产业用AI市场:2025-2030年
市场调查报告书
商品编码
1775080

产业用AI市场:2025-2030年

Industrial AI Market Report 2025-2030

出版日期: | 出版商: IoT Analytics GmbH | 英文 400 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

这份长达400页的报告是IoT Analytics持续进行的智慧製造和人工智慧研究的一部分,全面涵盖了工业人工智慧市场的现状,包括详细的市场规模、预测、供应商市场占有率、关键趋势、用例和采用统计数据。

本报告基于多项调查、二手资料研究和定性研究,包括对专家和最终用户的访谈。报告涵盖了工业人工智慧及相关领域(例如边缘人工智慧、机器人人工智慧和生成式人工智慧)的定义、市场预测、采用推动因素、竞争格局、关键趋势和发展以及案例研究。

本报告是IoT Analytics针对工业人工智慧及相关领域(例如预测性维护、机器视觉和机器人、数位孪生和边缘人工智慧)所进行的系列研究的第三份。

预览




预览




报告重点:

  • 市场规模及预测:技术栈(硬体、软体、服务)按人工智慧类型、产业、地区和前五大国家细分的详细市场模型,并预测到2030年。
  • 竞争激烈格局:详细分析 15 家最大供应商和 30 多家新进业者的市占率。
  • 用例与采用分析:深入探讨 10 个类别的 48 个关键用例,从最终用户的角度分析采用的推动因素和障碍。
  • 策略洞察:回顾 21 个关键市场趋势和塑造工业 AI 产业的六大课题。
  • 技术深度探究:深入分析生成式 AI、基于代理的 AI、边缘 AI 以及机器人 AI。
  • 深入研究:六个详细的用例和四次深入研究领先製造商的 AI 策略。

本报告包含 Excel 格式的完整市场模型资料、670 家工业 AI 供应商的 Excel 清单以及工业 AI 专案清单(仅限团队使用者和企业进阶许可证)。它附带一个。

精选公司:

从本报告提及的 670 家公司中精选

  • AMD
  • AWS
  • Accenture
  • Alibaba
  • Capgemini
  • Dell Technologies
  • Deloitte
  • Foxconn
  • Google Cloud
  • Infosys
  • Microsoft
  • NVIDIA
  • Siemens
  • Supermicro
  • TCS

目录

第1章 摘要整理

第二章 简介

  • 分析类型与人工智慧的作用:概述
  • 本报告重点:工业人工智慧
  • 理解人工智慧:非工业人工智慧解决方案 vs. 工业人工智慧解决方案
  • 通用人工智慧和工业人工智慧的发展历程
  • 对工业人工智慧日益增长的兴趣:全球工业人工智慧搜寻量
  • 对工业人工智慧日益增长的兴趣:供应商评论
  • 对工业人工智慧感兴趣的背景:使用者评价
  • 对工业人工智慧感兴趣的背景:人工智慧在製造业中的作用
  • 范例:一家大型汽车製造商的工业人工智慧零件供应商

第三章:技术概述

  • 章节概述:技术概述
  • 工业 AI 采用流程 - 流程概述
  • 工业 AI 采用流程 - 主题概述
  • 深入探讨 1:确定 AI 商业价值的通用框架
  • 深入探讨 2:AI 系统需求
  • 深入探讨 3:AI 晶片
  • 深入探讨 4:建构与购买 AI 解决方案
  • 深入探讨 5:资料管理
  • 深入探讨 6:资料撷取与准备
  • 深入探讨 7:模型发展与训练
  • 深入探讨 8:机器学习维

