封面
市场调查报告书
商品编码
1827141

风力发电机复合材料市场:纤维类型、树脂类型、製造流程、涡轮机类型和叶片长度—2025-2032 年全球预测

Wind Turbine Composite Materials Market by Fiber Type, Resin Type, Manufacturing Process, Turbine Type, Blade Length - Global Forecast 2025-2032

出版日期: | 出版商: 360iResearch | 英文 194 Pages | 商品交期: 最快1-2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

预计到 2032 年,风力发电机复合材料市场将成长至 348.1 亿美元,复合年增长率为 10.74%。

主要市场统计数据
基准年2024年 153.9亿美元
预计2025年 170.3亿美元
预测年份:2032年 348.1亿美元
复合年增长率(%) 10.74%

策略介绍,概述影响现代风力发电机叶片复合材料选择的关键技术、供应链和商业性驱动因素

随着设计师、製造商和营运商寻求更轻、更坚固、更耐用的叶片和结构部件解决方案,风力发电产业的复合材料应用正在经历快速变革。纤维和树脂化学的进步,加上製造技术的改进,创造了更复杂的性能组合,不仅能够支援更长的叶片和更高容量的涡轮机,还能解决疲劳、抗衝击和环境耐久性问题。同时,供应链碎片化、原材料成本波动以及区域政策的变化,使得策略性材料选择和製造弹性变得尤为重要。

在此背景下,相关人员需要明确碳纤维、玻璃纤维和混合纤维系统之间的权衡取舍;环氧树脂、聚酯和乙烯基酯化学在长期性能中的作用;以及树脂转注成形缠绕成型、手工积层、树脂传递模塑和真空灌注等製造过程对品质、週期时间和可扩展性的影响。本引言概述了后续的核心技术和商业性问题,并设定了对报告中使用的分析视角(基于材料科学、製造经济学和供应链弹性)的期望。建立这一基础使决策者能够更好地将其研发重点、筹资策略和资本投资与现代涡轮机设计和生命週期管理的现实情况相结合。

材料选择和製造流程的变革正在重新定义风力涡轮机叶片的设计、性能预期和供应链策略

风力发电机复合材料的格局正在被各种力量再形成,这些力量迫使製造商和计划开发商重新思考长期以来对材料性能和生产规模的假设。叶片长度和涡轮机额定功率的快速增长,推动着材料工程朝着碳纤维整合和混合解决方案的方向发展,以平衡刚度和成本。同时,高性能树脂(尤其是那些具有抗疲劳和黏附性能的树脂)的采用,正在改变製造商处理黏合剂黏合、涂层和二次黏合操作的方式。

製造技术也在不断变化。传统的手工积层工作流程正被更具重复性、製程可控的方法所取代,例如高压和低压树脂转注成形以及日益复杂的真空灌注技术,包括真空袋成型和VARTM成型。这些转变提高了可重复性并减少了空隙率,从而实现了对叶片寿命至关重要的性能提升。此外,海上固定底部和浮体式平台的新需求促使人们使用能够承受更严酷的海洋环境和高循环载荷的材料。监管和政策驱动因素,以及区域含量要求和贸易措施,正在进一步调整供应链和筹资策略,使地理多元化和供应商资格成为长期竞争力的核心。

分析2025年美国新关税的累积影响及其对供应链、筹资策略及国内产能决策的影响

美国近期于2025年加征的关税,为风力发电机生产所用复合材料的采购计算带来了新的变数。这些措施提高了某些进口纤维和树脂的相对成本,促使目标商标产品製造商和一级供应商重新评估其供应商基础,并在许多情况下加速了近岸外包和本地化策略。工业买家的直接反应是进行供应商风险评估,并重新评估多方采购安排,以降低关税和物流中断带来的风险。

从中期来看,这些关税正在推动对关键投入的国内製造能力以及可在地化的资本密集度较低的下游製程(例如树脂转注成形和真空灌注)的投资。关税还凸显了混合纤维结构和树脂配方的战略价值,这些材料允许在性能权衡可接受的情况下进行替代。从计划规划的角度来看,开发商和原始设备製造商越来越多地将关税方案纳入采购计划和合约结构中,并使用更灵活的条款和更长的前置作业时间对冲。因此,该产业正在重组供应路线,强调与供应商伙伴关係,这些供应商不仅提供价格竞争力,还提供安全的物流、可追溯的来源和合作的风险分担机制。

