封面
市场调查报告书
商品编码
1456867

SOEC电解槽市场 - 2024 年至 2029 年预测

SOEC Electrolyzer Market - Forecasts from 2024 to 2029

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 144 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

SOEC电解槽市场预计将从2022年的794.66亿美元成长到2029年的33,634.18亿美元,复合年增长率为59.71%。

固体氧化物燃料电池技术形成可靠的电解堆,能够透过蒸气电解生产氢气,并透过蒸气和二氧化碳共电解合成气体(由氢气和一氧化碳组成)。固体氧化物电解池 (SOEC) 技术也能够同时从这些输入源生产高纯度氧气。特别是,OxEon(该公司)已成功从模拟火星大气中提取高纯度氧气,展示了该技术的多功能性。

SOEC 应用扩展到多种用途的氢气生产,包括运输、工业製程和发电。此外,SOEC在将多余的可再生能源转化为氢气并促进其储存以供后续发电方面发挥着重要作用。另一个值得注意的应用是共同生产氢气和合成气(氢气和一氧化碳的组合)。

使用 SOEC 扩大氢气生产是由多种因素推动的:对清洁氢气的需求不断增长、政府的支持性政策和奖励以及提高生产过程效率和可行性的持续技术进步。这为 SOEC 技术的广泛采用奠定了基础,以满足全球对永续和清洁能源解决方案日益增长的需求。

市场驱动因素

  • 能源和电力产业预计在未来几年将显着成长。

由于有利的投资流入和加强清洁能源基础设施的努力,能源和电力产业预计在未来几年将呈现强劲成长。国际能源总署(IEA)资料显示,全球清洁能源投资达1,6,170亿美元,较2021年成长14.8%。此外,根据相同数据,到2023年全球投资预计将达到1.74兆美元。

此外,2022年石化燃料投资小幅成长4.7%,但随着各国加大二氧化碳排放,石化燃料使用量将下降,石化燃料投资预计将受到抑制。

能源产业涉及石化燃料和再生能源来源的生产和供应。这些部门在促进工业成长、从而推动经济改善方面发挥着重要作用。

例如,根据国际能源总署(IEA)的预测,到2022年,工业部门将占全球能源使用量的37%,达166 EJ。此外,据同一消息人士透露,到2030年,工业能源生产力预计将以每年3%的速度成长,到2030年,电力预计将占工业能源使用的30%。

此外,旨在提高能源生产(尤其是再生能源来源)的各种政府措施和投资预计将在未来几年显着促进能源产业的成长。例如,2023年6月,拜登政府宣布投资4,500万美元,作为其「投资美国」计画的一部分,以加速国内太阳能电池製造。

  • 工业活动扩张带来的需求

工业活动的快速成长以及都市化带来的住宅和商业设施的快速增长导致全球能源需求急剧增加,进而推高整体产能。根据IES《2022年世界能源展望》报告,2021年全球能源供应量将达到624EJ,比2020年供应量592EJ增加5.4%,比2010年产量542EJ增加15.1%。

根据国际能源总署报告,2021年欧洲能源供应量为82.3 EJ(艾焦耳),比2020年的77.9 EJ增加5.6%。同时,该地区的能源需求也大幅增加。

为了满足这种不断增长的需求,欧洲正在积极推广使用太阳能和风能等可再生能源发电。该地区已启动各种措施和投资,以加强能源供应和建立清洁能源基础设施,推动 SOEC电解槽市场的成长。

例如,欧盟委员会2022年5月推出的REPowerEU计画旨在加强清洁能源生产和储存,同时实现欧洲能源供应多元化。这些倡议预计将为 SOEC电解槽市场的成长提供光明的前景。

阻碍因素

  • 製造成本高

与蒸汽甲烷改性(SMR) 等传统氢气生产方法相比,SOEC 系统的成本要高得多。这种高额的初始投资给未来的用户带来了挑战,特别是在成本是关键问题的行业中。陶瓷电解质和金属互连等特殊材料的使用显着增加了整个系统的成本。此外,与 SMR 等成熟技术相比,市场规模相对有限,这限制了透过规模经济节省成本的潜力。