第四章 市场规模与展望

  • 章节概况:市场规模与展望
  • 概述2025年工业人工智慧市场的推动因素与阻碍因素
  • 工业人工智慧市场:包含因素与排除因素
  • 全球工业人工智慧市场:整体情况
  • 数据视角:美国製造商在人工智慧上的平均支出
  • 全球工业人工智慧市场:依技术堆迭划分
  • 全球工业人工智慧市场:以人工智慧类型划分
  • 全球工业人工智慧市场:按託管类型划分的训练
  • 全球工业人工智慧市场:按託管类型划分的推理
  • 全球工业人工智慧市场:用例
  • 产业划分的全球工业人工智慧市场
  • 以ISIC代码划分的离散製造人工智慧市场
  • 以ISIC代码划分的混合製造人工智慧市场
  • 依ISIC代码划分的流程製造人工智慧市场
  • 地区划分的全球增强型工业人工智慧市场
  • 国家划分的东亚和太平洋地区工业人工智慧市场
  • 国家划分的欧洲和中亚地区工业人工智慧市场
  • 地区划分的北美工业人工智慧市场国家/地区
  • 中东和北非地区工业 AI 市场(按国家划分)
  • 拉丁美洲和加勒比海地区工业 AI 市场(按国家/地区划分)
  • 南亚地区工业 AI 市场(按国家/地区划分)
  • 全球工业 AI 市场:前 10 个国家与产业(2024 年)
  • 中国的产业用AI市场:全体
  • 中国的产业用AI市场:技术堆迭
  • 中国的产业用AI市场:各产业
  • 中国的产业用AI市场:使用案例
  • 美国的产业用AI市场:全体
  • 美国的产业用AI市场:技术堆迭
  • 美国的产业用AI市场:各产业
  • 美国的产业用AI市场:使用案例
  • 德国的产业用AI市场:全体
  • 德国的产业用AI市场:技术堆迭
  • 德国的产业用AI市场:各产业
  • 德国的产业用AI市场:使用案例
  • 日本的产业用AI市场:全体
  • 日本的产业用AI市场:技术堆迭
  • 日本的产业用AI市场:各产业
  • 日本的产业用AI市场:使用案例
  • 韩国的产业用AI市场:全体
  • 韩国的产业用AI市场:技术堆迭
  • 韩国的产业用AI市场:各产业
  • 韩国的产业用AI市场:使用案例

第5章 竞争情形

  • 章节概况:竞争格局
  • 公司格局:供应商分类
  • 研究方法:
  • 范例:本报告如何描述 NVIDIA 的 2024 年收入
  • 公司版图:公司资料库
  • 前 15 家工业 AI 供应商:概述
  • 2024 年竞争格局:按技术堆迭划分的市场占有率概览
  • 工业 AI 硬体:处理器市场占有率
  • 工业AI 软体:如何理解竞争格局
  • 工业 AI 服务:市场占有率

第6章 使用案例

  • 章节概述:用例
  • 关键工业 AI 用例:2024 年工业 AI 市场占有率
  • 关键工业 AI 用例:定义
  • 用例 1:自动光学检测
  • 用例 1:自动光学检测案例研究
  • 用例 2:单一资产预测性维护
  • 用例 2:单一资产预测性维护 - 案例研究
  • 用例 3:自主机器/机器人
  • 用例 3:自主机器/机器人 - 案例研究
  • 用例 4:网路安全威胁侦测
  • 用例 5:系统/工厂范围的预测性维护
  • 用例 6:监控和物理威胁侦测
  • 用例 6:监控和物理威胁侦测 - 案例研究
  • 用例 7:自动非光学故障侦测
  • 用例 8:生产优化
  • 用例 9:路线最佳化和调度
  • 用例 9:路线最佳化和调度 - 案例研究
  • 用例 10:自主物流系统
  • 用例 10:自主物流系统 (ALS) - 案例研究
  • 其他值得关注的案例研究
  • 其他值得关注的案例研究:生成式人工智慧

第7章 生成AI和代理商AI

  • 章概要:生成AI和代理商AI
  • 530件生成AI计划的分析:概要
  • 530件生成AI计划的分析:各部门
  • 530件生成AI计划的分析:各部门及活动
  • 530件生成AI计划的分析:各产业
  • 530件生成AI计划的分析:各产业·各部门
  • 530 个生成式人工智慧专案分析:跨越鸿沟
  • 如何将生成式人工智慧应用货币化
  • 产业用代理商AI:概要
  • 产业用代理商AI:模式情境(脉络)通讯协定 (MCP) - 概要
  • 产业用代理商AI:模式情境(脉络)通讯协定 (MCP) - 引进
  • 工业智能体 AI:MCP - 范例
  • 工业智能体 AI:未来愿景 - 1. 凯睿德製造
  • 工业智能体 AI:未来愿景 - 2. 西门子
  • 工业智能体 AI:未来愿景 - 3. Mendix
  • 工业智能体 AI:智能体工作流程 - 范例
  • 工业生成式 AI 与智能体 AI 的趋势
  • 工业生成式 AI/智慧体 AI 解决方案 - 概述
  • 工业生成式 AI/智慧体 AI 解决方案 - #2 Engineering Orchestrator
  • 工业生成式 AI/智慧体 AI 解决方案 - Microsoft AI Agents
  • 工业生成式 AI/智能体 AI 解决方案 - 西门子 IFM
  • 工业生成式 AI/智慧体 AI 解决方案 - ABB Genix Copilot