深入的细分综合展示了纤维选择、树脂化学、製造流程、涡轮部署类型、叶片长度等如何影响设计和采购

仔细研究细分市场,可以发现材料和工艺选择如何相互作用,从而在不同的叶片应用中创造出独特的价值提案。在评估纤维选择时,碳纤维对于高刚度、大跨度叶片而言极具吸引力,而玻璃纤维对于成本敏感的陆上项目仍然具有吸引力。树脂化学性质也扮演重要角色。环氧树脂系统通常具有优异的附着力和疲劳寿命,这对于更大、更高容量的涡轮机非常有利,而聚酯和乙烯基酯系统则继续为某些陆上和改造应用提供低成本的替代方案。

製造流程的选择进一步加剧了这些选择的复杂性。虽然缠绕成型和手工积层仍然适用于某些几何形状的零件和小批量生产,但在高压或低压条件下进行的树脂转注成形以及真空灌注技术(例如真空袋成型和VARTM)可为大型零件提供更高的重复性和更低的空隙率。风机的部署环境也很重要。陆上应用通常倾向于与海上装置不同的材料和工艺组合,而海上固定底部平台和浮体系统对结构和耐久性的要求也不同,这些要求决定了复合材料的成分和核心部件的放置策略。最后,叶片长度段(从小于30公尺的短叶片到大于90公尺的超长叶片)推动了铺层结构、翼梁帽设计和杂合反应强度的选择,因为刚度、质量和疲劳的权衡会随着规模的扩大而放大。这些细分视角指导有针对性的研发、资格测试路径和供应商选择标准,以优化性能、可製造性和生命週期弹性。

美洲、欧洲、中东和非洲以及亚太地区的区域动态和供应链影响决定了材料选择和製造策略

区域动态显着影响叶片的供应和製造商在设计叶片时的技术选择。在美洲,成熟的製造地,加上附近市场不断增长的需求和政策奖励,正在推动对本地树脂加工和纤维转化能力的投资。该地区毗邻大型陆上项目和正在开发的海上计划,因此强调快速的前置作业时间、可追溯性和垂直整合的供应计划,从而减少受海运和关税波动影响的风险。

在欧洲、中东和非洲,雄心勃勃的海上目标加上不断改进的环境法规,使得研发工作集中在杂合反应和先进的环氧系统,刺激了增强疲劳和耐腐蚀性能的材料创新。该地区成熟的认证框架和基于丛集的製造生态系统促进了合作试点项目和规模化生产。亚太地区仍然是主要的纤维和树脂生产和加工中心,专注于具有成本效益的玻璃纤维和快速扩大的碳纤维转化和自动化製造能力。该地区密集的供应商网路使其能够进行大批量生产,但需要仔细的供应商资格认证和品管,以满足最新涡轮机专案所需的性能标准。人事费用、认证时间表、港口基础设施和法规环境的地区差异决定了在地采购和全球筹资策略之间的最佳平衡。

竞争格局和策略供应商行为优先考虑材料创新、製程控制、地理分布和永续性

产业主要参与者正在根据差异化能力客製化其产品组合,包括先进的纤维转化技术、专有树脂化学製程和专业的製造技术。一些公司专注于碳纤维整合和混合解决方案,投资于铺层结构专业知识和翼梁帽优化,以支援大型海上叶片专案。其他公司则专注于树脂转注成形和真空灌注技术的卓越工艺,并开发闭合迴路品管和自动化技术,以减少差异性并提高产量。材料配方商、零件製造商和涡轮机原始设备製造商之间的战略伙伴关係正变得越来越普遍,这使得能够共同开发满足特定疲劳和衝击标准的客製化树脂系统和混合积层法层方案。

供应商的选择越来越注重价格竞争力、端到端的可追溯性和技术支援。提供从材料特性分析、预测寿命建模到现场流程审核和倡议等全面服务的公司更有机会赢得长期合约。此外,投资于循环经济计画(例如可回收基质化学和已建立的废弃叶片回收管道)的公司,正获得优先考虑降低生命週期排放和除役风险的开发商和资助者的认可。这些趋势正在重塑采购记分卡,将技术伙伴关係的可用性、永续性资格和本地製造足迹视为重要因素。

