封面
市场调查报告书
商品编码
1847830

全球航太推进市场预测(按推进类型、运载工具类型、应用和最终用户)- 2025-2032

Space Propulsion Market by Propulsion Type, Vehicle Type, Application, End User - Global Forecast 2025-2032

出版日期: | 出版商: 360iResearch | 英文 189 Pages | 商品交期: 最快1-2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

预计到 2032 年,航太推进市场将成长 376.6 亿美元,复合年增长率为 16.75%。

主要市场统计数据
基准年2024年 109亿美元
预计2025年 127.2亿美元
预测年份:2032年 376.6亿美元
复合年增长率(%) 16.75%

推动技术发展的策略方向决定了影响任务和采购选择的技术、计划和政策驱动因素。

推进领域处于工程严谨性、商业性雄心和不断发展的政策的交汇点,因此对于任何在太空领域运作的组织而言,它都是至关重要的焦点。推动架构、材料科学和动力系统的快速发展,正在赋能新的任务模式,同时也重塑了风险、成本和时间尺度的运算。在此背景下,技术成熟度、供应链弹性和监管协调性成为决定竞争优势的三大核心要素。

领导者必须综合跨领域证据,评估推进方案、生命週期物流和任务意图之间的权衡。化学推进技术持续为发射和大规模轨道转移提供至关重要的高推力解决方案,而电力推进技术则能够延长任务持续时间,并为各种卫星提供更高效的太空站维护。既需要快速的Delta,又需要长期的效率,这些任务特性正在推动混合推进方法的发展。这些技术选择与运载工具架构和应用需求相互作用,以确定采购优先顺序、机组人员安全范围和任务弹性策略。

因此,整合技术能力、专案风险和地缘政治现实的策略方向至关重要。本报告首先引导决策者了解重塑推进剂选择和专案执行的核心力量,提供基于证据的细分以阐明价值所在,并强调高阶主管可以采取的可行措施,以协调能力和目标。引言部分确立了贯穿报告始终的分析视角:比较技术评估、供应链映射、监管敏感性以及以任务为中心的绩效。

驱动力:新技术的普及、产业结构的转变以及专案重点的转变,这些因素正在重新定义发展路径和供应商策略

推进领域正在经历一系列变革性变化,这些变化从根本上改变了任务的构思、资金筹措和执行方式。技术应用正在加速,电力推进系统已从小众任务赋能器发展成为太空站保持和转移机动的主流选择,先进的化学推进和混合动力推进系统也正在迭代优化,以减少占地面积并提高可重复使用性。发电、温度控管和积层製造技术的改进进一步增强了这项技术势头,使推进子系统更加紧凑、可靠且经济高效。

同时,产业结构正在改变。一种双管齐下的态势正在形成:现有的主承包商正在扩大整合专案交付规模,而敏捷的新参与企业则专注于模组化、软体定义的动态套件。这种分化正在促进专业化和策略伙伴关係关係,从而缩短开发週期并拓展可行的任务架构。在政策和监管方面,出口管制、在轨安全标准和国家安全优先事项正日益成为决定供应商选择和专案时间表的重要因素。

此外,不断变化的需求方正在推动新的效能优先顺序。商业卫星群强调可靠性、品质效率和生命週期营运成本,而深空和载人任务则更重视冗余度、高推力能力和安全认证。因此,推进系统投资决策日益在短期任务经济性和长期平台灵活性之间取得平衡。这些转变共同要求领导者采用适应性蓝图,以跟上快速的技术变革,同时保持任务保障和供应链的完整性。

2025 年关税如何改变整个推进供应链的采购路径、供应商动态与弹性规划

美国于2025年实施的关税为推进系统及相关零件的采购和供应链规划带来了额外的复杂性。其直接影响是增加了某些进口子系统和原材料的实际成本,促使专案经理重新评估采购决策,并考虑诸如近岸外包、替代供应商的资质认证以及长週期专案材料清单重组等缓解策略。由于推进部件通常涉及全球采购的特殊合金、精密加工零件和电子控制装置,关税可能会对整个价值链产生不对称的成本影响。

除了增加采购成本外,关税还影响供应商的议价动态和合约结构。总承包商和整合商正在透过延长交付週期、对冲定价机制以及增加关键备件库存来重新分配风险。同时,一些供应商正在加快对国内製造能力的投资,或在政策允许的情况下探索免税製造路线。这些转变正在改变关键子系统的资格确认和认证时间表,因为新的供应关係需要额外的测试和可追溯性文件。

从策略上讲,关税提高了供应链可视性和双重采购策略的重要性。各组织更重视供应商审核、替代物流路线和情境规划,以维持专案的连续性。从中期来看,政策主导的国内工业产能奖励或许能够刺激在地化创新并提高韧性,但要有效地实现这种转变,需要有针对性的资本投入、劳动力发展和监管协调。最终,关税凸显了推动采购不仅仅是一项工程活动,更是一项整合经济政策和任务风险管理的社会技术挑战。