第8章 边缘AI

  • 章节概要:边缘 AI
  • 边缘 AI:概述
  • 什么是边缘 AI?
  • 边缘 AI 为何重要? :为什么要在边缘部署 AI?
  • 边缘AI架构:概述
  • 边缘AI架构:范例
  • 边缘AI架构:边缘AI流程中的各个阶段
  • 关键边缘AI技术:概述
  • 关键边缘AI技术:1. 微边缘AI加速器
  • 关键边缘AI技术:2. 薄边缘AI加速器
  • 关键边缘AI技术:3. 边缘AI开发平台
  • 关键边缘AI技术:4. 微型机器学习
  • 关键边缘AI技术:5. 边缘学习
  • 关键边缘AI技术:6. 视觉语言模式 (VLM)
  • 关键边缘AI技术:7. 联邦学习
  • 工业边缘AI趋势

第9章 机器人技术的AI

  • 章节概述:机器人中的AI
  • NVIDIA和Google准备将机器人技术打造为下一个重大突破
  • 基于AI的模型带来机器人的泛化与自主性
  • 概述:工业机器人原始设备製造商的关键人工智慧主题
  • 机器人人工智慧的主要用例
  • 主要机器人原始设备製造商的人工智慧配置
  • 趋势
  • 人工智慧应用策略:概述

第10章 主要製造商的AI策略

  • Toyota Motor Corporation:策略概要
  • Trumpf:策略概要
  • Georgia-Pacific:策略概要

第11章 终端用户的洞察

  • 章节概要:最终使用者洞察
  • 最终用户洞察:四项研究概述
  • 工业人工智慧研究 #1:关键洞察
    • 关键工业应用中的人工智慧应用现状
    • 未来各种工业人工智慧用例的重要性
    • 未来的训练与执行(推理)工业 AI 的应用场景
  • 产业用AI研究#2:主要的洞察
    • AI 在故障排除/维护中的价值:概述
    • AI 在故障排除/维护中的价值:以行业
  • 产业用AI研究#3:主要的洞察
    • 工业 AI 的采用和扩展计划
    • 工业 AI 的优势
    • 工业 AI 的优势:为工人带来的好处
    • 无法支援 AI 的设备
    • AI 课题及相应的缓解措施
  • 工业 AI 研究 #4:关键洞察
    • 工业 AI Copilot 与 AI 代理
    • 按应用领域划分的工业 AI 采用情况
    • 工业 AI 采用的类型
    • 工业 AI 的障碍应用
    • 解决工业 AI 技能差距的计划
    • 按应用领域划分的工业 AI 投资计划

第12章 促进因素,趋势,课题

  • 倾向
  • 课题
  • 其他主要课题

第13章 调查手法·市场定义

第14章 关于IoT Analytics

简介目录

A 400-page report on the current state of the industrial AI market, including detailed market sizing, forecasts, vendor market shares, key trends, use cases, adoption statistics, and more.

The "Industrial AI Market Report 2025-2030" is part of IoT Analytics' ongoing coverage of smart manufacturing and AI topics. The information presented in this report is based on the results of multiple surveys, secondary research as well as qualitative research i.e., interviews with experts and end users in the field. The document includes definitions for industrial AI and related topics (Edge AI, AI in robotics, Generative AI), market projections, adoption drivers, competitive landscapes, key trends and developments, and case studies.

This report is the third installment of our dedicated research coverage on industrial AI and related topics, including predictive maintenance, machine vision & robotics, digital twin, and edge AI.

PREVIEW




Questions answered:

  • What is industrial AI (i.e., an industrial AI definition)?
  • Which technologies are used for implementing industrial AI projects (including hardware and software deep-dive)?
  • What is the current industrial AI market size and its forecast (by sub-markets, regions, technologies, industries)?
  • Who are the key industrial AI vendors and what are their market shares?
  • What are the 50 most common industrial AI use cases?
  • What is the perspective of industrial AI end users? What are the factors that facilitate or limit adoption?
  • How are selected manufacturers adopting industrial AI and what are the details of representative case studies?
  • How do manufacturers adopt generative AI, edge AI and agentic AI?
  • What are the key trends & challenges in industrial AI space?

PREVIEW




The main purpose of this document is to help our readers understand the current industrial AI landscape by defining, sizing and analyzing the market.