领导者可采取的策略重点是将材料合格、供应商弹性、流程现代化和循环性融入采购和研发规划中

产业领导者应在材料科学、製造能力和筹资策略方面采取综合方法,以确保其营运面向未来。首先,优先考虑认证项目,以加速混合纤维架构和高性能树脂系统的可控采用,同时确保全面的疲劳和环境暴露测试,以反映陆上和海上的运作状况。这将降低因性能或成本原因而替代材料的技术风险。其次,制定供应商细分框架,强调技术协作、区域製造地和对贸易中断的抵御能力,并纳入灵活的合约条款和多个采购层级,以在关税和物流波动期间保持连续性。

这些投资不仅应评估单位成本的降低,还应评估其品质改进、减少废品和加快认证週期的效果。第四,将回收和报废规划纳入采购决策,探索降低生命週期风险的树脂化学和再整合途径。最后,协调商业性、奖励和长期营运奖励之间的权衡,从而做出优化总体拥有成本和计划级可靠性的决策。

采用强大的混合方法研究途径,结合技术性能数据、供应商映射和相关人员访谈,以产生基于证据的策略见解

本执行摘要摘要所依据的研究综合了技术文献、行业标准认证通讯协定、专利申请、供应商揭露以及对材料科学家、製造工程师和采购主管的初步访谈。此外,本研究还将实验室获得的材料性能数据与工厂级製程能力观测数据进行三角测量,以评估特定纤维-树脂-製程组合在典型使用条件下的性能。在适用的情况下,本研究参考了关于疲劳行为、抗衝击性和环境老化的同行评审研究,并将这些研究结果与已投入使用的叶片和维修的观测结果进行交叉引用。

除了定性访谈外,调查方法还包括结构化供应商缠绕成型,以评估供应商的地理分布、垂直整合水平以及在关键製程领域(例如纤维缠绕、手工积层、树脂转注成形和真空灌注)的能力。该研究优先考虑资料来源的可重复性和可追溯性,并采用情境测试来探索关税和供应中断如何影响采购决策。研究始终强调切实可行的洞察:将材料和工艺特性与对设计、製造、品质保证和商业合约的实际影响联繫起来。这种方法确保建议基于实证证据,并反映不同部署环境中的营运实际情况。

综合结论强调了材料创新、製造管理和供应链弹性相结合对未来风力发电机叶片竞争力的重要性。

总而言之,风力发电机复合材料市场正处于曲折点,材料创新、製造流程发展和地缘政治因素正在交汇,重新定义叶片的设计、製造和采购方式。决策者必须应对更复杂的交易环境,其中纤维选择、树脂化学和製程控制与计划位置、叶片尺寸和监管环境动态地相互作用。透过围绕耐久性、可製造性和供应弹性(而不仅仅是单位成本)重新建构采购和研发问题,相关人员可以解锁性能改进,从而支援更大的涡轮机和更长的使用寿命。

未来,将技术伙伴关係、区域製造灵活性和生命週期思维纳入策略规划的组织将获得竞争优势。最具影响力的行动将包括:合格认证先进材料、投资可重复性更高的工艺流程,以及製定能够规避关税和物流风险的供应商策略。采用这些优先事项的主管和技术领导者将更有能力实现绩效目标、管理生命週期风险,并抓住风力发电部署持续扩张和多样化带来的机会。

目录

第一章:前言

第二章调查方法

第三章执行摘要

第四章 市场概况

第五章 市场洞察

  • 可回收热塑性复合材料的整合实现了圆形叶片的经济性
  • 采用先进的自动化纤维铺放技术来优化叶片的精度和产量。
  • 生物基低排放树脂体系的出现,协助更环保的风力发电机叶片製造
  • 利用碳纤维混合层压板可提高刚度,同时减轻整体重量
  • 加入石墨烯等奈米材料以提高复合材料叶片的抗疲劳性
  • 开发用于复合材料结构即时健康监测的预测数位双胞胎平台
  • 对超大叶片的需求推动了新的、更易于製造和耐用的复合材料配方的发展
  • 客製化复合材料以抵御恶劣的海洋环境和腐蚀性盐雾

第六章:2025年美国关税的累积影响

第七章:人工智慧的累积影响,2025年

第八章风力发电机复合材料市场(依纤维类型)

  • 碳纤维
  • 玻璃纤维
  • 混合纤维

第九章风力发电机复合材料市场(依树脂类型)

  • 环氧树脂
  • 聚酯纤维
  • 乙烯基酯

第十章风力发电机复合材料市场(依製造流程)

  • 缠绕成型
  • 手工积层
  • 树脂转注成形
    • 高压 Rtm
    • 低压 Rtm
  • 真空注塑
    • 真空袋成型
    • 瓦尔托姆