将推进类型、飞行器结构、任务应用和最终用户优先顺序与战略投资选择和性能权衡联繫起来的分层细分框架

严谨的细分框架清楚地阐明了技术优势如何转化为营运价值,以及投资在哪些方面能够带来差异化成果。根据推进类型,市场研究涵盖化学推进、电力推进和混合动力推进。此分类突显了性能范围和生命週期的权衡:化学推进系统可提供高瞬时推力,以实现发射和快速转移;电力推进系统可优化推进剂效率,以实现稳态维护和长时间机动;混合动力概念则兼顾了运营灵活性和能源效率。

了解运载工具的背景同样重要,因为推进要求因平台类别而异。根据运载工具类型,市场研究涵盖载人任务、深空任务、运载火箭和卫星平台。卫星平台进一步细分为通讯、地球观测、导航、科学和小型卫星。小型卫星进一步研究包括立方卫星、微型卫星、奈米卫星和皮米卫星。这些细分市场揭示了品质、任务时间、安全要求和冗余配置如何影响推进选择。载人任务重视经过认证的、冗余的、高推力系统;深空任务优先考虑续航时间和自主性;运载火箭需要可扩展的高推力架构;卫星平台优先考虑根据其任务时长和尺寸等级量身定制的紧凑、高效和可靠的子系统。

任务应用直接影响推进器的选择和作战理论。根据应用,市场将从脱轨、轨道提升、位置保持和转移机动等方面进行探索。每种应用都针对特定的推进技术和推进剂化学成分,规定了不同的Delta预算、占空比和预期寿命。最后,使用者环境决定了采购顺序和效能预期。根据最终用户,市场将从商业、政府、军事和研究机构等方面进行探索。商业运营商通常优先考虑成本效益和快速部署,而政府和军事应用则强调认证、安全性和任务保障,研究机构则优先考虑实验弹性。整合这些细分层面,可以製定有针对性的策略,并明确研发和采购支出的优先顺序。

工业能力、监管重点和采购行为的区域差异决定了推进能力的开发和部署地点

区域动态正在极大地影响整个推进生态系统的技术采用、供应链配置和监管态势。在美洲,由商业发射供应商、成熟的国防主力军和不断增长的供应商基础推动的创新生态系统,以及对高推力可重复使用发射技术的持续投资,正在加速电力推进在商业卫星群中的应用。强调国内工业产能和出口限制的政策影响供应商的选择,并鼓励本地製造能力,这反过来又影响专案时程和筹资策略。

在欧洲、中东和非洲,一系列主权计画、跨国工业联盟以及蓬勃发展的商业企业正在创造对模组化、可互通推进子系统的需求。联合采购实务和严格的安全标准指南技术改进,而促进跨境供应链的区域性措施则鼓励在高精度阀门和特定推进剂管理系统等利基零件上进行专业化生产。跨辖区的监管协调强调空间永续性、脱轨能力和互通性标准,这些因素都会影响推进器的设计要求。

亚太地区是一个高度活跃的区域,其特点是产能快速扩张、政府主导的大规模计画以及越来越多专注于小型卫星和发射服务的商业参与企业。国内製造业投资加上针对性的产业政策,正加速推动电子设备、积层製造和复合复合材料结构领域能力的成熟。因此,区域竞争与合作正在影响零件成本、供应商多元化策略以及新型推进概念的落地速度。总而言之,这些区域差异决定了应优先考虑哪些领域的伙伴关係、製造布局和监管参与,以支持专案有韧性地执行。

主要供应商、专业供应商和敏捷的新参与企业之间的竞争策略和能力的整合塑造了推进剂商业化和服务模式

主要产业参与者正在寻求垂直整合、策略伙伴关係关係和有针对性的专业化相结合的模式,以在快速发展的推进生态系统中获取价值。传统的主承包商继续利用其係统整合优势和深厚的资质认证专业知识,为载人航太和深空专案提供服务,而推进专家和新兴企业则强调为商业卫星营运商提供快速迭代、模组化和经济高效的生产。许多现有企业正在采用混合经营模式,将内部开发与供应商生态系统结合,以加快卫星入轨时间,同时保持技术监督。

专注于科技的产业参与企业正透过电力推进领域的电力电子创新、新型推进剂化学技术以及燃烧室和燃料箱增材製造等先进製造技术,在竞争中脱颖而出。这些技术能够降低单位成本,缩短开发週期,并使新供应商能够竞争卫星群和二次载荷的机会。推动专家与航空电子和热控公司之间的策略伙伴关係正变得越来越普遍,从而能够提供整合子系统解决方案,降低整合风险并加快认证速度。

从商业性角度来看,各公司越来越多地将推进硬体与生命週期服务捆绑在一起,例如在轨推进即服务、在轨加油准备和脱轨解决方案。这种转变使供应商和营运商的奖励保持一致,以最大限度地延长资产寿命并提高任务灵活性。在併购方面,追求互补能力(例如控制电子设备、推进剂处理专业知识和製造规模)仍然​​是加速能力交付和扩展可实现任务范围的关键策略槓桿。整体而言,竞争格局对卓越的工程设计和严谨的专案执行都给予了回报。