The Industrial AI Market Report 2025-2030

The global industrial AI market, a multi-billion dollar market in 2024, is forecast to experience significant double-digit growth through 2030. This report delivers market data and insights helping decisions makers navigate through the market landscape.

Report highlights:

  • Market sizing & forecasts: A detailed market model and forecast to 2030, segmented by tech stack (hardware, software, services), AI type, industry, region, and by top five countries.
  • Competitive landscape: In-depth analysis of the 15 largest vendors with market shares and 30+ upcoming companies.
  • Use case & adoption analysis: Deep dive into 48 key use cases across 10 categories, enriched with end-user perspectives on adoption drivers and barriers.
  • Strategic insights: A review of 21 key market trends and 6 challenges shaping the industrial AI space.
  • Technology deep dives: Dedicated chapters providing in-depth analyses of Generative AI & Agentic AI, Edge AI, and AI in Robotics.
  • In-depth studies: Features 6 detailed use case studies and 4 deep dives into the AI strategies of leading manufacturers.

The market report comes with the full market model data in EXCEL, a list of 670 industrial AI vendor in EXCEL, and a list of industrial AI projects (only team user and enterprise premium license).

What is industrial AI?

Definition of AI

AI (Artificial Intelligence) is defined as machine driven intelligent behavior that involves the ability to acquire and apply knowledge.

AI consists of an analytics (learning) and an outcome (action/decision/prediction) component:

  • 1. Analytics corresponds to the data management processes and data science algorithms through which the device learns.
  • 2. Outcome corresponds to the intelligent behavior, e.g., generating a decision, a prediction, or triggering an action.

Definition of industrial AI

Industrial AI is defined as the application of AI techniques to data generated by operational technology and engineering systems in asset-heavy sectors, optimizing industrial processes at any stage of the product and asset lifecycle.

  • Operational technology and engineering systems: Control, monitoring, and design platforms that generate real-time and engineering data about physical assets (e.g., PLC, SCADA networks, sensors, CAD/CAE suites, and PLM tools)
  • Asset-heavy sectors: Industries whose business relies on extensive physical infrastructure and equipment (e.g., discrete and process manufacturing, energy, chemicals, mining, and transportation)
  • Industrial processes: Technical workflows that create, move, or sustain physical goods and assets (e.g., product design, manufacturing, maintenance, logistics, field service)

Companies mentioned:

A selection from 670 companies mentioned in the report.

  • AMD
  • AWS
  • Accenture
  • Alibaba
  • Capgemini
  • Dell Technologies
  • Deloitte
  • Foxconn
  • Google Cloud
  • Infosys
  • Microsoft
  • NVIDIA
  • Siemens
  • Supermicro
  • TCS

Table of Contents

1. Executive Summary

  • List of scope or coverage changes compared to the 2021 Industrial AI Market Report
  • Chapter overview: Introduction
  • Understanding AI: Definition and components
  • Understanding AI: Key types and their differences
  • Types of ML: Overview
  • Types of ML: Examples
  • Categories of AI: Overview

2. Introduction

  • Types of analytics and role of AI: Overview
  • Focus of this report: Industrial AI
  • Understanding AI: Non-industrial vs. industrial AI solutions
  • General and industrial AI timeline: from 1960 to 2024
  • Industrial AI interest in context: Global searches for industrial AI
  • Industrial AI interest in context: Vendors' quotes
  • Industrial AI interest in context: Users' quotes
  • Industrial AI interest in context: Role of AI for manufacturers
  • Case in point: Industrial AI at a large automotive supplier

3. Technology overview

  • Chapter overview: Technology overview
  • The industrial AI implementation process - Process overview
  • The industrial AI implementation process - Topics overview
  • Deep dive 1: Common frameworks to determine AI business value
  • Deep Dive 2: AI system requirements
  • Deep Dive 3: AI chips
  • Deep Dive 4: Build versus buying AI solutions
  • Deep Dive 5: Data management
  • Deep Dive 6: Ingest & prepare data
  • Deep Dive 7: Develop & train models
  • Deep Dive 8: ML Ops