第 11 章风力发电机复合材料市场(按涡轮机类型)

  • 海上
    • 固定底部
    • 浮动的
  • 陆上

第 12 章风力发电机复合材料市场(依叶片长度)

  • 30至60米
  • 60至90米
  • 超过90米
  • 最远30米

第十三章风力发电机复合材料市场(按地区)

  • 美洲
    • 北美洲
    • 拉丁美洲
  • 欧洲、中东和非洲
    • 欧洲
    • 中东
    • 非洲
  • 亚太地区

第十四章风力发电机复合材料市场:依类别

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

第十五章风力发电机复合材料市场(依国家)

  • 美国
  • 加拿大
  • 墨西哥
  • 巴西
  • 英国
  • 德国
  • 法国
  • 俄罗斯
  • 义大利
  • 西班牙
  • 中国
  • 印度
  • 日本
  • 澳洲
  • 韩国

第十六章竞争格局

  • 2024年市占率分析
  • 2024年FPNV定位矩阵
  • 竞争分析
    • Owens Corning
    • Hexcel Corporation
    • Gurit Holding AG
    • SGL Carbon SE
    • Toray Industries, Inc.
    • Teijin Limited
    • Mitsubishi Chemical Corporation
    • Jushi Group Co., Ltd.
    • 3B the Fiberglass Company SpA
    • China Composites Group Co., Ltd.
Product Code: MRR-DD0700E81ED4

The Wind Turbine Composite Materials Market is projected to grow by USD 34.81 billion at a CAGR of 10.74% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 15.39 billion
Estimated Year [2025] USD 17.03 billion
Forecast Year [2032] USD 34.81 billion
CAGR (%) 10.74%

A strategic introduction that frames the critical technical, supply chain, and commercial drivers shaping composite material choices for modern wind turbine blades

The wind energy sector is undergoing a rapid evolution in its use of composite materials as designers, manufacturers, and operators seek lighter, stronger, and more durable solutions for blades and structural components. Advances in fiber and resin chemistry, paired with refinements in manufacturing techniques, have created a more sophisticated performance palette that supports longer blades and higher capacity turbines while addressing fatigue, impact resistance, and environmental durability. At the same time, supply chain fragmentation, raw material cost volatility, and regional policy shifts have placed a premium on strategic material selection and manufacturing flexibility.

Against this backdrop, stakeholders require clarity on the trade-offs between carbon, glass, and hybrid fiber systems; the role of epoxy, polyester, and vinyl ester chemistries in long-term performance; and the implications of production routes such as filament winding, hand layup, resin transfer molding, and vacuum infusion on quality, cycle time, and scalability. This introduction frames the core technical and commercial questions that follow and sets expectations for the analytical lens used throughout the report: one grounded in material science, manufacturing economics, and supply chain resilience. By establishing these foundations, decision-makers can better align R&D priorities, sourcing strategies, and capital investments to the realities of contemporary turbine design and lifecycle management.

Transformative shifts in materials selection and production processes that are redefining blade design, performance expectations, and supply chain strategies in wind energy

The landscape for wind turbine composite materials is being reshaped by converging forces that compel manufacturers and project developers to reconsider long-standing assumptions about material performance and production scale. Rapid growth in blade lengths and turbine ratings has pushed materials engineering toward carbon fiber integration and hybrid solutions that balance stiffness and cost. Simultaneously, the adoption of higher-performance resins, particularly formulations engineered for fatigue resistance and adhesion, is altering how manufacturers approach adhesive joints, coatings, and secondary bonding operations.

Manufacturing technology is also in transition. Traditional hand layup workflows are being augmented by more repeatable, process-controlled approaches such as high pressure and low pressure resin transfer molding and increasingly refined vacuum infusion techniques, including vacuum bag molding and VARTM variants. These shifts improve repeatability and reduce void content, yielding performance gains critical for longer blades. Moreover, emerging demands from offshore fixed bottom and floating platforms incentivize materials that tolerate harsher marine exposure and higher cyclic loads. Regulatory and policy drivers, along with localized content requirements and trade measures, are further redirecting supply chains and sourcing strategies, making geographic diversification and supplier qualification more central to long-term competitiveness.