为领导者提供切实可行的策略步骤,以增强其推进计画的模组化、供应弹性、生命週期服务和监管参与度

为了抓住推进领域的新机会,产业领导者应采取多管齐下的方法,将技术严谨性、供应链弹性和策略伙伴关係关係结合起来。首先,优先考虑允许增量升级的模组化架构。采用标准化介面设计推进子系统,可快速替换改良的推进器或电力电子设备,而无需彻底重新设计平台。这种方法可以降低产品过时的风险,并使开发週期与商业週期保持一致。

其次,推行多元化筹资策略,并投资于供应商发展项目。关键零件的双重采购、合格的区域供应商以及帮助供应商提升产能,将降低专案风险并缓解关税相关的波动。尽可能创建区域製造中心,以平衡成本、与关键客户的接近性以及法规合规性,缩短前置作业时间。

第三,围绕生命週期服务建立伙伴关係。提供推进硬体以及推进剂供应、在轨维护准备和脱轨规划,可以创造经常性收益来源并增强客户忠诚度。这种以服务为导向的模式还能奖励效能监控和预测性维护计划,进而提高资产的运作。

第四,将研发支出与任务主导的绩效指标而非纯粹的技术主导目标结合。投资于能够降低营运成本、提高载人航太任务安全裕度并延长卫星寿命的技术。最后,积极与监管机构和标准机构合作,制定出口、安全和永续性框架,在实现国家安全和环境目标的同时,保持营运弹性。这些行动将使我们有能力灵活应对技术变革和政策变化。

研究结果透过严格的混合方法研究设计检验,该设计结合了专家访谈、技术文献综合、供应链映射和情境分析

此项分析整合了混合方法研究途径,结合了专家访谈、严格的技术文献审查和系统的供应链图谱绘製。主要输入包括对推进工程师、专案经理、采购主导者监管机构的结构化访谈,并辅以促进相关利益者进行情境测试的研讨会。这些访谈提供了对每个任务类别的认证时间表、整合挑战和作战优先顺序的直接洞察。

二级资讯来源包括同行评审期刊、会议论文集、专利申请和标准文件,以确保技术评估的稳健性,并了解推进剂化学、推进器设计和製造流程的新兴趋势。供应链图谱采用材料清单分析、供应商能力评估和物流路线评估,以识别单点故障和冗余机会。政策影响的评估是透过审查影响跨境采购的公共公告、贸易措施和出口法律规范来实现的。

分析方法包括:比较效能建模,用于将推进方案与任务Delta和占空比进行匹配;风险调整情境分析,用于探讨关税和地缘政治突发事件;以及投资准备评估,用于评估关键技术的成熟度和扩充性。在整个过程中,研究结果经过三角测量,以确保定性和定量输入之间的一致性,并清晰地描述不确定性,以帮助决策者将结果应用于专案层面的选择。

整合技术能力、采购灵活性和政策意识,将驱动创新转化为持续的任务优势

推进系统是连结任务目标与实际营运的纽带,而该产业正处于一个由日趋成熟的技术、新兴的经营模式和不断变化的政策格局驱动的曲折点。电力和混合动力推进系统的进步扩展了可能的任务范围,而化学系统的持续创新则为特定高推力应用提供了所需的性能基础。同时,供应链动态和监管干预措施正在推动重塑筹资策略,并更加重视韧性和本地化能力。

对决策者来说,其意义显而易见。将技术能力、任务用途和地缘政治背景融入采购和研发决策,可以提升策略清晰度。采用模组化方法、实现采购多元化并专注于生命週期服务交付的组织,将最有能力获取营运价值并应对政策驱动的颠覆性变革。同样,积极主动的监管参与和对供应商能力的投资,构成了韧性发展策略的支柱。

最后,推进系统产业不仅重视技术创新,也重视严谨的执行力。目前在架构、供应商关係和地理布局方面的选择将决定未来十年的专案灵活性和任务成功率。能够将工程重点与切合实际的供应链和政策策略相结合的高阶主管,很可能会在产业持续发展的过程中获得持久的优势。

目录

第一章:前言

第二章调查方法

第三章执行摘要

第四章 市场概况

第五章 市场洞察

  • 将可重复使用的火箭发动机与快速週转和维修流程相结合,为商业发射服务提供
  • 深空探勘任务高比衝电力推进系统的进展。
  • 开发绿色推进剂技术以减少发射排放并满足环境法规
  • 引入人工智慧驱动的推力向量控制系统,优化小型卫星的飞行性能
  • 积层製造降低了复杂推进部件的成本和生产时间
  • 政府与私部门合作进行核能热推进示范任务
  • 扩展混合火箭发动机技术,以增强亚轨道旅游应用的安全通讯协定
  • 微波电热推进器的集成,用于在轨卫星定位和碎片减缓操作。

第六章:2025年美国关税的累积影响

第七章:人工智慧的累积影响,2025年

8. 依推进类型分類的航太推进市场

  • 化学推广
  • 电力推进
  • 混合动力推进

9. 航太推进市场(依车辆类型)

  • 载人任务
  • 深空任务
  • 发射火箭
  • 卫星平台
    • 通讯
    • 地球观测卫星
    • 导航卫星
    • 科学卫星
    • 小卫星
      • 立方卫星
      • 微卫星
      • 奈米卫星
      • 皮科卫星