SOEC电解槽市场根据组件分为工厂平衡 (BOP) 和堆迭。

根据组件,SOEC电解槽市场分为 BOP(设备平衡)和烟囱。工厂平衡 (BOP) 包括电堆周围的所有组件,对于电堆的正常运作以及无缝整合到更广泛的氢气生产系统中至关重要。另一方面,电堆是 SOEC电解槽的核心组件,在水分解过程本身中起着至关重要的作用。

美洲预计将占据 SOEC电解槽市场的主要份额。

由于工业生产力提高和人口成长,美国、加拿大、墨西哥和巴西等美洲主要经济体的能源需求大幅增加。此外,积极促进可再生能源生产以及扩大石油和天然气探勘活动也是进一步的推动因素。根据国际能源总署(IEA)《2022年世界能源展望》,美洲能源供应量为139.9 EJ,比2020年的133.5 EJ增加4.8%。

此外,同一份文件显示,2021年美国将占美洲能源总产量的62%,而巴西等其他经济体将占9.5%。

公司产品

  • 提供製氢的高效能固体氧化物电解技术。该公司的固体氧化物电解槽电池 (SOEC) 旨在以 90% 的电效率实现氢气生产,并且可以透过利用多余的热量来实现 100% 的效率。
  • Bloom Energy - Bloom Energy 已开始使用安装在加州山景城 NASA 艾姆斯研究中心的世界上最大的固体氧化物电解槽来生产氢气。与质子电解质膜 (PEM) 和碱性电解质膜等经过商业性验证的低温电解槽相比,这种高温、高效能装置每兆瓦 (MW) 的氢气产量提高了 20-25%。 4MW Bloom Electrolyzer(TM) 每天能够生产超过 2.4 吨氢气,在两个月内建成、安装并运作,展示了其快速部署能力。
  • 托普索 - 我们的 SOEC 技术经过精心设计,可与下游工艺无缝集成,将绿氢转化为用于化学应用和能源储存的绿色氨,用于化学和运输燃料生产的甲醇,以及其他绿色产品,可转化为多种产品,包括化学品和燃料。 TOPSOE(TM) 是少数能够提供加速下一代燃料和化学品生产和普及所需的见解和技术的公司之一。

目录

第一章简介

  • 市场概况
  • 市场定义
  • 调查范围
  • 市场区隔
  • 货币
  • 先决条件
  • 基准年和预测年时间表
  • 相关人员的主要利益

第二章调查方法

  • 研究设计
  • 调查过程

第三章执行摘要

  • 主要发现
  • 分析师观点

第四章市场动态

  • 市场驱动因素
  • 市场限制因素
  • 波特五力分析
  • 产业价值链分析
  • 分析师观点

第五章 SOEC电解槽市场:依组成部分

  • 介绍
  • 波普
    • 市场机会趋势
    • 成长前景
  • 堆迭
    • 市场机会和趋势
    • 成长前景

第六章 SOEC电解槽市场:依应用分类

  • 介绍
  • 氢气生产
    • 市场机会趋势
    • 成长前景
  • 工业製程
    • 市场机会和趋势
    • 成长前景
  • 其他的
    • 市场机会和趋势
    • 成长前景

第 7 章 SOEC电解槽市场:依最终用户分类

  • 介绍
  • 发电
    • 市场机会和趋势
    • 成长前景
  • 运输
    • 市场机会和趋势
    • 成长前景
  • 炼油厂
    • 市场机会和趋势
    • 成长前景
  • 其他的
    • 市场机会和趋势
    • 成长前景

第八章 SOEC电解槽市场:按地区

  • 介绍
  • 美洲
    • 按成分
    • 按用途
    • 按最终用户
    • 按国家/地区
  • 欧洲、中东/非洲
    • 按成分
    • 按用途
    • 按最终用户
    • 按国家/地区
  • 亚太地区
    • 按成分
    • 按用途
    • 按最终用户
    • 按国家/地区

第九章竞争环境及分析

  • 主要企业及策略分析
  • 市场占有率分析
  • 合併、收购、协议和合作
  • 有竞争力的仪表板

第十章 公司简介

  • Altana AG Mitsubishi Power
  • Toshiba Corporation
  • FuelCell Energy Inc.
  • Bloom Energy Corporation
  • Haldor Topsoe
  • Sunfire
  • Kyocera Corporation
  • OxEon Energy
  • Nexceris
  • Redox Power System
简介目录
Product Code: KSI061615906

SOEC Electrolyzer Market market is expected to grow at a CAGR of 59.71% from US$79.466 billion in 2022 to US$3,363.418 billion in 2029.

