封面
市场调查报告书
商品编码
1918618

单刀双掷模拟开关市场:按技术、封装类型、应用、终端用户产业和管道划分 - 全球预测(2026-2032年)

SPDT Analog Switches Market by Technology, Package Type, Application, End Use Industry, Channel - Global Forecast 2026-2032

出版日期: | 出版商: 360iResearch | 英文 183 Pages | 商品交期: 最快1-2个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

2025 年 SPDT 类比开关市场价值为 1.3183 亿美元,预计到 2026 年将成长至 1.464 亿美元,年复合成长率为 5.15%,到 2032 年将达到 1.8748 亿美元。

关键市场统计数据
基准年 2025 1.3183亿美元
预计年份:2026年 1.464亿美元
预测年份 2032 1.8748亿美元
复合年增长率 (%) 5.15%

对单刀双掷(SPDT)模拟开关的全面概述:重点介绍其在现代电子系统中的关键功能作用、拓扑结构权衡以及不断演变的设计优先级。

本文将单刀双掷 (SPDT) 类比开关置于更广泛的电子生态系统中,说明它们作为基本讯号路由元件的作用,它们能够在两条讯号路径之间实现紧凑、低损耗的切换。这些装置广泛应用于各种产品类型,为设计人员提供低导通电阻、低电荷注入和可预测的类比性能——这些特性对于高保真音讯链路、精密测量仪器、高频前端和电源管理电路至关重要。因此,选择标准不仅应基于成本,还应考虑封装尺寸、驱动电压相容性以及与下游类比讯号链路的交互作用。

重塑单刀双掷类比开关设计与采购的新趋势:整合压力、射频效能要求和供应链弹性

本节描述了一项变革性的变化,它重新定义了设计人员和采购团队对单刀双掷 (SPDT) 模拟开关的看法,首先是整合化趋势的推进,即向多功能装置和小型封装的转变。随着装置预算的收紧和基板面积的日益有限,设计人员越来越重视紧凑型封装和整合功能,以减少外部元件数量,同时保持类比效能。同时,系统整合度的不断提高也推动了对能够在温度和製程变化下保持稳定工作特性的装置的需求,迫使供应商改进其製造流程和特性表征方法。

评估2025年美国关税对电子产品供应链的影响:重点在于采购、设计和合约方面为因应政策干扰所做的调整

本分析评估了2025年关税对美国电子元件分销的累积影响,并检验了这些措施如何改变了筹资策略和价格谈判方式。作为应对措施,采购部门立即重新评估了关税转嫁成本和合规相关成本,并将其纳入总到岸成本(TLC)框架,这加速了合格供应商的多元化,并提高了对本地组装方案的兴趣。因此,采购者更加重视模组化供应商关係,以便快速筛选出符合条件的替代製造商和封装类型,从而降低贸易政策波动带来的风险。

产业細項分析阐明了产业领域、应用分类、技术平台、分销管道和封装形状如何共同决定元件选择的趋势。

关键的细分市场洞察揭示了产品需求和商业性行为如何因最终用户产业、应用、技术、通路和封装类型而异,以及这些差异如何影响市场推广策略和工程优先事项。从最终用户产业的角度来看,需求驱动因素差异显着。汽车产业对可靠性和温度性能有着严格的要求,而家用电子电器则优先考虑低成本和小尺寸。医疗产业需要精确度和法规可追溯性,而工业产业则强调产品的稳健性和长寿命。通讯应用需要高频稳定性和讯号完整性。这些特定产业的驱动因素转化为不同的应用需求。例如,音讯切换强调低失真和低电荷注入,电源管理应用需要高电流处理能力和低导通电阻,射频切换需要出色的隔离度和低插入损耗,而讯号路由则强调可预测的电容和低漏电流。

美洲、欧洲、中东和非洲以及亚太市场在需求模式、监管要求和供应链结构方面存在战略性区域差异

区域洞察揭示了美洲、欧洲、中东和非洲以及亚太地区不同的需求模式和战略重点,从而影响供应商策略和在地化工作。美洲强调快速原型製作环境、设计公司与半导体供应商之间的紧密合作,以及重视可追溯性和元件来源的强大售后市场文化。这些特点有利于建立响应迅速的分销网络和工程支援模式,从而加快首个原型的开发速度并实现快速的设计迭代。