第 10 章 航太推进市场:按应用

  • 脱轨
  • 轨道提升
  • 驻留
  • 转移操作

第 11 章 航太推进市场(依最终用户)

  • 商业的
  • 政府
  • 军队
  • 研究机构

第十二章 航太推进市场:按地区

  • 美洲
    • 北美洲
    • 拉丁美洲
  • 欧洲、中东和非洲
    • 欧洲
    • 中东
    • 非洲
  • 亚太地区

第十三章 航太推进市场(依类别)

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

第十四章 各国航太推进市场

  • 美国
  • 加拿大
  • 墨西哥
  • 巴西
  • 英国
  • 德国
  • 法国
  • 俄罗斯
  • 义大利
  • 西班牙
  • 中国
  • 印度
  • 日本
  • 澳洲
  • 韩国

第十五章 竞争格局

  • 2024年市占率分析
  • 2024年FPNV定位矩阵
  • 竞争分析
    • Aerojet Rocketdyne Holdings, Inc.
    • Safran SA
    • Northrop Grumman Corporation
    • United Launch Alliance, LLC
    • Lockheed Martin Corporation
    • Mitsubishi Heavy Industries, Ltd.
    • ArianeGroup SAS
    • AVIO SpA
    • IHI Aerospace Co., Ltd.
    • Rocket Lab USA, Inc.
Product Code: MRR-4F4C36263844

The Space Propulsion Market is projected to grow by USD 37.66 billion at a CAGR of 16.75% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 10.90 billion
Estimated Year [2025] USD 12.72 billion
Forecast Year [2032] USD 37.66 billion
CAGR (%) 16.75%

A strategic orientation to propulsion technology evolution framing the technical, programmatic, and policy drivers that shape mission and procurement choices

The propulsion domain sits at the intersection of engineering rigor, commercial ambition, and evolving policy, making it a critical focal point for any organization operating in space. Rapid advances in propulsion architectures, materials science, and power systems are enabling new mission profiles while simultaneously reshaping risk, cost, and timeline calculus. Against this backdrop, technical maturity, supply chain resilience, and regulatory alignment emerge as the three central axes that determine competitive advantage.

Leaders must synthesize cross-disciplinary evidence to evaluate trade-offs between propulsion options, lifecycle logistics, and mission intent. Chemical propulsion continues to deliver high-thrust solutions essential for launch and large orbital transfers, whereas electric propulsion is unlocking extended mission durations and more efficient stationkeeping for a wide spectrum of satellites. Hybrid approaches are gaining attention where mission profiles demand both rapid delta-v and long-duration efficiency. These technology choices interact with vehicle architectures and application demands to define procurement priorities, crew safety envelopes, and mission resiliency strategies.

Consequently, a strategic orientation that integrates technical performance, programmatic risk, and geopolitical realities is indispensable. This report begins by orienting decision-makers to the core forces reshaping propulsion selection and program execution, provides evidence-based segmentation to clarify where value accrues, and highlights the practical levers that executives can pull to align capabilities with objectives. The introduction establishes the analytical lens used throughout: comparative technical assessment, supply-chain mapping, regulatory sensitivity, and mission-centric performance.

Emerging technology diffusion, changing industry structure, and shifting program priorities that are redefining propulsion development pathways and supplier strategies

The propulsion landscape is experiencing a set of transformative shifts that are fundamentally altering how missions are conceived, funded, and executed. Technology diffusion is accelerating: electric propulsion systems have matured from niche mission enablers to mainstream options for stationkeeping and transfer maneuvers, while advanced chemical- and hybrid-thrust systems are being iteratively optimized for reduced footprint and improved reusability. This technological momentum is further amplified by improved power generation, thermal management, and additive manufacturing, each enabling more compact, reliable, and cost-effective propulsion subsystems.

Simultaneously, industry structure is changing. A two-track dynamic has emerged in which established prime contractors scale integrated program offerings while agile new entrants focus on modular, software-defined propulsion suites. This bifurcation encourages specialization and strategic partnerships, which in turn compresses development cycles and expands the set of viable mission architectures. On the policy and regulatory front, export controls, on-orbit safety standards, and national security priorities are becoming more prominent determinants of supplier selection and program timelines.

Moreover, demand-side evolution is driving new performance priorities. Commercial constellations emphasize reliability, mass efficiency, and lifecycle operating cost, whereas deep space and crewed missions assign higher value to redundancy, high-thrust capability, and safety certification. As a result, propulsion investment decisions increasingly balance immediate mission economics with longer-term platform flexibility. Taken together, these shifts require leaders to adopt adaptive roadmaps that accommodate rapid technological change while preserving mission assurance and supply chain integrity.