It has solid oxide fuel cell technology to create a dependable electrolysis stack, enabling the production of hydrogen through steam electrolysis or the synthesis of gas (comprising hydrogen and carbon monoxide) through water vapor and carbon dioxide co-electrolysis. The solid oxide electrolysis cell (SOEC) technology also exhibits the capability to concurrently generate high-purity oxygen from these input sources. Notably, OxEon (the company) has achieved success in extracting high-purity oxygen from a simulated Martian atmosphere, showcasing the versatility of the technology.

The applications of SOECs extend to producing hydrogen for diverse purposes, including transportation, industrial processes, and power generation. Furthermore, SOECs play a crucial role in converting surplus renewable energy into hydrogen, facilitating its storage for subsequent use in power generation. Another noteworthy application involves the co-production of hydrogen and syngas, a combination of hydrogen and carbon monoxide, which finds utility in various processes such as the production of synthetic fuels.

The expansion in hydrogen production using SOECs is propelled by a confluence of factors: the rising demand for clean hydrogen, supportive government policies and incentives, and continuous technological advancements that enhance the efficiency and viability of the production processes. This creates a conducive environment for the widespread adoption of SOEC technology in meeting the growing global demand for sustainable and clean energy solutions.

Market Drivers

  • The energy and power industry is expected to show significant growth in the coming years-

The energy and power industry is expected to show significant growth in the coming years owing to favorable investment inflows, and initiatives to enhance clean energy infrastructure. According to the data provided by the International Energy Agency, the global investment in clean energy reached US$1,617 billion which signified an increase of 14.8% over 2021's investments. Also, as per the same source, global investments are expected to reach US$1,740 billion in 2023.

Moreover, investments in fossil fuels witnessed a slight growth of 4.7% in 2022, however, the growing nations' efforts to reduce their carbon footprint are expected to halt the usage of fossil fuels thereby restraining investments in such sources.

The energy industry relates to producing and supplying energy produced via fossil fuels and renewable sources. Such a sector plays a vital role in promoting industrial growth thereby providing fuel for the upliftment of an economy.

Rapid industrialization coupled with favourable investments in the same has increased the energy consumption scale, for instance, according to the International Energy Agency, in 2022, industrial sectors accounted for 37% of the global energy usage reaching 166EJ. Furthermore, as per the same source, industrial energy productivity is expected to show a 3% increase per year till 2030, and electricity will account for up to 30% of industrial energy usage by 2030.

Moreover, various government initiatives and investments to bolster energy production, especially in renewable sources are anticipated to provide a major boost to the energy industry growth in the coming years. For instance, the Biden administration in June 2023 announced investments of US$45 million as a part of its "Investing in America" to accelerate domestic solar manufacturing in the country.

  • Demand due to growing industrial activities-

The burgeoning industrial activities and the rapid growth of residential and commercial establishments, driven by urbanization, have led to a surge in global energy demand, consequently boosting overall production capacity. According to the "World Energy Outlook 2022" report by IES, the global energy supply in 2021 reached 624 EJ, marking a 5.4% increase from the 2020 supply volume of 592 EJ and a significant 15.1% increase from the 2010 production of 542 EJ.

The International Energy Agency reports that Europe's energy supply in 2021 amounted to 82.3 EJ (Exajoules), reflecting a 5.6% increase compared to the 2020 volume of 77.9 EJ. Concurrently, there has been a notable rise in energy demand in the region.

Europe is actively promoting the use of renewable energy sources such as solar and wind for electricity generation to address this growing demand. Various initiatives and investments have been launched across the region to enhance energy supply and establish clean energy infrastructure, thereby fostering growth in the SOEC electrolyzer market.

For instance, the "REPowerEU Plan," introduced by the European Commission in May 2022, aims to bolster the production and storage of clean energy while diversifying energy supplies in Europe. These efforts are anticipated to offer a positive outlook for the growth of the SOEC electrolyzer market.