供应商策略、技术差异化和通路模式的竞争情报,决定了整个产业的设计参与度和资格认证优势。

主要企业分析检验领先的半导体供应商和元件製造商如何透过技术蓝图、产品系列和通路策略实现差异化,以满足多元化的客户需求。市场领导利用广泛的设计实施网络和深厚的应用支持,确保与系统整合商儘早建立联繫。同时,中端市场和利基市场参与者透过提供专用拓扑结构(例如低漏电 JFET 装置和用于高效能应用的 MEMS 开关)来增强其竞争地位。此外,一些公司正专注于垂直整合,并改进独家流程,以提高模拟线性度、降低变异性,并满足汽车和工业客户严苛的温度范围要求。

为工程、采购和销售团队提供实际有效的措施,以增强韧性、加快设计采纳速度并优化零件选择流程。

实际可行的建议为工程领导者、采购团队和商业负责人提案了具体步骤,以加强产品蓝图、提高采购韧性并确立客户价值提案。首先,工程部门应在开发週期的早期阶段,透过对至少两个功能等效但封装和技术规格不同的零件进行认证,并建立多源采购机制,来降低设计变更风险。其次,采购和法务部门应将关税和贸易政策风险纳入总成本评估和合约条款,以分散风险并确保供应的连续性。这些措施结合,可以建立营运缓衝机制,在应对外部衝击的同时,维持产品进度。

采用透明、多方面的调查方法,结合一手访谈、资料表检验和供应链分析,以确保为组件负责人提供可重复的洞察。

本调查方法概述了一种严谨的多方面方法,结合了访谈、技术文献综述、产品资料手册分析和供应链映射,以全面了解单刀双掷(SPDT)模拟开关。关键输入包括与设计工程师、采购主管和通路合作伙伴进行结构化访谈,以揭示实际应用中的权衡取舍、认证时间表和采购惯例。这些定性输入与对装置资料手册和应用说明的详细技术审查进行三角验证,以检验效能声明并映射参数在音讯、电源管理、射频和讯号路由等应用中的相关性。

对技术、商业性和供应链需求进行综合分析,以确定成功的单刀双掷模拟开关选型方案和专案风险缓解策略。

结论总结了报告的核心主题:单刀双掷(SPDT)模拟开关仍然是至关重要的组件,其选择越来越依赖模拟性能、封装限制和供应链等因素的综合考量,而不仅仅是价格。随着系统对更高整合度、更优异的射频效能和更严格的可靠性要求不断提高,成功取决于工程、采购和商务部门之间早期开展跨职能协作。此外,贸易行动和区域製造地转移等外部压力凸显了积极主动地选择供应商和製定分散风险且不影响技术相容性的合约安排的必要性。

目录

第一章:序言

第二章调查方法

  • 研究设计
  • 研究框架
  • 市场规模预测
  • 数据三角测量
  • 调查结果
  • 调查前提
  • 调查限制

第三章执行摘要

  • 首席体验长观点
  • 市场规模和成长趋势
  • 2025年市占率分析
  • FPNV定位矩阵,2025
  • 新的商机
  • 下一代经营模式
  • 产业蓝图

第四章 市场概览

  • 产业生态系与价值链分析
  • 波特五力分析
  • PESTEL 分析
  • 市场展望
  • 上市策略

第五章 市场洞察

  • 消费者洞察与终端用户观点
  • 消费者体验基准
  • 机会地图
  • 分销通路分析
  • 价格趋势分析
  • 监理合规和标准框架
  • ESG与永续性分析
  • 中断和风险情景
  • 投资报酬率和成本效益分析

第六章:美国关税的累积影响,2025年

第七章:人工智慧的累积影响,2025年

第八章 单刀双掷模拟开关市场(依技术划分)

  • CMOS传输闸
  • JFET
  • MEMS

9. 依封装类型分類的 SPDT 类比开关市场

  • DIP
  • QFN
  • 表面黏着技术型
  • TSSOP

第十章 单刀双掷模拟开关市场依应用领域划分

  • 音讯切换
  • 电源管理
  • 射频开关
  • 讯号路由

第十一章 依最终用户产业分類的 SPDT 模拟开关市场

  • 家用电子电器
  • 卫生保健
  • 工业的
  • 沟通

第十二章 SPDT 类比开关市场(按通路划分)