How 2025 tariff measures reshaped procurement pathways, supplier dynamics, and resilience planning across the propulsion supply chain

Tariff actions introduced by the United States in 2025 have introduced an additional layer of complexity to procurement and supply-chain planning for propulsion systems and associated components. The immediate effect has been to raise the effective cost of certain imported subsystems and raw materials, prompting program managers to reassess sourcing decisions and to explore mitigation strategies such as nearshoring, supplier qualification of alternate vendors, and reconfiguration of bill-of-materials for long-lead items. Because propulsion components often rely on specialized alloys, precision-machined parts, and electronic controls sourced globally, tariffs can produce asymmetric cost impacts across the value chain.

Beyond procurement cost increases, tariffs have influenced supplier negotiation dynamics and contractual structures. Prime contractors and integrators are reallocating risk through longer lead contracts, hedged pricing mechanisms, and increased inventory for critical spares. At the same time, some suppliers have accelerated investment in domestic production capacity or sought tariff-exempt manufacturing routes where policy provisions permit. These shifts are altering the cadence of qualification and the timeline for certification of critical subsystems because new supply relationships require additional testing and traceability documentation.

Strategically, tariffs have heightened the salience of supply-chain visibility and dual-sourcing strategies. Organizations are placing greater emphasis on supplier audits, alternative logistics pathways, and scenario planning to preserve program continuity. In the medium term, policy-driven incentives for domestic industrial capability may spur localized innovation and increase resilience, but these transitions will require targeted capital, workforce development, and regulatory coordination to be effective. Ultimately, tariffs have underscored that propulsion procurement is not solely an engineering exercise but a socio-technical challenge that integrates economic policy with mission risk management.

A layered segmentation framework linking propulsion type, vehicle architecture, mission application, and end-user priorities to strategic investment choices and performance trade-offs

A disciplined segmentation framework clarifies where technological advantages translate into operational value and where investment will yield differentiated outcomes. Based on Propulsion Type, market is studied across Chemical Propulsion, Electric Propulsion, and Hybrid Propulsion. This classification highlights performance envelopes and lifecycle trade-offs: chemical systems provide high instantaneous thrust suitable for launch and rapid transfers, electric systems optimize propellant efficiency for stationkeeping and long-duration maneuvers, and hybrid concepts bridge operational flexibility and energy efficiency.

Understanding vehicle context is equally important because propulsion demands vary with platform class. Based on Vehicle Type, market is studied across Crewed Missions, Deep Space Missions, Launch Vehicle, and Satellite Platform. The Satellite Platform is further studied across Communication Satellite, Earth Observation Satellite, Navigation Satellite, Scientific Satellite, and Small Satellite. The Small Satellite is further studied across CubeSat, MicroSat, NanoSat, and PicoSat. These distinctions reveal how mass, mission duration, safety requirements, and redundancy profiles drive propulsion choices: crewed missions emphasize certified, redundant high-thrust systems; deep space missions prioritize endurance and autonomy; launch vehicles require scalable high-thrust architectures; and satellite platforms prioritize compact, efficient, and reliable subsystems adapted to mission duration and size class.

Mission application exerts direct influence on propulsion selection and operational doctrine. Based on Application, market is studied across Deorbit, Orbit Raising, Station Keeping, and Transfer Maneuvers. Each application imposes distinct delta-v budgets, duty cycles, and lifetime expectations that map to specific propulsion technologies and propellant chemistries. Finally, user context shapes procurement cadence and performance expectations. Based on End User, market is studied across Commercial, Government, Military, and Research Institution. Commercial operators frequently prioritize cost-effectiveness and rapid deployment, whereas government and military applications emphasize certification, security, and mission assurance, and research institutions prioritize experimental flexibility. Integrating these segmentation layers enables targeted strategy development and clearer prioritization of R&D and procurement dollars.

Regional contrasts in industrial capacity, regulatory emphasis, and procurement behavior that determine where propulsion capabilities are developed and deployed

Regional dynamics materially shape technology adoption, supply chain configuration, and regulatory posture across propulsion ecosystems. In the Americas, innovation ecosystems driven by private launch providers, established defense primes, and a growing supplier base foster accelerated adoption of electric propulsion for commercial constellations, alongside ongoing investments in high-thrust reusable launch technologies. Policy emphasis on domestic industrial capacity and export controls influences supplier selection and incentivizes localized manufacturing capabilities, which in turn affects program timelines and sourcing strategies.

In Europe, Middle East & Africa, a mix of sovereign programs, multinational industrial consortia, and burgeoning commercial ventures is creating demand for modular and interoperable propulsion subsystems. Collaborative procurement practices and stringent safety standards guide technology qualification, while regional initiatives that promote cross-border supply chains encourage specialization in niche components, such as high-precision valves and specific propellant management systems. Regulatory coordination across jurisdictions emphasizes space sustainability, deorbit capability, and interoperability standards that impact propulsion design requirements.

Asia-Pacific presents a highly dynamic environment characterized by rapid capacity expansion, large government-led programs, and an increasing number of commercial entrants focusing on small satellites and launch services. Investments in domestic manufacturing, combined with targeted industrial policy, have accelerated capability maturation in propulsion electronics, additive manufacturing, and composite structures. Consequently, regional competition and cooperation both influence component costs, supplier diversification strategies, and the pace at which new propulsion concepts are fielded. Taken together, these regional distinctions inform where to prioritize partnerships, manufacturing footprints, and regulatory engagement to support resilient program execution.