Cumulative impact analysis of new United States tariff measures in 2025 and their influence on supply chains, sourcing strategies, and domestic capacity decisions

Recent tariff measures implemented by the United States in 2025 have introduced a new variable into procurement and sourcing calculus for composite materials used in wind turbine production. These measures have increased the relative cost of certain imported fibers and resins, prompting original equipment manufacturers and tier-one suppliers to reassess their supplier bases and, in many cases, accelerate nearshoring or regionalization strategies. The immediate response among industrial buyers has been to perform supplier risk assessments and to re-evaluate multi-sourcing contracts to mitigate exposure to duties and logistical disruption.

Over a medium-term horizon, these tariff dynamics are encouraging investment in domestic manufacturing capacity for critical inputs and in downstream processes such as resin transfer molding and vacuum infusion that can be localized with lower capital intensity. The tariffs also highlight the strategic value of hybrid fiber architectures and resin formulations that permit substitution where performance trade-offs are acceptable. From a project planning perspective, developers and OEMs are increasingly folding tariff scenarios into procurement schedules and contract structures, using more flexible clauses and longer lead-time hedges. As a result, the industry is seeing a reconfiguration of supply routes, with a greater emphasis on supplier partnerships that deliver not just price competitiveness but also secure logistics, traceable provenance, and collaborative risk-sharing mechanisms.

Insightful segmentation synthesis connecting fiber choices, resin chemistries, manufacturing processes, turbine deployment types, and blade length implications for design and sourcing

A granular view of segmentation reveals how material and process choices interact to create distinct value propositions across blade applications. When evaluating fiber selection, carbon fiber presents a compelling profile for high-stiffness, long-span blades, while glass fiber remains attractive for cost-sensitive onshore programs; hybrid fiber systems are increasingly used to balance targeted stiffness, fatigue performance, and cost. Resin chemistry plays an equally important role: epoxy systems often deliver superior adhesion and fatigue life beneficial for larger, higher-capacity turbines, whereas polyester and vinyl ester chemistries continue to provide lower-cost alternatives for specific onshore and retrofit applications.

Manufacturing process selection compounds these choices. Filament winding and hand layup remain relevant for particular component geometries and low-volume builds, while resin transfer molding-executed under either high pressure or low pressure conditions-and vacuum infusion techniques such as vacuum bag molding and VARTM enable higher reproducibility and lower void content for larger parts. Turbine deployment context matters as well: onshore applications typically favor different material-process combinations than offshore installations, and within offshore, fixed-bottom platforms and floating systems impose distinct structural and durability demands that inform composition and core placement strategies. Finally, blade length categories-from shorter blades below 30 meters to the very long blades above 90 meters-drive choices in ply architecture, spar cap design, and hybridization intensity, because scale amplifies stiffness, mass, and fatigue trade-offs. Together, these segmentation lenses guide targeted R&D, qualification testing pathways, and supplier selection criteria that optimize for performance, manufacturability, and lifecycle resilience.

Regional dynamics and supply chain implications across the Americas, Europe Middle East & Africa, and Asia-Pacific that shape material choices and manufacturing strategies

Regional dynamics significantly influence both supply availability and the technical choices that manufacturers make when designing blades. In the Americas, established manufacturing hubs, coupled with growing near-market demand and policy incentives, are driving investment in localized resin processing and fiber conversion capabilities. This region's proximity to large onshore and evolving offshore projects increases the premium on rapid lead times, traceability, and vertically integrated supply models that reduce exposure to shipping and tariff fluctuations.

In Europe, Middle East & Africa, the combination of ambitious offshore targets and progressive environmental regulations is stimulating innovation in materials that deliver enhanced fatigue and corrosion resistance, with concentrated R&D efforts in hybridization and advanced epoxy systems. This region's mature certification frameworks and cluster-based manufacturing ecosystems facilitate collaborative pilot programs and scale-up. The Asia-Pacific region remains a major production and processing center for fibers and resins, with an emphasis on cost-effective glass fiber and rapidly expanding capabilities in carbon fiber conversion and automated manufacturing. The region's dense supplier networks enable high-volume production but also require careful supplier qualification and quality control to meet the performance standards demanded by modern turbine programs. Across regions, differences in labor cost, certification timelines, port infrastructure, and regulatory environments shape the optimal balance between local sourcing and global procurement strategies.

Competitive company landscape and strategic supplier behaviors that prioritize material innovation, process control, regional footprint, and sustainability credentials

Key industry participants are aligning their portfolios toward differentiated capabilities that encompass advanced fiber conversion, proprietary resin chemistries, and specialized manufacturing know-how. Some firms concentrate on carbon fiber integration and hybrid solutions, investing in ply architecture expertise and spar cap optimization to serve large-scale offshore blade programs. Others focus on process excellence in resin transfer molding and vacuum infusion techniques, developing closed-loop quality controls and automation to reduce variability and increase throughput. Strategic partnerships between material formulators, component manufacturers, and turbine OEMs are becoming more common, enabling co-development of tailored resin systems and hybrid layup schedules that meet specific fatigue and impact criteria.