  • 直销
  • 分配
  • 在线的

第十三章 单刀双掷模拟开关市场(依地区划分)

  • 美洲
    • 北美洲
    • 拉丁美洲
  • 欧洲、中东和非洲
    • 欧洲
    • 中东
    • 非洲
  • 亚太地区

第十四章 单刀双掷模拟开关市场(依类别划分)

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

第十五章 各国单刀双掷模拟开关市场

  • 美国
  • 加拿大
  • 墨西哥
  • 巴西
  • 英国
  • 德国
  • 法国
  • 俄罗斯
  • 义大利
  • 西班牙
  • 中国
  • 印度
  • 日本
  • 澳洲
  • 韩国

第十六章美国单刀双掷类比开关市场

第十七章 中国单刀双掷类比开关市场

第十八章 竞争格局

  • 市场集中度分析,2025年
    • 浓度比(CR)
    • 赫芬达尔-赫希曼指数 (HHI)
  • 近期趋势及影响分析,2025 年
  • 2025年产品系列分析
  • 基准分析,2025 年
  • Alpha and Omega Semiconductor Limited
  • Analog Devices, Inc.
  • Asahi Kasei Microdevices Corporation
  • Broadcom Inc.
  • Diodes Incorporated
  • Gowin Semiconductor Corporation
  • Infineon Technologies AG
  • Littelfuse, Inc.
  • Maxim Integrated Products, Inc.
  • Microchip Technology Incorporated
  • Nisshinbo Micro Devices Inc.
  • NXP Semiconductors NV
  • ON Semiconductor Corporation
  • Qorvo, Inc.
  • Renesas Electronics Corporation
  • ROHM Co., Ltd.
  • Sanken Electric Co., Ltd.
  • Semtech Corporation
  • Silicon Laboratories Inc.
  • Skyworks Solutions, Inc.
  • STMicroelectronics NV
  • Texas Instruments Incorporated
  • Torex Semiconductor Ltd.
  • Toshiba Electronic Devices & Storage Corporation
  • Vishay Intertechnology, Inc.
Product Code: MRR-AE420CB15610

The SPDT Analog Switches Market was valued at USD 131.83 million in 2025 and is projected to grow to USD 146.40 million in 2026, with a CAGR of 5.15%, reaching USD 187.48 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 131.83 million
Estimated Year [2026] USD 146.40 million
Forecast Year [2032] USD 187.48 million
CAGR (%) 5.15%

Comprehensive orientation to SPDT analog switches emphasizing their critical functional roles, topology trade-offs, and evolving design priorities across modern electronic systems

The introduction contextualizes single-pole double-throw analog switches within the broader electronics ecosystem by clarifying their role as fundamental signal routing elements that enable compact, low-loss switching between two signal paths. These devices appear across diverse product categories, providing designers with low on-resistance, low charge injection, and predictable analog performance that are essential for high-fidelity audio chains, precision measurement instruments, radio-frequency front ends, and power management circuits. Consequently, their selection criteria extend beyond cost to include package footprint, drive voltage compatibility, and interaction with downstream analog signal chains.

Building on this technical framing, the introduction examines practical design trade-offs such as CMOS transmission gate versus JFET topologies, where designers balance linearity, leakage, and switch capacitance against control-voltage constraints. It also highlights the growing interest in MEMS-based solutions where mechanical isolation promises improved isolation and lower distortion in niche high-performance applications. Finally, the section outlines how evolving system architectures-driven by miniaturization, enhanced connectivity, and stricter regulatory standards-are reshaping component specifications and elevating the strategic importance of SPDT analog switch selection in product development cycles.

Emerging forces reshaping SPDT analog switch design and procurement including integration pressures, RF performance demands, and supply chain resilience measures

This section describes transformative shifts that have redefined how designers and procurement teams approach SPDT analog switches, beginning with integration pressures that favor multifunction devices and smaller packages. As device budgets tighten and board real estate becomes scarcer, designers increasingly prioritize compact package types and integrated features that reduce external component count, while still preserving analog performance. Concurrently, the push toward higher system integration has amplified demand for devices that offer consistent behavior across temperature and process variations, prompting suppliers to refine manufacturing and characterization practices.

