纠缠网路:促成技术与未来市场
市场调查报告书
商品编码
1652132

纠缠网路:促成技术与未来市场

Entangled Networks: Enabling Technologies and Future Markets

出版日期: | 出版商: Inside Quantum Technology | 英文 | 订单完成后即时交付

价格
简介目录

量子网路的定义尚不清楚。话虽如此,将其视为节点透过某种量子互连纠缠的网路是合理的。

该领域目前的许多活动可能被适当地描述为研究。长距离纠缠网路要普及还有很长的路要走。量子网路测试平台激增,主要在北美和欧洲,但其中许多都是以研究和开发为导向的。在纠缠量子网路能够普及之前,必须开发量子中继器。在量子中继器问世之前,预计大部分量子网路流量将透过卫星传输。本报告详细介绍了纠缠网路的现状以及未来几年的发展方向。

迄今为止,量子网路最显着的应用是分散式量子运算,它包括在网路中将量子电脑连接在一起。这类似于高效能运算(HPC),它包括联网传统电脑以提供更强的处理能力、记忆体和储存空间。同样,联网量子电脑将能够解决比以往更大的问题。儘管当今的大部分焦点都集中在连接量子电脑的纠缠网路上,但随着量子感测器的成熟,IQT 研究发现将纠缠网路概念扩展到量子物联网(QIoT)具有巨大潜力。

本报告确定了纠缠网路的当前和新兴机会,并涵盖了它们面临的诸多挑战,包括技术挑战、法规、标准和应用开发。

目录

第1章 执行摘要

第2章 纠缠网路技术产品及路线图

  • 简介
  • 纠缠网路计算机
  • 量子通讯设备和互连
  • 量子感测器和 QIoT
  • 纠缠网路的组成部分
  • 卫星和无人机的作用
  • 量子网路产品套件
  • 量子网路软体:下一代
  • 市场差异化因素

第3章 纠缠网路领域的当前商业活动

  • 简介
  • ADVA Network Security(德国)
  • Aliro Quantum(美国)
  • AWS Center for Quantum Networking(美国)
  • Boeing(美国)
  • BT Group(英国)
  • Cisco Systems(美国)
  • evolutionQ(加拿大)
  • Icarus Quantum(美国)
  • Infleqtion(美国)
  • IBM(美国)
  • IonQ(美国)
  • Ki3 Photonics Technologies(加拿大)
  • levelQuantum(义大利)
  • L3Harris(美国)
  • LQUOM(日本)
  • MagiQ Technologies(美国)
  • memQ(美国)
  • NanoQT(日本)
  • Nippon Telegraph and Telephone Corporation(NTT)(日本)
  • Nu Quantum(英国)
  • Photonic(加拿大)
  • QphoX(荷兰)
  • QTD Systems (美国)
  • Quantum Bridge(加拿大)
  • Quantum Corridor(美国)
  • Quantum Industries GmbH(奥地利)
  • Quantum Network Technologies(Qunett)(美国)
  • Quantum Optics Jena GmbHH(德国)
  • Qunnect(美国)
  • SpeQtral(新加坡)
  • Welinq(法国)

第4章 研究与试验平台

  • 简介
  • A*STAR Quantum Innovation Center(Q.InC)(新加坡)
  • Air Force Research Laboratory(AFRL)(美国)
  • Argonne National Laboratory(美国)
  • Brookhaven National Laboratory(BNL)(美国)
  • Center for Quantum Networks(CQN)((美国)
  • Chicago Quantum Exchange (美国)
  • DistriQ Quantum Innovation Zone(加拿大)
  • ICFO(西班牙)
  • Lawrence Berkeley National Laboratory(LBNL)(美国)
  • Max Planck Institute of Optics(德国)
  • Novum Industria(美国)
  • Numana(加拿大)
  • Q-NEXT Science Center (美国)
  • OpenQKD and Successor Testbeds
  • QIQB Center for Quantum Information and Quantum Biology(日本)
  • Quantum Communications Hub(英国)
  • Quantum Flagship(EU)
  • Saarland University(德国)
  • The University of Amherst, Massachusetts(美国)
  • The University of Geneva, Group of Applied Physics(瑞士)
  • The University of Innsbruck(奥地利)
  • The University of Science and Technology of China(中国)
  • TU Delft and QuTech (荷兰)
  • University of Maryland(美国)
  • University of Oxford(英国)
  • Wisconsin Quantum Institute(美国)