Supplier selection increasingly values end-to-end traceability and technical support alongside price competitiveness. Companies that offer integrated services-ranging from material characterization and predictive lifetime modeling to on-site process audits and training-are better positioned to win long-term contracts. Additionally, firms that invest in circularity initiatives, such as recyclable matrix chemistries and established take-back pathways for end-of-life blades, are gaining visibility among developers and financiers who prioritize lifecycle emissions and decommissioning risk mitigation. These trends are reshaping procurement scorecards to include technical partnership potential, sustainability credentials, and regional manufacturing footprint as key attributes.

Actionable strategic priorities for leaders to integrate material qualification, supplier resilience, process modernization, and circularity into procurement and R&D plans

Industry leaders should adopt an integrated approach that links material science, manufacturing capability, and procurement strategy to future-proof operations. First, prioritize qualification programs that accelerate the controlled adoption of hybrid fiber architectures and higher-performance resin systems, while ensuring comprehensive fatigue and environmental exposure testing that reflects both onshore and offshore operational profiles. This will reduce technical risk when substituting materials for performance or cost reasons. Second, develop a supplier segmentation framework that values technical collaboration, regional manufacturing presence, and resilience to trade disruption; embed flexible contract terms and multiple sourcing tiers to maintain continuity during tariff and logistics volatility.

Third, invest in process modernization by piloting higher-repeatability production approaches such as refined RTM variants and advanced vacuum infusion practices; these investments should be evaluated not just for unit cost reduction but for quality gains, scrap reduction, and faster qualification cycles. Fourth, incorporate circularity and end-of-life planning into sourcing decisions, exploring resin chemistries and reintegration pathways that reduce lifecycle risk. Finally, align commercial and engineering incentives so that procurement, R&D, and manufacturing jointly evaluate trade-offs between material cost, performance, and long-term operational expenses, thereby enabling decisions that optimize total cost of ownership and project-level reliability.

Robust mixed-methods research approach combining technical performance data, supplier mapping, and stakeholder interviews to generate evidence-based strategic insights

The research underpinning this executive summary synthesizes technical literature, industry-standard certification protocols, patent filings, supplier disclosures, and primary interviews with material scientists, manufacturing engineers, and procurement executives. It triangulates laboratory-derived material performance data with plant-level process capability observations to evaluate how specific fiber-resin-process combinations perform under representative service conditions. Where applicable, the analysis references peer-reviewed studies on fatigue behavior, impact resistance, and environmental aging, and it cross-references those findings with observed outcomes from fielded blades and retrofits.

In addition to qualitative interviews, the methodology includes a structured supplier mapping exercise to assess geographic footprints, vertical integration levels, and capabilities in key processes such as filament winding, hand layup, resin transfer molding, and vacuum infusion. The study prioritizes reproducibility and traceability in its data sources and employs scenario testing to explore how tariff and supply disruptions could influence sourcing decisions. Throughout, emphasis remains on actionable insight: linking material and process characteristics to practical implications for design, manufacturing, quality assurance, and commercial contracting. The approach ensures that recommendations are grounded in empirical evidence and reflect operational realities across diverse deployment environments.

Concluding synthesis emphasizing the combined importance of material innovation, manufacturing control, and supply chain resilience for future wind turbine blade competitiveness

In conclusion, the composite materials landscape for wind turbines is at an inflection point where material innovation, manufacturing evolution, and geopolitical factors converge to redefine how blades are designed, produced, and sourced. Decision-makers must navigate a more complex trade space in which fiber choice, resin chemistry, and process control interact dynamically with project location, blade scale, and regulatory context. By reframing procurement and R&D questions around durability, manufacturability, and supply resilience rather than unit price alone, stakeholders can unlock performance improvements that support larger turbines and longer service lives.