Alongside integration trends, the proliferation of high-speed interfaces and wireless applications has elevated RF switching performance as a distinct design axis. This change has driven renewed attention to parameters such as insertion loss, isolation, and harmonic distortion, and has encouraged cross-disciplinary collaboration between analog and RF engineers. Finally, sustainability and supply-chain resilience have emerged as non-technical but equally transformative forces. Industry stakeholders are responding by diversifying supplier relationships, qualifying alternate package options, and incorporating lifecycle considerations into component selection, all of which produce ripple effects across specification writing and sourcing strategies.

Assessment of the 2025 U.S. tariff effects on electronic component supply chains highlighting procurement, engineering, and contracting adaptations to policy disruption

This analysis assesses the cumulative impact of tariffs implemented in 2025 on U.S. flows of electronic components and examines how those measures altered sourcing strategies and pricing negotiation practices. In the immediate aftermath, procurement teams re-evaluated total landed cost frameworks to include tariff pass-through and compliance overhead, which in turn accelerated diversification of qualified suppliers and boosted interest in local assembly options. As a consequence, buyers placed greater emphasis on modular supplier relationships that allowed rapid qualification of alternate manufacturers and package types to mitigate exposure to trade policy shifts.

In addition, engineering groups responded by broadening their acceptable part lists to include functionally equivalent devices with differing package styles and technology bases, thereby increasing design flexibility. This pragmatic adaptation reduced single-source dependencies while preserving time-to-market objectives. From a commercial standpoint, the tariff environment also catalyzed more disciplined contract structures, including longer lead-time commitments and adjusted payment terms to share risk. Overall, the tariff episode reinforced the importance of proactive cross-functional alignment among sourcing, legal, and engineering teams to absorb policy-driven shocks without derailing product roadmaps.

Multidimensional segmentation analysis revealing how industry verticals, application classes, technology platforms, distribution channels, and package footprints jointly determine component selection dynamics

Key segmentation insights explore how product requirements and commercial behavior diverge across end-use industries, applications, technologies, channels, and package types, and how those distinctions inform go-to-market and engineering priorities. When viewed through the lens of end-use industry, demand drivers vary markedly: Automotive environments impose stringent reliability and temperature performance criteria, while consumer electronics prioritize low cost and small footprints; healthcare demands precision and regulatory traceability; industrial sectors emphasize robustness and long product lifetimes; and telecommunication applications require high-frequency stability and signal integrity. These industry-specific drivers cascade into distinct application needs, where audio switching stresses low distortion and low charge injection, power management applications value high current handling and low on-resistance, RF switching demands superior isolation and low insertion loss, and signal routing emphasizes predictable capacitance and low leakage.

Technology choice surfaces as a critical discriminant: CMOS transmission gate devices often offer a compelling balance of cost and integration for many mainstream applications, JFET-based options provide low-noise advantages for specific analog front ends, and MEMS technologies appeal to niche high-performance markets with exceptional isolation characteristics. Channel dynamics further influence adoption patterns; direct sales arrangements favor customized technical support and design-win opportunities for high-volume or specialized projects, distributors offer breadth and rapid availability for standard parts, and online channels expedite small-batch procurement and prototyping. Finally, package type shapes assembly and thermal performance considerations, where DIP formats support legacy through-hole assembly, QFN and SMD types enable minimal board space and thermal efficiency, and TSSOP packages provide an intermediate balance for mixed-technology boards. Taken together, these segmentation dimensions create a complex matrix of technical and commercial priorities that manufacturers and buyers must navigate to align specifications with supply options.

Regional strategic contrasts in demand patterns, regulatory expectations, and supply chain configurations across the Americas, Europe Middle East & Africa, and Asia-Pacific markets

Regional insights demonstrate differentiated demand patterns and strategic priorities across the Americas, Europe Middle East & Africa, and Asia-Pacific regions, shaping supplier strategies and localization efforts. In the Americas, emphasis lies on rapid prototyping ecosystems, close collaboration between design houses and semiconductor suppliers, and a strong aftermarket culture that values traceability and parts provenance. These characteristics favor responsive distribution networks and engineering support models that accelerate time-to-first-prototype and enable agile design iterations.