Competitive strategies and capability convergence among primes, specialized vendors, and agile new entrants that are shaping propulsion productization and service models

Key industry participants are pursuing a mix of vertical integration, strategic partnerships, and targeted specialization to capture value in a rapidly evolving propulsion ecosystem. Legacy prime contractors continue to leverage systems-integration strengths and deep qualification expertise to serve crewed and deep space programs, while specialist propulsion firms and startups emphasize rapid iteration, modularity, and cost-effective production for commercial satellite operators. Many incumbents are adopting hybrid business models that combine in-house development with supplier ecosystems to accelerate time-to-orbit while preserving technical oversight.

Technology-focused entrants are differentiating through innovations in power electronics for electric propulsion, novel propellant chemistries, and advanced manufacturing techniques such as additive production of combustion chambers and tanks. These capabilities lower unit costs and shorten development cycles, enabling new vendors to compete for constellations and secondary payload opportunities. Strategic partnerships between propulsion specialists and avionics or thermal-control firms are becoming common, enabling integrated subsystem solutions that reduce integration risk and speed qualification.

From a commercial standpoint, companies are increasingly bundling propulsion hardware with lifecycle services such as on-orbit propulsion-as-a-service, in-orbit refueling readiness, and end-of-life deorbit solutions. This shift aligns incentives across suppliers and operators to maximize asset longevity and mission flexibility. On the M&A front, the pursuit of complementary capabilities-such as control electronics, propellant-handling expertise, or manufacturing scale-remains a key strategic lever to accelerate capability delivery and expand addressable mission sets. Overall, the competitive landscape rewards both engineering excellence and disciplined program execution.

Actionable strategic steps for leaders to strengthen modularity, supply resilience, lifecycle services, and regulatory engagement across propulsion programs

Industry leaders should adopt a multi-pronged approach that combines technical rigor, supply-chain resilience, and strategic partnering to capture the emerging opportunities in propulsion. First, prioritize modular architectures that enable incremental upgrades: designing propulsion subsystems with standardized interfaces allows rapid substitution of improved thrusters or power electronics without full platform redesign. This approach reduces obsolescence risk and aligns development cycles with commercial cadence.

Second, pursue diversified sourcing strategies and invest in supplier development programs. Dual-sourcing critical components, qualifying regional suppliers, and supporting supplier capacity building will reduce program risk and attenuate tariff-induced volatility. Where feasible, create regional manufacturing hubs that balance cost, proximity to key customers, and regulatory compliance to shorten lead times and improve traceability.

Third, anchor partnerships around lifecycle services. Offering propulsion hardware in concert with propellant provisioning, on-orbit maintenance readiness, and deorbit planning creates recurring revenue streams and strengthens customer lock-in. Such service-oriented models also incentivize performance monitoring and predictive maintenance programs that enhance asset uptime.

Fourth, align R&D spend with mission-driven performance metrics rather than purely technology-driven goals. Invest in technologies that demonstrably reduce operational costs, improve safety margins for crewed missions, or extend satellite lifetimes. Finally, engage proactively with regulators and standards bodies to shape export, safety, and sustainability frameworks in ways that preserve operational flexibility while meeting national security and environmental objectives. Collectively, these actions will position organizations to respond decisively to technological shifts and policy changes.

A rigorous mixed-methods research design combining expert interviews, technical literature synthesis, supply-chain mapping, and scenario analysis to validate findings

This analysis synthesizes a mixed-methods research approach that combines primary engagement with subject-matter experts, rigorous technical literature review, and systematic supply-chain mapping. Primary inputs included structured interviews with propulsion engineers, program managers, procurement leads, and regulatory officials, supplemented by workshops that facilitated cross-stakeholder scenario testing. These engagements provided first-hand insights into qualification timelines, integration challenges, and operational priorities across mission classes.

Secondary sources encompassed peer-reviewed journals, conference proceedings, patent filings, and standards documentation to ensure robustness in technical assessment and to capture emergent trends in propellant chemistry, thruster design, and manufacturing processes. Supply-chain mapping employed bill-of-materials analysis, supplier capability assessments, and logistics pathway evaluation to identify single points of failure and opportunities for redundancy. Policy implications were assessed through review of public policy announcements, trade measures, and export-control frameworks that affect cross-border procurement.

Analytical techniques included comparative performance modeling to align propulsion choices with mission delta-v and duty cycles, risk-adjusted scenario analysis to explore tariff and geopolitical contingencies, and investment-readiness assessments to evaluate the maturity and scalability of key technologies. Throughout, findings were triangulated to ensure consistency across qualitative and quantitative inputs, and uncertainties were explicitly characterized to support decision-makers in applying the results to program-level choices.

Integrating technical performance, procurement resilience, and policy awareness to convert propulsion innovation into durable mission advantage

Propulsion is the connective tissue between mission ambition and operational reality, and the industry is at an inflection point driven by technology maturation, new business models, and shifting policy landscapes. Advances in electric and hybrid propulsion expand the envelope of feasible missions, while continued innovation in chemical systems preserves the performance cornerstone required for certain high-thrust applications. Concurrently, supply-chain dynamics and regulatory interventions are reshaping procurement strategy and necessitating greater emphasis on resilience and local capability.