Restraint-

  • High cost of production-

SOEC systems are notably pricier compared to traditional hydrogen production methods such as steam methane reforming (SMR). This elevated initial investment presents a challenge for prospective users, particularly in industries where cost is a significant concern. The utilization of specialized materials like ceramic electrolytes and metallic interconnects notably adds to the overall system expenses. Moreover, the relatively limited market size in comparison to well-established technologies like SMR restricts the potential for cost reduction through economies of scale.

The SOEC electrolyzer market is segmented based on components into Balance of Plant (BOP) and Stack.

The SOEC electrolyzer market is segmented based on components, dividing it into Balance of Plant (BOP) and Stack. The Balance of Plant (BOP) encompasses all the components surrounding the stack, crucial for its functioning and seamless integration into a broader hydrogen production system. On the other hand, the Stack serves as the central component of the SOEC electrolyzer, playing a pivotal role in the water-splitting process itself.

Americas is anticipated to hold a significant share of the SOEC Electrolyzer Market-

Energy demand in major economies of the Americas region namely the United States, Canada, Mexico, and Brazil among others is witnessing a significant surge owing to the booming industrial productivity and population growth. Moreover, favourable initiatives to propel energy production via renewable sources coupled with growing oil and natural gas exploration operations are acting as an additional driving factor. According to the International Energy Agency's "World Energy Outlook 2022," the energy supply in the Americas stood at 139.9EJ which represented an increase of 4.8% over 2020's energy supply of 133.5EJ.

Furthermore, as per the same source, the United States accounted for up to 62% of the total energy produced in the Americas for the year 2021, whereas other economies such as Brazil constituted 9.5% for the same year.

Market Developments

  • May 2023- Topsoe constructed of the world's first industrial-scale SOEC electrolyzer facility. With the completion of the new factory, Topsoe made a compelling case for SOEC technology at an industrial scale. The factory boasted an initial manufacturing capacity of 500MW. Topsoe's SOEC technology was stated to be up to 35 percent more efficient than conventional technologies, facilitating more efficient green hydrogen production to support global decarbonization targets.
  • May 2023- The world's largest solid-oxide hydrogen electrolyzer was installed at a NASA facility in California, as announced by Bloom Energy. The 4MW unit was said to be 20-25% more efficient than similarly sized alkaline or PEM machines. Bloom Energy, based in the US, stated that the installation took place and that the electrolyzer would produce 20-25% more hydrogen per megawatt compared to any commercially demonstrated alkaline or PEM equivalent.
  • April 2022- A groundbreaking milestone was reached with the World's Largest High-Temperature Electrolyzer achieving unprecedented efficiency. In a notable achievement, the electrolyzer successfully generated 200 Nm3 of green hydrogen per hour for the first time. Additionally, an electrical efficiency of 84% el, LHV has been demonstrated, marking a level of efficiency previously unparalleled in the field.

Company Products

  • FuelCell Energy Inc- FuelCell Energy Inc. offers high-efficiency solid oxide electrolysis technology for hydrogen production. Their Solid Oxide Electrolyzer Cell (SOEC) is engineered to achieve hydrogen production with 90 percent electrical efficiency, which can reach 100 percent efficiency when utilizing excess heat. The module features a compact design and operates quietly, making it suitable for placement near energy sources.
  • Bloom Energy- Bloom Energy initiated hydrogen generation using the world's largest solid oxide electrolyzer installation at NASA's Ames Research Center in Mountain View, California. This high-temperature, high-efficiency unit produces hydrogen at a rate 20-25% higher per megawatt (MW) compared to commercially demonstrated lower-temperature electrolyzers such as proton electrolyte membrane (PEM) or alkaline ones. The 4 MW Bloom Electrolyzer(TM), capable of producing over 2.4 metric tonnes of hydrogen per day, was constructed, installed, and operationalized within two months to showcase its rapid deployment capabilities.
  • Topsoe- The Company's SOEC technology is meticulously engineered to seamlessly integrate with downstream processes, enabling the conversion of green hydrogen into various products like green ammonia for chemical applications or energy storage, methanol for chemical or transportation fuel production, and other green chemicals and fuels. TOPSOE(TM) stands out as one of the few companies equipped to offer the necessary insights and technology for facilitating the production and widespread availability of next-generation fuels and chemicals.