By contrast, Europe, Middle East & Africa presents a patchwork of regulatory regimes and industrial clusters where compliance, functional safety standards, and long-term product stewardship weigh heavily in vendor selection. Accordingly, suppliers that demonstrate rigorous quality systems and localized technical support tend to find greater traction in complex industrial and healthcare projects. Moving to Asia-Pacific, the landscape features a dense manufacturing base, high-volume consumer electronics demand, and robust contract-manufacturing networks; this region often leads in scaling production and driving cost efficiencies, but also demands tight supplier integration and rapid qualification cycles. Across all regions, transitional trends such as nearshoring, localized certification processes, and evolving trade policies require continuous adaptation by both suppliers and buyers to sustain supply continuity and competitive positioning.

Competitive intelligence on supplier strategies, technology differentiation, and channel models that determine design engagement and qualification advantages across the industry

Key companies insights examine how leading semiconductor suppliers and component manufacturers are differentiating through technology roadmaps, product portfolios, and channel strategies to address diverse customer needs. Market leaders leverage broad design-in networks and extensive application support to secure early engagement with system integrators, while midsize and niche firms compete by offering specialized topologies such as low-leakage JFET devices or MEMS-based switches for high-performance applications. In parallel, some companies emphasize vertical integration and proprietary process refinements to improve analog linearity, reduce variability, and support stricter temperature bounds demanded by automotive and industrial customers.

Furthermore, supply-chain strategies vary across the competitive set: larger suppliers maintain multiple fabrication and assembly partnerships to enhance resilience, whereas specialized vendors often focus on deep technical collaboration with targeted customers to achieve design wins. Channel approaches are similarly differentiated, with some firms prioritizing direct OEM relationships to deliver tailored support and others leveraging distributors and online platforms to broaden reach and speed procurement cycles. These company-level strategic choices influence qualification timelines, pricing negotiations, and the availability of specialized package types, ultimately shaping the competitive calculus for purchasers and design teams alike.

Practical, high-impact actions for engineering, procurement, and commercial teams to enhance resilience, accelerate design wins, and optimize component selection workflows

Actionable recommendations propose concrete steps for engineering leaders, procurement teams, and commercial strategists to strengthen product roadmaps, sourcing resilience, and customer value propositions. First, engineering organizations should institutionalize multi-sourcing readiness by qualifying at least two functional equivalents with varied package and technology profiles early in development cycles to reduce redesign risk. Second, procurement and legal teams should embed tariff and trade-policy contingencies into total-cost evaluations and contract terms to share exposure and preserve supply continuity. Together, these measures create operational buffers that absorb external shocks while maintaining product timelines.

Additionally, product and business leaders should prioritize collaboration between analog, RF, and systems architects to ensure that switch selection aligns with end-to-end signal integrity goals rather than isolated component metrics. Sales and channel directors ought to develop differentiated support packages for OEMs and distributors, offering technical training, quick-sample programs, and lifecycle assistance to accelerate design wins and reduce aftermarket friction. Finally, companies should invest in lifecycle data and component traceability to meet increasingly stringent regulatory and quality expectations, thereby reducing time-to-qualification in regulated verticals and reinforcing customer trust in component provenance and long-term availability.

Transparent, multi-method research approach combining primary interviews, datasheet validation, and supply-chain mapping to ensure reproducible insights for component decision makers

The research methodology outlines a rigorous, multi-source approach combining primary interviews, technical literature reviews, product datasheet analysis, and supply-chain mapping to produce well-rounded insights into SPDT analog switches. Primary inputs include structured interviews with design engineers, procurement leads, and channel partners to surface real-world trade-offs, qualification timelines, and procurement practices. These qualitative inputs are triangulated with detailed technical reviews of device datasheets and application notes to validate performance claims and to map parameter relevance across applications such as audio, power management, RF, and signal routing.

In addition to component-level analysis, the methodology incorporates supplier capability assessments and regional supply-chain scans to identify manufacturing footprints, assembly options, and distribution patterns. The approach applies careful cross-validation to reconcile supplier marketing claims with independent test data where available, and places particular emphasis on reproducibility of key analog metrics such as on-resistance stability, charge injection, and isolation under realistic operating conditions. Throughout, the methodology follows transparent documentation practices to enable users to trace conclusions back to source inputs and to replicate targeted sub-analyses for bespoke decision-support needs.

