle longevity.
The increasing integration of Advanced Driver Assistance Systems (ADAS) with powertrain controls is creating new opportunities for sensor deployment, thereby boosting the market growth in this segment. Radar and lidar inputs from ADAS are now leveraged for predictive powertrain actions, such as anticipatory gear shifting and regenerative braking control in ICE and hybrid vehicles. The Federal Highway Administration's 2023 V2X Deployment Guidelines emphasize the importance of Vehicle-to-Infrastructure (V2I) communications, which adjust throttle and transmission behavior based on real-time traffic data using sensors like crankshaft and throttle position monitors. Field trials conducted by NREL have shown that such integrations can lead to 6-8% fuel efficiency gains in heavy-duty trucks, propelling the market for sensor-based energy optimization systems.
Growing concerns about the embedded energy consumption of automotive electronics have boosted the market demand for low-power sensor solutions. The DOE's 2024 Sustainable Transportation Strategy and a 2023 Oak Ridge National Laboratory (ORNL) study revealed that sensor manufacturing contributes significantly to an EV's overall energy footprint, up to 12%. As a result, sensor developers are focusing on innovations like silicon carbide (SiC)-based sensors, which reduce power consumption by 40% compared to conventional silicon components. Similarly, Hall-effect sensors in traction motors now operate on lower voltages, and CAN FD protocols minimize sensor wake-up cycles, improving energy efficiency. These trends are directly aligned with the EPA's 2025 CAFE standards, which call for a 32% boost in fleet-wide fuel efficiency compared to 2022, propelling the market toward energy-conscious sensor technology.
U.S. Automotive Powertrain Sensors Market Report Segmentation
This report forecasts revenue growth and provides an analysis of the latest industry trends in each of the sub-segments from 2018 to 2030. For this study, Grand View Research has segmented the U.S. automotive powertrain sensors market report based on sensor type, vehicle type, and propulsion type.