第5章 纠缠网路产品市场

  • 国内市场的影响
    • 美国的量子网路
    • 欧洲的量子网路
    • 亚洲的量子网路
  • 国际市场与技术
  • 目标应用
    • 分散式量子计算
    • 通信和 QKD
    • 感测器和测量
    • 研究与学术界的复杂网路
    • 其他

第6章 纠缠网路的10年预测

关于分析师

简介目录
Product Code: IQT-ENET-0225

The Quantum Internet remains ill defined. Nevertheless, it is reasonable to assume that it is a network where the nodes are entangled with connectivity over some kind of quantum interconnect. With this in mind, IQT Research is publishing this report which identifies the current and emerging opportunities for Entangled Networks. Our report also provides coverage of the many challenges faced by entangled networks including technical issues, regulations, standards and applications development.

The report is partly based on a survey of major influencers in this space as well as a review of recent technical and relevant business literature. The final chapter of this report comprises a ten-year forecast of deployment and revenue generation by entangled networks by (1) types of attached equipment, (2) media and (3) reach.

Much of the current activity in this space might be reasonably designated as research. We still have a long way to go before long-haul entangled networks become common. There are a growing number of quantum network testbeds, especially in North America and Europe, but again much of the activity - the applications in testbeds - are R&D oriented. Before entangled quantum networks become ubiquitous, quantum repeaters will need to be developed. Until quantum repeaters are commercialized, we anticipate that a lot of Quantum Internet traffic will be carried over satellites. This report goes into detail about where the Entangled Network is today and what it will become over the next few years.

For now, the most noteworthy target application of quantum networks is distributed quantum computing, the networking together of quantum computers. A parallel can be drawn here with high performance computing (HPC), which networks classical computers together to increase the available processing power, memory, and storage. Similarly, networking quantum computers together will enable larger problems to be tackled than would otherwise be the case. While the focus today is on entangled networks that connect quantum computers, IQT research believes that there is much potential to extend the Entangled Network concept to a Quantum Internet of Things (QIoT) as quantum sensors mature.

Table of Contents

Chapter One: Executive Summary

  • 1.1. Preamble
  • 1.2. Timeframe for Entangled Networks: The Importance of Quantum Repeaters
  • 1.3. Target Applications for the Entangled Network
    • 1.3.1. Distributed Quantum Computing
    • 1.3.2. Sensors and Metrology
    • 1.3.3. Entangled Networks in Research and Academia
    • 1.3.4. Other Applications
  • 1.4. Timeframe for Entangled Networks: Protocols are also Critical
  • 1.5. Components for Entangled Quantum Networks
  • 1.6. Challenges on the Way to the Entangled Network

Chapter Two: Products and Roadmaps for Entangled Networks Technologies

  • 2.1. Introduction
  • 2.2. Computers in the Entangled Network
    • 2.2.1. The Quantum Network is the Quantum Computer
    • 2.2.2. The Size of the Distributed Quantum Computing Opportunity
    • 2.2.3. Types of Quantum Computer Networks: Workgroups, Metro and Long-Haul
  • 2.3. Quantum Communications Equipment and Interconnects
    • 2.3.1. Quantum Repeaters
    • 2.3.2. Entangled QKD
  • 2.4. Quantum Sensors and the QIoT
    • 2.4.1. Quantum Clock and CSAC Networks
    • 2.4.2. Other Quantum Sensor Networks
  • 2.5. Components of the Entangled Quantum Network
    • 2.5.1. Quantum Interconnects
    • 2.5.2. Quantum Memories
    • 2.5.3. Photonic Sources for Quantum Networks
    • 2.5.4. Detectors and other Components
  • 2.6. The Role of Satellites and Drones
  • 2.7. Quantum Network Product Suites
  • 2.8. Quantum Internet Software: The Next Generation
    • 2.8.1. Protocols for the Coming Entangled Network
  • 2.9. Market Differentiators