Integrated synthesis of technical, commercial, and supply-chain imperatives that define successful SPDT analog switch selection and program risk mitigation strategies

The conclusion synthesizes the report's central themes: SPDT analog switches remain indispensable building blocks whose selection increasingly reflects a blend of analog performance, packaging constraints, and supply-chain considerations rather than price alone. As systems continue to demand higher integration, better RF behavior, and stricter reliability credentials, successful outcomes will hinge on early cross-functional alignment between engineering, procurement, and commercial teams. Moreover, external pressures such as trade measures and regional manufacturing shifts underscore the need for proactive supplier qualification and contractual arrangements that distribute risk without compromising technical fit.

In closing, stakeholders who adopt a holistic approach-integrating topology trade-offs, package optimization, and channel flexibility-will be better positioned to secure design wins, accelerate time to market, and mitigate downstream supply interruptions. The path forward requires continuous technical vigilance, adaptive sourcing strategies, and closer collaboration between component suppliers and system integrators to transform market intelligence into competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. SPDT Analog Switches Market, by Technology

  • 8.1. CMOS Transmission Gate
  • 8.2. JFET
  • 8.3. MEMS

9. SPDT Analog Switches Market, by Package Type

  • 9.1. DIP
  • 9.2. QFN
  • 9.3. SMD
  • 9.4. TSSOP

10. SPDT Analog Switches Market, by Application

  • 10.1. Audio Switching
  • 10.2. Power Management
  • 10.3. RF Switching
  • 10.4. Signal Routing

11. SPDT Analog Switches Market, by End Use Industry

  • 11.1. Automotive
  • 11.2. Consumer Electronics
  • 11.3. Healthcare
  • 11.4. Industrial
  • 11.5. Telecommunication

12. SPDT Analog Switches Market, by Channel

  • 12.1. Direct Sales
  • 12.2. Distribution
  • 12.3. Online

13. SPDT Analog Switches Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. SPDT Analog Switches Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. SPDT Analog Switches Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States SPDT Analog Switches Market

17. China SPDT Analog Switches Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. Alpha and Omega Semiconductor Limited
  • 18.6. Analog Devices, Inc.
  • 18.7. Asahi Kasei Microdevices Corporation
  • 18.8. Broadcom Inc.
  • 18.9. Diodes Incorporated
  • 18.10. Gowin Semiconductor Corporation
  • 18.11. Infineon Technologies AG
  • 18.12. Littelfuse, Inc.
  • 18.13. Maxim Integrated Products, Inc.
  • 18.14. Microchip Technology Incorporated
  • 18.15. Nisshinbo Micro Devices Inc.
  • 18.16. NXP Semiconductors N.V.
  • 18.17. ON Semiconductor Corporation
  • 18.18. Qorvo, Inc.
  • 18.19. Renesas Electronics Corporation
  • 18.20. ROHM Co., Ltd.
  • 18.21. Sanken Electric Co., Ltd.
  • 18.22. Semtech Corporation
  • 18.23. Silicon Laboratories Inc.
  • 18.24. Skyworks Solutions, Inc.
  • 18.25. STMicroelectronics N.V.
  • 18.26. Texas Instruments Incorporated
  • 18.27. Torex Semiconductor Ltd.
  • 18.28. Toshiba Electronic Devices & Storage Corporation
  • 18.29. Vishay Intertechnology, Inc.