Looking forward, competitive advantage will accrue to organizations that integrate technical partnerships, regional manufacturing flexibility, and lifecycle thinking into their strategic plans. The most impactful actions combine targeted qualification of advanced materials, investments in higher-repeatability processes, and supplier strategies that hedge against tariff and logistical risks. Executives and technical leaders who adopt these priorities will be better positioned to deliver on performance targets, manage lifetime risk, and capture opportunities presented by the continued scaling and diversification of wind energy deployments.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of recyclable thermoplastic composites to enable circular blade economy
  • 5.2. Adoption of advanced automated fiber placement techniques to optimize blade precision and throughput
  • 5.3. Emergence of bio-based and low-emission resin systems for greener wind turbine blade production
  • 5.4. Utilization of carbon fiber hybrid laminates to balance stiffness gains with overall weight reduction
  • 5.5. Incorporation of graphene and other nanomaterials to enhance fatigue resistance in composite blades
  • 5.6. Development of predictive digital twin platforms for real-time composite structural health monitoring
  • 5.7. Demand for ultra-large blades driving novel composite formulations for manufacturability and durability
  • 5.8. Customization of composite materials to withstand harsh offshore conditions and corrosive salt spray

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Wind Turbine Composite Materials Market, by Fiber Type

  • 8.1. Carbon Fiber
  • 8.2. Glass Fiber
  • 8.3. Hybrid Fiber

9. Wind Turbine Composite Materials Market, by Resin Type

  • 9.1. Epoxy
  • 9.2. Polyester
  • 9.3. Vinyl Ester

10. Wind Turbine Composite Materials Market, by Manufacturing Process

  • 10.1. Filament Winding
  • 10.2. Hand Layup
  • 10.3. Resin Transfer Molding
    • 10.3.1. High Pressure Rtm
    • 10.3.2. Low Pressure Rtm
  • 10.4. Vacuum Infusion
    • 10.4.1. Vacuum Bag Molding
    • 10.4.2. Vartm

11. Wind Turbine Composite Materials Market, by Turbine Type

  • 11.1. Offshore
    • 11.1.1. Fixed Bottom
    • 11.1.2. Floating
  • 11.2. Onshore

12. Wind Turbine Composite Materials Market, by Blade Length

  • 12.1. 30 To 60 Meters
  • 12.2. 60 To 90 Meters
  • 12.3. Above 90 Meters
  • 12.4. Up To 30 Meters

13. Wind Turbine Composite Materials Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Wind Turbine Composite Materials Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Wind Turbine Composite Materials Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Owens Corning
    • 16.3.2. Hexcel Corporation
    • 16.3.3. Gurit Holding AG
    • 16.3.4. SGL Carbon SE
    • 16.3.5. Toray Industries, Inc.
    • 16.3.6. Teijin Limited
    • 16.3.7. Mitsubishi Chemical Corporation
    • 16.3.8. Jushi Group Co., Ltd.
    • 16.3.9. 3B the Fiberglass Company S.p.A.
    • 16.3.10. China Composites Group Co., Ltd.

LIST OF FIGURES

  • FIGURE 1. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2024 VS 2032 (%)
  • FIGURE 3. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 4. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2024 VS 2032 (%)
  • FIGURE 5. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2024 VS 2032 (%)
  • FIGURE 7. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2024 VS 2032 (%)
  • FIGURE 9. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2024 VS 2032 (%)
  • FIGURE 11. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 12. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY REGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 13. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 14. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 15. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 16. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 17. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 18. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 19. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 20. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 21. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GROUP, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 22. ASEAN WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 23. GCC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 24. EUROPEAN UNION WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 25. BRICS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 26. G7 WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 27. NATO WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 28. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 29. WIND TURBINE COMPOSITE MATERIALS MARKET SHARE, BY KEY PLAYER, 2024
  • FIGURE 30. WIND TURBINE COMPOSITE MATERIALS MARKET, FPNV POSITIONING MATRIX, 2024