For decision-makers, the implication is clear: strategic clarity arises from integrating technical performance, mission application, and geopolitical context into procurement and R&D choices. Organizations that embrace modularity, diversify sourcing, and anchor offerings in lifecycle services will be best positioned to capture operational value and to respond to policy-induced disruptions. Equally, proactive regulatory engagement and investment in supplier capacity form the backbone of a resilient propulsion strategy.

In closing, the propulsion sector rewards disciplined execution as much as technical ingenuity. The choices made today about architecture, supplier relationships, and regional footprints will dictate program agility and mission success in the coming decade. Executives who align engineering priorities with pragmatic supply-chain and policy strategies will secure durable advantages as the industry continues to evolve.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of reusable rocket engines with rapid turn around and refurbishment processes for commercial launch services
  • 5.2. Advancement of electric propulsion systems with high specific impulse for deep space exploration missions
  • 5.3. Development of green propellant technologies to reduce launch emissions and meet environmental regulations
  • 5.4. Emergence of AI driven thrust vector control systems optimizing in flight performance for small satellites
  • 5.5. Adoption of additive manufacturing for complex propulsion components reducing cost and production time
  • 5.6. Collaboration between government agencies and private firms for nuclear thermal propulsion demonstration missions
  • 5.7. Scaling of hybrid rocket motor technology for suborbital tourism applications with enhanced safety protocols
  • 5.8. Integration of microwave electrothermal thrusters for in orbit satellite station keeping and debris mitigation operations

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Space Propulsion Market, by Propulsion Type

  • 8.1. Chemical Propulsion
  • 8.2. Electric Propulsion
  • 8.3. Hybrid Propulsion

9. Space Propulsion Market, by Vehicle Type

  • 9.1. Crewed Missions
  • 9.2. Deep Space Missions
  • 9.3. Launch Vehicle
  • 9.4. Satellite Platform
    • 9.4.1. Communication Satellite
    • 9.4.2. Earth Observation Satellite
    • 9.4.3. Navigation Satellite
    • 9.4.4. Scientific Satellite
    • 9.4.5. Small Satellite
      • 9.4.5.1. CubeSat
      • 9.4.5.2. MicroSat
      • 9.4.5.3. NanoSat
      • 9.4.5.4. PicoSat

10. Space Propulsion Market, by Application

  • 10.1. Deorbit
  • 10.2. Orbit Raising
  • 10.3. Station Keeping
  • 10.4. Transfer Maneuvers

11. Space Propulsion Market, by End User

  • 11.1. Commercial
  • 11.2. Government
  • 11.3. Military
  • 11.4. Research Institution

12. Space Propulsion Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Space Propulsion Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Space Propulsion Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Aerojet Rocketdyne Holdings, Inc.
    • 15.3.2. Safran SA
    • 15.3.3. Northrop Grumman Corporation
    • 15.3.4. United Launch Alliance, LLC
    • 15.3.5. Lockheed Martin Corporation
    • 15.3.6. Mitsubishi Heavy Industries, Ltd.
    • 15.3.7. ArianeGroup SAS
    • 15.3.8. AVIO S.p.A.
    • 15.3.9. IHI Aerospace Co., Ltd.
    • 15.3.10. Rocket Lab USA, Inc.

LIST OF FIGURES

  • FIGURE 1. GLOBAL SPACE PROPULSION MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2024 VS 2032 (%)
  • FIGURE 3. GLOBAL SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 4. GLOBAL SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2024 VS 2032 (%)
  • FIGURE 5. GLOBAL SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2024 VS 2032 (%)
  • FIGURE 7. GLOBAL SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL SPACE PROPULSION MARKET SIZE, BY END USER, 2024 VS 2032 (%)
  • FIGURE 9. GLOBAL SPACE PROPULSION MARKET SIZE, BY END USER, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL SPACE PROPULSION MARKET SIZE, BY REGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 11. AMERICAS SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 12. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 13. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 14. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 15. EUROPE SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 16. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 17. AFRICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 18. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 19. GLOBAL SPACE PROPULSION MARKET SIZE, BY GROUP, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 20. ASEAN SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 21. GCC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 22. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 23. BRICS SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 24. G7 SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 25. NATO SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 26. GLOBAL SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 27. SPACE PROPULSION MARKET SHARE, BY KEY PLAYER, 2024
  • FIGURE 28. SPACE PROPULSION MARKET, FPNV POSITIONING MATRIX, 2024