4. Market size and outlook

  • Chapter overview: Market size and outlook
  • General drivers and inhibitors for the industrial AI market 2025
  • Industrial AI market: What is included and what is not
  • Global industrial AI market: Overall
  • Data in perspective: What the average U.S. manufacturer spends on AI
  • Global industrial AI market: By tech stack
  • Global industrial AI market: By AI type
  • Global industrial AI market: Training by hosting type
  • Global industrial AI market: Inference by hosting type
  • Global industrial AI market: By use case
  • Global industrial AI market: By industry
  • Discrete manufacturing industrial AI market: By ISIC code
  • Hybrid manufacturing industrial AI market: By ISIC code
  • Process manufacturing industrial AI market: By ISIC code
  • Global extended industrial AI market: By region
  • East Asia & Pacific industrial AI market: By country
  • Europe & Central Asia industrial AI market: By country
  • North America industrial AI market: By country
  • Middle East & North Africa industrial AI market: By country
  • Latin America & Caribbean industrial AI market: By country
  • South Asia industrial AI market: By country
  • Global industrial AI market: By top 10 countries and industry (2024)
  • China industrial AI market: Overall
  • China industrial AI market: By tech stack
  • China industrial AI market: By industry
  • China industrial AI market: By use case
  • USA industrial AI market: Overall
  • USA industrial AI market: By tech stack
  • USA industrial AI market: By industry
  • USA industrial AI market: By use case
  • Germany industrial AI market: Overall
  • Germany industrial AI market: By tech stack
  • Germany industrial AI market: By industry
  • Germany industrial AI market: By use case
  • Japan industrial AI market: Overall
  • Japan industrial AI market: By tech stack
  • Japan industrial AI market: By industry
  • Japan industrial AI market: By use case
  • South Korea industrial AI market: Overall
  • South Korea industrial AI market: By tech stack
  • South Korea industrial AI market: By industry
  • South Korea industrial AI market: By use case

5. Competitive landscape

  • Chapter overview: Competitive landscape
  • Company landscape: Vendor classifications
  • Methodology: How individual companies were analyzed
  • Example: How this report accounts for NVIDIA 2024 revenues
  • Company landscape: Company database
  • The 15 largest industrial AI vendors: Overview
  • Competitive landscape 2024: Market share overview by tech stack
  • 1. Industrial AI hardware: Processors - Market share
    • Industrial AI hardware: Processors - NVIDIA
    • Industrial AI hardware: Computing systems - Market share
  • 2. Industrial AI software: How to think about the comp. landscape
    • Industrial AI software: Platforms - Market share
    • Industrial AI software: Platforms - Microsoft
    • Industrial AI software: Platforms - AWS
    • Industrial AI software: Platforms - Upcoming companies
    • Industrial AI software: AI-native Applications - Vision/Inspection
    • Industrial AI software: AI-native Applications - Maintenance
    • Industrial AI software: AI-native Applications - Others
    • Industrial AI software: AI-native Applications - Value prop.
    • Industrial AI software: AI-native Apps - Value prop.
    • Industrial AI software: AI-native Applications - Value prop.
  • 3. Industrial AI services: Market share
    • Industrial AI services: Accenture
    • Industrial AI services: Accenture - AI agent showcase
    • Industrial AI services: Capgemini
    • AI Libraries

6. Use cases

  • Chapter overview: Use cases
  • Main industrial AI use cases: Share of industrial AI market 2024
  • Main industrial AI use cases: Definitions
  • Use case 1: Automated optical inspection
  • Use case 1: Automated optical inspection - Case study
  • Use case 2: Predictive maintenance of single assets
  • Use case 2: Predictive maintenance of single assets - Case study
  • Use case 3: Autonomous machines/robots
  • Use case 3: Autonomous machines/robots - Case study
  • Use case 4: Cybersecurity threat detection
  • Use case 5: Predictive maintenance of complete systems/plants
  • Use case 6: Surveillance and physical threat detection
  • Use case 6: Surveillance and physical threat detection - Case study
  • Use case 7: Automated non-optical fault detection
  • Use case 8: Production optimization
  • Use case 9: Route optimization and scheduling
  • Use case 9: Route optimization and scheduling - Case study
  • Use case 10: Autonomous logistics systems
  • Use case 10: Autonomous logistics systems (ALSs) - Case study
  • Other notable case studies
  • Other notable case studies: Focus - Generative AI