LIST OF FIGURES

  • FIGURE 1. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL SPDT ANALOG SWITCHES MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL SPDT ANALOG SWITCHES MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 12. UNITED STATES SPDT ANALOG SWITCHES MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 13. CHINA SPDT ANALOG SWITCHES MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY CMOS TRANSMISSION GATE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY CMOS TRANSMISSION GATE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY CMOS TRANSMISSION GATE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY JFET, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY JFET, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY JFET, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY MEMS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY MEMS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY MEMS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY DIP, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY DIP, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY DIP, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY QFN, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY QFN, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY QFN, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY SMD, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY SMD, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY SMD, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY TSSOP, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY TSSOP, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY TSSOP, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY AUDIO SWITCHING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY AUDIO SWITCHING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY AUDIO SWITCHING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY POWER MANAGEMENT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY POWER MANAGEMENT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY POWER MANAGEMENT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY RF SWITCHING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY RF SWITCHING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY RF SWITCHING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY SIGNAL ROUTING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY SIGNAL ROUTING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY SIGNAL ROUTING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY AUTOMOTIVE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY AUTOMOTIVE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY AUTOMOTIVE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY CONSUMER ELECTRONICS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY CONSUMER ELECTRONICS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY CONSUMER ELECTRONICS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY HEALTHCARE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY HEALTHCARE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY HEALTHCARE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY INDUSTRIAL, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY INDUSTRIAL, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY INDUSTRIAL, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY TELECOMMUNICATION, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY TELECOMMUNICATION, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY TELECOMMUNICATION, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY DIRECT SALES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY DIRECT SALES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY DIRECT SALES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY DISTRIBUTION, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY DISTRIBUTION, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY DISTRIBUTION, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY ONLINE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY ONLINE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY ONLINE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 65. AMERICAS SPDT ANALOG SWITCHES MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 66. AMERICAS SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 67. AMERICAS SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 68. AMERICAS SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 69. AMERICAS SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 70. AMERICAS SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 71. NORTH AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 72. NORTH AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 73. NORTH AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 74. NORTH AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 75. NORTH AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 76. NORTH AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 77. LATIN AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 78. LATIN AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 79. LATIN AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 80. LATIN AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 81. LATIN AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 82. LATIN AMERICA SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 83. EUROPE, MIDDLE EAST & AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 84. EUROPE, MIDDLE EAST & AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 85. EUROPE, MIDDLE EAST & AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 86. EUROPE, MIDDLE EAST & AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 87. EUROPE, MIDDLE EAST & AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 88. EUROPE, MIDDLE EAST & AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 89. EUROPE SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 90. EUROPE SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 91. EUROPE SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 92. EUROPE SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 93. EUROPE SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 94. EUROPE SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 95. MIDDLE EAST SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 96. MIDDLE EAST SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 97. MIDDLE EAST SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 98. MIDDLE EAST SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 99. MIDDLE EAST SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 100. MIDDLE EAST SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 101. AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 102. AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 103. AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 104. AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 105. AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 106. AFRICA SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 107. ASIA-PACIFIC SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 108. ASIA-PACIFIC SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 109. ASIA-PACIFIC SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 110. ASIA-PACIFIC SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 111. ASIA-PACIFIC SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 112. ASIA-PACIFIC SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 113. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 114. ASEAN SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 115. ASEAN SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 116. ASEAN SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 117. ASEAN SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 118. ASEAN SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 119. ASEAN SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 120. GCC SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 121. GCC SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 122. GCC SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 123. GCC SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 124. GCC SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 125. GCC SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 126. EUROPEAN UNION SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 127. EUROPEAN UNION SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 128. EUROPEAN UNION SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 129. EUROPEAN UNION SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 130. EUROPEAN UNION SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 131. EUROPEAN UNION SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 132. BRICS SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 133. BRICS SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 134. BRICS SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 135. BRICS SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 136. BRICS SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 137. BRICS SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 138. G7 SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 139. G7 SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 140. G7 SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 141. G7 SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 142. G7 SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 143. G7 SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 144. NATO SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 145. NATO SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 146. NATO SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 147. NATO SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 148. NATO SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 149. NATO SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 150. GLOBAL SPDT ANALOG SWITCHES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 151. UNITED STATES SPDT ANALOG SWITCHES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 152. UNITED STATES SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 153. UNITED STATES SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 154. UNITED STATES SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 155. UNITED STATES SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 156. UNITED STATES SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 157. CHINA SPDT ANALOG SWITCHES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 158. CHINA SPDT ANALOG SWITCHES MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 159. CHINA SPDT ANALOG SWITCHES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 160. CHINA SPDT ANALOG SWITCHES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 161. CHINA SPDT ANALOG SWITCHES MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 162. CHINA SPDT ANALOG SWITCHES MARKET SIZE, BY CHANNEL, 2018-2032 (USD MILLION)