LIST OF TABLES

  • TABLE 1. SPACE PROPULSION MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2024
  • TABLE 3. GLOBAL SPACE PROPULSION MARKET SIZE, 2018-2024 (USD MILLION)
  • TABLE 4. GLOBAL SPACE PROPULSION MARKET SIZE, 2025-2032 (USD MILLION)
  • TABLE 5. GLOBAL SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 6. GLOBAL SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 7. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 8. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 9. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 10. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 11. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 12. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 13. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 14. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 15. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 16. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 17. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 18. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 19. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 20. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 21. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 22. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 23. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 24. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 25. GLOBAL SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 26. GLOBAL SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 27. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 28. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 29. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 30. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 31. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 32. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 33. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 34. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 35. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 36. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 37. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 38. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 39. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 40. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 41. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 42. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 43. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 44. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 45. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 46. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 47. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 48. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 49. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 50. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 51. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 52. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 53. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 54. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 55. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 56. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 57. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 58. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 59. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 60. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 61. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 62. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 63. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 64. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 65. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 66. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 67. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 68. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 69. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 70. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 71. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 72. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 73. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 74. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 75. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 76. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 77. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 78. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 79. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 80. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 81. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 82. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 83. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 84. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 85. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 86. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 87. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 88. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 89. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 90. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 91. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 92. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 93. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 94. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 95. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 96. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 97. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 98. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 99. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 100. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 101. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 102. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 103. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 104. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 105. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 106. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 107. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 108. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 109. GLOBAL SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 110. GLOBAL SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 111. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 112. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 113. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 114. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 115. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 116. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 117. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 118. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 119. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 120. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 121. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 122. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 123. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 124. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 125. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 126. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 127. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 128. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 129. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 130. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 131. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 132. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 133. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 134. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 135. GLOBAL SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 136. GLOBAL SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 137. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 138. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 139. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 140. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 141. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 142. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 143. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 144. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 145. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 146. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 147. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 148. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 149. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 150. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 151. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 152. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 153. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 154. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 155. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 156. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 157. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 158. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 159. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 160. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 161. GLOBAL SPACE PROPULSION MARKET SIZE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 162. GLOBAL SPACE PROPULSION MARKET SIZE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 163. AMERICAS SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2018-2024 (USD MILLION)
  • TABLE 164. AMERICAS SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2025-2032 (USD MILLION)
  • TABLE 165. AMERICAS SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 166. AMERICAS SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 167. AMERICAS SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 168. AMERICAS SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 169. AMERICAS SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 170. AMERICAS SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 171. AMERICAS SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 172. AMERICAS SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 173. AMERICAS SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 174. AMERICAS SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 175. AMERICAS SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 176. AMERICAS SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 177. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 178. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 179. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 180. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 181. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 182. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 183. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 184. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 185. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 186. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 187. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 188. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 189. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 190. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 191. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 192. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 193. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 194. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 195. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 196. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 197. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 198. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 199. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 200. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 201. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 202. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 203. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 204. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 205. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2018-2024 (USD MILLION)
  • TABLE 206. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2025-2032 (USD MILLION)
  • TABLE 207. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 208. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 209. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 210. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 211. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 212. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 213. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 214. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 215. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 216. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 217. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 218. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 219. EUROPE SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 220. EUROPE SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 221. EUROPE SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 222. EUROPE SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 223. EUROPE SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 224. EUROPE SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 225. EUROPE SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 226. EUROPE SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 227. EUROPE SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 228. EUROPE SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 229. EUROPE SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 230. EUROPE SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 231. EUROPE SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 232. EUROPE SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 233. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 234. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 235. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 236. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 237. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 238. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 239. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 240. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 241. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 242. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 243. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 244. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 245. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 246. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 247. AFRICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 248. AFRICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 249. AFRICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 250. AFRICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 251. AFRICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 252. AFRICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 253. AFRICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 254. AFRICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 255. AFRICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 256. AFRICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 257. AFRICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 258. AFRICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 259. AFRICA SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 260. AFRICA SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 261. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 262. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 263. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 264. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 265. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 266. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 267. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 268. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 269. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 270. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 271. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 272. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 273. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 274. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 275. GLOBAL SPACE PROPULSION MARKET SIZE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 276. GLOBAL SPACE PROPULSION MARKET SIZE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 277. ASEAN SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 278. ASEAN SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 279. ASEAN SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 280. ASEAN SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 281. ASEAN SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 282. ASEAN SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 283. ASEAN SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 284. ASEAN SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 285. ASEAN SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 286. ASEAN SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 287. ASEAN SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 288. ASEAN SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 289. ASEAN SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 290. ASEAN SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 291. GCC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 292. GCC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 293. GCC SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 294. GCC SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 295. GCC SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 296. GCC SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 297. GCC SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 298. GCC SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 299. GCC SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 300. GCC SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 301. GCC SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 302. GCC SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 303. GCC SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 304. GCC SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 305. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 306. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 307. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 308. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 309. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 310. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 311. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 312. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 313. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 314. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 315. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 316. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 317. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 318. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 319. BRICS SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 320. BRICS SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 321. BRICS SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 322. BRICS SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 323. BRICS SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 324. BRICS SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 325. BRICS SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 326. BRICS SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 327. BRICS SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 328. BRICS SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 329. BRICS SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 330. BRICS SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 331. BRICS SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 332. BRICS SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 333. G7 SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 334. G7 SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 335. G7 SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 336. G7 SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 337. G7 SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 338. G7 SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 339. G7 SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 340. G7 SPACE PROPULSION MARKET SIZE, BY SATELLITE PLA