LIST OF TABLES

  • TABLE 1. WIND TURBINE COMPOSITE MATERIALS MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2024
  • TABLE 3. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, 2018-2024 (USD MILLION)
  • TABLE 4. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, 2025-2032 (USD MILLION)
  • TABLE 5. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 6. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 7. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 8. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 9. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 10. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 11. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 12. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY CARBON FIBER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 13. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 14. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 15. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 16. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 17. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 18. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY GLASS FIBER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 19. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 20. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 21. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 22. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 23. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 24. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HYBRID FIBER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 25. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 26. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 27. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 28. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 29. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 30. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 31. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 32. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY EPOXY, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 33. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 34. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 35. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 36. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 37. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 38. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY POLYESTER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 39. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 40. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 41. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 42. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 43. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 44. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VINYL ESTER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 45. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 46. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 47. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 48. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 49. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 50. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 51. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 52. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FILAMENT WINDING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 53. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 54. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 55. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 56. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 57. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 58. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HAND LAYUP, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 59. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 60. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 61. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 62. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 63. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 64. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 65. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 66. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 67. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 68. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 69. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 70. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 71. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 72. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY HIGH PRESSURE RTM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 73. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 74. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 75. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 76. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 77. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 78. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY LOW PRESSURE RTM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 79. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 80. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 81. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 82. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 83. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 84. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 85. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 86. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 87. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 88. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 89. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 90. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 91. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 92. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM BAG MOLDING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 93. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 94. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 95. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 96. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 97. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 98. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VARTM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 99. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 100. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 101. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 102. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 103. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 104. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 105. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 106. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 107. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 108. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 109. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 110. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 111. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 112. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 113. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 114. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIXED BOTTOM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 115. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 116. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 117. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 118. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 119. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 120. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FLOATING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 121. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 122. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 123. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 124. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 125. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 126. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ONSHORE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 127. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 128. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 129. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 130. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 131. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 132. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 133. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 134. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 30 TO 60 METERS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 135. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 136. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 137. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 138. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 139. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 140. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY 60 TO 90 METERS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 141. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 142. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 143. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 144. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 145. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 146. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY ABOVE 90 METERS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 147. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 148. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 149. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 150. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 151. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 152. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY UP TO 30 METERS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 153. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 154. GLOBAL WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 155. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2018-2024 (USD MILLION)
  • TABLE 156. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2025-2032 (USD MILLION)
  • TABLE 157. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 158. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 159. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 160. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 161. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 162. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 163. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 164. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 165. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 166. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 167. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 168. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 169. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 170. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 171. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 172. AMERICAS WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 173. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 174. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 175. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 176. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 177. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 178. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 179. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 180. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 181. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 182. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 183. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 184. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 185. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 186. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 187. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 188. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 189. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 190. NORTH AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 191. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 192. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 193. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 194. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 195. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 196. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 197. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 198. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 199. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 200. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 201. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 202. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 203. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 204. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 205. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 206. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 207. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 208. LATIN AMERICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 209. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2018-2024 (USD MILLION)
  • TABLE 210. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY SUBREGION, 2025-2032 (USD MILLION)
  • TABLE 211. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 212. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 213. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 214. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 215. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 216. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 217. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 218. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 219. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 220. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 221. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 222. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 223. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 224. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 225. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 226. EUROPE, MIDDLE EAST & AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 227. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 228. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 229. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 230. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 231. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 232. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 233. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 234. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 235. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 236. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 237. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 238. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 239. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 240. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 241. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 242. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 243. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 244. EUROPE WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 245. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 246. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 247. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 248. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 249. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 250. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 251. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 252. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 253. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 254. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 255. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 256. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 257. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 258. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 259. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 260. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 261. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 262. MIDDLE EAST WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 263. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 264. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 265. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 266. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 267. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 268. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 269. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 270. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 271. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 272. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 273. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2018-2024 (USD MILLION)
  • TABLE 274. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY VACUUM INFUSION, 2025-2032 (USD MILLION)
  • TABLE 275. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2018-2024 (USD MILLION)
  • TABLE 276. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY TURBINE TYPE, 2025-2032 (USD MILLION)
  • TABLE 277. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2018-2024 (USD MILLION)
  • TABLE 278. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY OFFSHORE, 2025-2032 (USD MILLION)
  • TABLE 279. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2018-2024 (USD MILLION)
  • TABLE 280. AFRICA WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY BLADE LENGTH, 2025-2032 (USD MILLION)
  • TABLE 281. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 282. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 283. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2018-2024 (USD MILLION)
  • TABLE 284. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY FIBER TYPE, 2025-2032 (USD MILLION)
  • TABLE 285. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2018-2024 (USD MILLION)
  • TABLE 286. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TYPE, 2025-2032 (USD MILLION)
  • TABLE 287. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2024 (USD MILLION)
  • TABLE 288. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY MANUFACTURING PROCESS, 2025-2032 (USD MILLION)
  • TABLE 289. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2018-2024 (USD MILLION)
  • TABLE 290. ASIA-PACIFIC WIND TURBINE COMPOSITE MATERIALS MARKET SIZE, BY RESIN TRANSFER MOLDING, 2025-2032 (USD MILLION)
  • TABLE 291. ASIA-PAC