Chapter Three: Current Commercial Activity in the Entangled Networks Space

  • 3.1. Introduction
  • 3.2. ADVA Network Security (Germany)
  • 3.3. Aliro Quantum (United States)
  • 3.4. AWS Center for Quantum Networking (CQN) (United States)
  • 3.5. Boeing (United States)
  • 3.6. BT Group (United Kingdom)
  • 3.7. Cisco Systems (United States)
  • 3.8. evolutionQ (Canada)
  • 3.9. Icarus Quantum (United States)
  • 3.10. Infleqtion (United States)
  • 3.11. IBM (United States)
  • 3.12. IonQ (United States)
  • 3.13. Ki3 Photonics Technologies (Canada)
  • 3.14. levelQuantum (Italy)
  • 3.15. L3Harris (United States)
  • 3.16. LQUOM (Japan)
  • 3.17. MagiQ Technologies (United States)
  • 3.18. memQ (United States)
  • 3.19. NanoQT (Japan)
  • 3.20. Nippon Telegraph and Telephone Corporation (NTT) (Japan)
  • 3.21. Nu Quantum (United Kingdom)
  • 3.22. Photonic (Canada)
  • 3.23. QphoX (The Netherlands)
  • 3.24. QTD Systems (United States)
  • 3.25. Quantum Bridge (Canada)
  • 3.26. Quantum Corridor (United States)
  • 3.27. Quantum Industries GmbH (Austria)
  • 3.28. Quantum Network Technologies (Qunett) (United States)
  • 3.29. Quantum Optics Jena GmbH (Germany)
  • 3.30. Qunnect (United States)
  • 3.31. SpeQtral (Singapore)
  • 3.32. Welinq (France)

Chapter Four: Research and Testbeds

  • 4.1. Introduction
  • 4.2. A*STAR Quantum Innovation Center (Q.InC) (Singapore)
  • 4.3. Air Force Research Laboratory (AFRL) (United States)
  • 4.4. Argonne National Laboratory (United States)
  • 4.5. Brookhaven National Laboratory (BNL) (United States)
  • 4.6. Center for Quantum Networks (CQN) (United States)
  • 4.7. Chicago Quantum Exchange (United States)
  • 4.8. DistriQ Quantum Innovation Zone (Canada)
  • 4.9. ICFO (Spain)
  • 4.10. Lawrence Berkeley National Laboratory (LBNL) (United States)
  • 4.11. Max Planck Institute of Optics (Germany)
  • 4.12. Novum Industria (United States)
  • 4.13. Numana (Canada)
  • 4.14. Q-NEXT Science Center (United States)
  • 4.15. OpenQKD and Successor Testbeds
  • 4.16. QIQB Center for Quantum Information and Quantum Biology (Japan)
  • 4.17. Quantum Communications Hub (United Kingdom)
  • 4.18. Quantum Flagship (EU)
  • 4.19. Saarland University (Germany)
  • 4.20. The University of Amherst, Massachusetts (United States)
  • 4.21. The University of Geneva, Group of Applied Physics (GAP) (Switzerland)
  • 4.22. The University of Innsbruck (Austria)
  • 4.23. The University of Science and Technology of China (USTC) (China)
  • 4.24. TU Delft and QuTech (The Netherlands)
  • 4.25. University of Maryland (UMD) (United States)
  • 4.26. University of Oxford (United Kingdom)
  • 4.27. Wisconsin Quantum Institute (WQI) (United States)

Chapter Five: Markets for Entangled Networking Products

  • 5.1. Impact of National Markets
    • 5.1.1. Quantum Networking in the U.S.
    • 5.1.2. Quantum Networking in Europe
    • 5.1.3. Quantum Networking in Asia
  • 5.2. International Markets and Technology
  • 5.3. Target Applications
    • 5.3.1. Distributed Quantum Computing
    • 5.3.2. Communication and QKD
    • 5.3.3. Sensors and Metrology
    • 5.3.4. Entangled Networks in Research and Academia
    • 5.3.5. Other Applications

Chapter Six: Ten-Year Forecasts of Entangled Networks

  • 6.1. Forecast Methodology and What We Forecast in this Report
  • 6.2. Ten-Year Forecasts of Entangled Networks by Type of Equipment on the Network
  • 6.3. Breakout of Entangled Quantum Networks by Reach and Technology
  • 6.4. Breakout of Entangled Quantum Networks by Transmission Type

About the Analysts

List of Exhibits

  • Exhibit 2-1: Selected Research on Quantum Repeaters
  • Exhibit 2-2: Proposed Testbed Interconnection Approaches in OpenQKD
  • Exhibit 5-1: Organizations Involved In Entangled Networks in the U.S.
  • Exhibit 6-1: Ten-year forecasts of Equipment Attached to Entangled Networks
  • Exhibit 6-2: Ten-year Forecasts of Equipment Attached to Entangled Networks by Reach ($ Millions)
  • Exhibit 6-3: Ten-Year Forecasts by Transmission Type (Satellite, Fiber and Terrestrial Freespace) ($ Millions)