7. Generative AI and Agentic AI

  • Chapter overview: Generative AI and Agentic AI
  • This chapter looks at GenAI & agentic AI through 5 lenses
  • Analysis of 530 GenAI projects: Overview
  • Analysis of 530 GenAI projects: By Department
  • Analysis of 530 GenAI projects: By department and activity
  • Analysis of 530 GenAI projects: By industry
  • Analysis of 530 GenAI projects: By industry and department
  • Analysis of 530 GenAI projects: Crossing the chasm
  • How to monetize GenAI applications
  • Industrial agentic AI: Overview
  • Industrial agentic AI: Model context protocol (MCP) - Overview
  • Industrial agentic AI: Model context protocol (MCP) - Adoption
  • Industrial agentic AI: MCP - Example
  • Industrial agentic AI: Future vision - 1. Critical manufacturing
  • Industrial agentic AI: Future vision - 2. Siemens
  • Industrial agentic AI: Future vision - 3. Mendix
  • Industrial agentic AI: Agentic workflow - Example
  • Industrial GenAI & agentic AI trend
  • Industrial GenAI/agentic AI solutions - Overview
  • Industrial GenAI/agentic AI solutions - #2 Engineering Orchestrator
  • Industrial GenAI/agentic AI solutions - Microsoft's AI agents
  • Industrial GenAI/agentic AI solutions - Siemens IFM
  • Industrial GenAI/agentic AI solutions - ABB Genix Copilot

8. Edge AI

  • Chapter overview: Edge AI
  • Edge AI: Overview
  • What is edge AI?
  • Why edge AI matters?: Reasons for AI coming to the edge
  • Edge AI architectures: Overview
  • Edge AI architectures: Example
  • Edge AI architectures: Stages of edge AI processing
  • Key edge AI technologies: Overview
  • Key edge AI technologies: 1. AI accelerators at the micro edge
  • Key edge AI technologies: 2. AI accelerators at the thin edge
  • Key edge AI technologies: 3. Edge AI development platforms
  • Key edge AI technologies: 4. Tiny Machine Learning
  • Key edge AI technologies: 5. Edge learning
  • Key edge AI technologies: 6. Vision-language models (VLM)
  • Key edge AI technologies: 7. Federated learning
  • Industrial Edge AI Trend

9. AI in robotics

  • Chapter overview: AI in robotics
  • NVIDIA and Google are making robotics the next big thing
  • AI foundation models bring generalization and autonomy to robots
  • Overview: Key AI topics for industrial robot OEMs
  • Key robot AI use cases
  • AI setup of leading robot OEMs
  • Trend
  • AI adoption strategies: Overview

10. AI strategies of select manufacturers

  • 1. Toyota Motor Corporation: Strategy overview
    • Toyota Motor Corporation: Toyota Research Institute
    • Toyota Motor Corporation: Overall manufacturing vision
    • Toyota Motor Corporation: Overall manufact. vision - AI role
    • Toyota Motor Corporation: Toyota Ventures portfolio
    • Toyota Motor Corporation: Key AI partnerships & investments
  • 2. Trumpf: Strategy overview
    • Trumpf: Venture investments with a focus on AI
    • Trumpf: Key AI partnerships & investments
    • Trumpf: Customer-facing AI applications developed by Trumpf
  • 3. Georgia-Pacific: Strategy overview
    • Georgia-Pacific: AI-implementation projects
    • Georgia-Pacific: AI-implementation projects - Key results

11. End user insights

  • Chapter overview: End user insights
  • End-user insights: Overview of the 4 surveys
  • Industrial AI Survey #1: Key Insights
    • Adoption status of AI in key industrial applications
    • Importance of various industrial AI use cases going forward
    • Future training and execution (inference) locations for industrial AI
  • Industrial AI Survey #2: Key Insights
    • Value of AI for troubleshooting/maintenance: Overview
    • Value of AI for troubleshooting/maintenance: By industry
  • Industrial AI Survey #3: Key Insights
    • Industrial AI adoption and plans to expand its use
    • Benefits of industrial AI
    • Benefits of industrial AI: Benefits for workers
    • Non-AI compatible equipment
    • AI challenges and corresponding mitigation actions
  • Industrial AI Survey #4: Key Insights
    • Industrial AI copilots vs. AI agents
    • Adoption of industrial AI by application area
    • Type of industrial AI deployed
    • Barriers for industrial AI adoption
    • Plans to address the industrial AI skills gap
    • Investments plans for industrial AI by application area

12. Drivers, trends and challenges

  • Trend
  • Challenge
  • Other key challenges

13. Methodology and market definitions

  • Research methodology
  • Definitions of AI types
  • Definitions of the tech stack
  • Industry mappings to ISIC codes
  • Survey questions

14. About IoT Analytics

  • About IoT Analytics
  • Other publications by IoT Analytics
  • Information and contact