Market Segmentation

By Component

  • BOP
  • Stack

By Application

  • Hydrogen Production
  • Industrial Process
  • Others

By End-User

  • Power
  • Transportation
  • Refineries
  • Others

By Geography

  • Americas
  • USA
  • Others
  • Europe, Middle East and Africa
  • Germany
  • United Kingdom
  • Others
  • Asia Pacific
  • China
  • Japan
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base, and Forecast Years Timeline
  • 1.8. Key benefits to the stakeholder

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Process

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings
  • 3.2. Analyst View

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. SOEC ELECTROLYZER MARKET BY COMPONENT

  • 5.1. Introduction
  • 5.2. BOP
    • 5.2.1. Market opportunities and trends
    • 5.2.2. Growth prospects
  • 5.3. Stack
    • 5.3.1. Market opportunities and trends
    • 5.3.2. Growth prospects

6. SOEC ELECTROLYZER MARKET BY APPLICATION

  • 6.1. Introduction
  • 6.2. Hydrogen Production
    • 6.2.1. Market opportunities and trends
    • 6.2.2. Growth prospects
  • 6.3. Industrial Process
    • 6.3.1. Market opportunities and trends
    • 6.3.2. Growth prospects
  • 6.4. Others
    • 6.4.1. Market opportunities and trends
    • 6.4.2. Growth prospects

7. SOEC ELECTROLYZER MARKET BY END-USER

  • 7.1. Introduction
  • 7.2. Power
    • 7.2.1. Market opportunities and trends
    • 7.2.2. Growth prospects
  • 7.3. Transportation
    • 7.3.1. Market opportunities and trends
    • 7.3.2. Growth prospects
  • 7.4. Refineries
    • 7.4.1. Market opportunities and trends
    • 7.4.2. Growth prospects
  • 7.5. Others
    • 7.5.1. Market opportunities and trends
    • 7.5.2. Growth prospects

8. SOEC ELECTROLYZER MARKET BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. Americas
    • 8.2.1. By Component
    • 8.2.2. By Application
    • 8.2.3. By End-user
    • 8.2.4. By Country
      • 8.2.4.1. United States
        • 8.2.4.1.1. Market Trends and Opportunities
        • 8.2.4.1.2. Growth Prospects
      • 8.2.4.2. Others
        • 8.2.4.2.1. Market Trends and Opportunities
        • 8.2.4.2.2. Growth Prospects
  • 8.3. Europe, Middle-East and Africa
    • 8.3.1. By Component
    • 8.3.2. By Application
    • 8.3.3. By End-user
    • 8.3.4. By Country
      • 8.3.4.1. Germany
        • 8.3.4.1.1. Market Trends and Opportunities
        • 8.3.4.1.2. Growth Prospects
      • 8.3.4.2. United Kingdom
        • 8.3.4.2.1. Market Trends and Opportunities
        • 8.3.4.2.2. Growth Prospects
      • 8.3.4.3. Others
        • 8.3.4.3.1. Market Trends and Opportunities
        • 8.3.4.3.2. Growth Prospects
  • 8.4. Asia Pacific
    • 8.4.1. By Component
    • 8.4.2. By Application
    • 8.4.3. By End-user
    • 8.4.4. By Country
      • 8.4.4.1. China
        • 8.4.4.1.1. Market Trends and Opportunities
        • 8.4.4.1.2. Growth Prospects
      • 8.4.4.2. Japan
        • 8.4.4.2.1. Market Trends and Opportunities
        • 8.4.4.2.2. Growth Prospects
      • 8.4.4.3. Others
        • 8.4.4.3.1. Market Trends and Opportunities
        • 8.4.4.3.2. Growth Prospects

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisition, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. Altana AG Mitsubishi Power
  • 10.2. Toshiba Corporation
  • 10.3. FuelCell Energy Inc.
  • 10.4. Bloom Energy Corporation
  • 10.5. Haldor Topsoe
  • 10.6. Sunfire
  • 10.7. Kyocera Corporation
  • 10.8. OxEon Energy
  • 10.9. Nexceris
  • 10.10. Redox Power System