封面
市场调查报告书
商品编码
1456963

全球电池感测器市场 - 2024 年至 2029 年预测

Global Battery Sensor Market - Forecasts from 2024 to 2029

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 115 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

2022年电池感测器市场规模为40.01亿美元,复合年增长率为11.82%,2029年市场规模将达87.44亿美元。

汽车能量管理系统的重要组成部分是电池感测器。透过测量温度和充电电压,感测器向汽车通报准确的电池状态。电池感测器可监控影响电池寿命的各种因素,例如电流、电压和温度,而不会干扰资料处理。推动这些感测器需求的其他因素包括电动车市场的扩张以及对工业能源储存解决方案的快速增长的需求。随着世界各地废气法规变得更加严格,汽车製造商越来越多地采用电气和电子元件。豪华汽车销售的扩大也推动了电池感测器市场的成长。据预测,到 2030 年,道路上的电动小客车保有量将超过 2 亿辆,较 2016 年的略高于 200 万辆快速增长。随着电动车普及,对电池感测器的需求也不断增加。 (图片来源:irena.org)

电池感测器可以根据需要准确测量电流、电压和温度。有了这些信息,您可以准确评估电气系统的运作状况和电量,以确保最佳性能。除了电池监控外,它还可以检测车内故障的电子元件。现代汽车中先进技术的采用预计将推动对电池感测器不断增长的需求。

市场驱动因素:

  • 电动车销量增加

随着最新汽车采用尖端技术,对电池感测器的需求也不断扩大。动力来源车辆的主要设计目的是取代对环境有害的传统交通方式。由于技术进步,电动车变得越来越普及。相比之下,电动车效率更高,排放气体和维护成本更低,更容易在家充电,驾驶更平稳,引擎噪音更小。此外,电动车不需要换油,但其成本比同类汽油车稍高。到 2030 年,两轮、三轮和四轮电动车的普及达到 9 亿辆,数量可能超过四轮汽车。 (资料来源:irena.org)。中国工业和资讯化部 (MIIT) 预计,到 2025 年,新能源汽车,主要是电动车 (EV),将占所有汽车销量的 25%。此外,印度政府计划在2030年将30%的汽车实现电动化。 (资料来源:macropolo.org;investindia.gov)

作为包括电动车和电池工厂的投资计画的一部分,特斯拉 (TSLA) 宣布将投资最多 120 亿美元。此外,梅赛德斯-宾士製造商戴姆勒计划在2030年投资超过400亿欧元(470亿美元),以在电动车市场与特斯拉竞争。对电动车的巨额投资将继续推动对电池感测器的需求。

  • 增加可再生能源储存系统的采用。

推动电池感测器市场的关键因素之一是可再生能源储存系统利用率的持续提高。能源储存系统对于储存和控制太阳能和风能等再生能源来源日益整合所产生的间歇性电力至关重要。电池感测器在这些储能係统中至关重要,可监控温度、电压和充电等级等重要指标。透过此即时监控确保电池效率,提高效能并延长电池寿命。对永续和清洁能源解决方案的需求不断增加,电池感测器对于保持能源储存系统可靠和安全的重要性也随之增加。

市场限制因素:

  • 电池感测器可能会发生故障并影响车辆性能。

通常,当灰尘、湿气或电池液进入感应器时,电池感知器就会损坏或短路。例如,在宝马汽车中,电池位于后行李箱的侧舱内,导致湿气渗入电池并损坏感测器。 BMW称之为智慧电池感测器(IBS)。 IBS 故障可能会导致许多电气问题,包括无法启动的情况。电池感测器不仅易碎,而且在维修或拆卸过程中也可能损坏。在许多车辆中,由于电池感测器故障,停止/启动系统可能无法正常运作。因此,此类故障可能会影响汽车销售并对电池感测器的需求产生负面影响。

北美电池感测器市场预计将大幅成长。

北美电动车(EV)产业的成长是推动该地区电池感测器市场的关键因素。随着汽车产业经历向电动的重大转变,电池感测器已成为电动车 (EV) 的重要组成部分。对于控制和监控电池性能至关重要。在北美,由于环保意识的增强和向永续交通的转变,电动车的使用显着增加。透过监控温度、电压和充电等级等变量,电池感测器可确保电动车电池的有效和安全运作。此外,鼓励性的政府计划、财政奖励和不断扩大的电动车充电基础设施正在推动电动车市场的成长,这也影响了该地区对复杂电池感测器技术的需求。

主要进展:

  • 2023年11月,全球大型公司的创新安全解决方案供应商United Safety & Survivability Corporation宣布推出锂离子电池故障侦测感测器。
  • 2023年3月,全球工业氢气检测先驱H2scan开发的HY-ALERTA 5021固态区域氢气监测仪发表。
  • 2022 年 5 月,大陆集团推出了电动车的电池衝击检测 (BID) 系统和电流感测器模组 (CSM),扩大了感测器范围。这两种新颖的方法着重于维持电池参数和保护电池。

目录

第一章 简介

  • 市场概况
  • 市场定义
  • 调查范围
  • 市场区隔
  • 货币
  • 先决条件
  • 基准年和预测年时间表
  • 相关人员的主要利益

第二章调查方法

  • 研究设计
  • 调查过程

第三章执行摘要

  • 主要发现
  • CXO观点

第四章市场动态

  • 市场驱动因素
  • 市场限制因素
  • 波特五力分析
  • 产业价值链分析
  • 分析师观点

第五章全球电池感测器市场:依通讯协定

  • 介绍
  • CAN
  • LIN

第六章全球电池感测器市场:按电压类型

  • 介绍
  • 12V
  • 24V
  • 48V

第七章全球电池感测器市场:依产业分类

  • 介绍
  • 能源和电力
  • 其他的

第八章全球电池感测器市场:按地区

  • 介绍
  • 北美洲
  • 南美洲
  • 欧洲
  • 中东/非洲
  • 亚太地区

第九章竞争环境及分析

  • 主要企业及策略分析
  • 市场占有率分析
  • 合併、收购、协议和合作
  • 竞争对手仪表板

第十章 公司简介

  • FURUKAWA ELECTRIC CO., LTD
  • NXP Semiconductors
  • Robert Bosch GmbH
  • Hella GmbH & Co. KGaA(Forvia SE)
  • Continental AG(Schaeffler Group)
  • Vishay Intertechnology
简介目录
Product Code: KSI061611678

The battery sensor market is evaluated at US$4.001 billion for the year 2022 growing at a CAGR of 11.82% reaching the market size of US$8.744 billion by the year 2029.

An important part of the energy management system of the vehicle is the battery sensor. By measuring the temperature and charging voltage, the sensor informs the car of the exact battery condition. Various factors that can impact the battery life including current, voltage, and temperature are monitored by a battery sensor without getting in the way of data processing. Other factors driving the demand for these sensors include the growing market for electric vehicles and the burgeoning need for industrial energy storage solutions. As emission norms worldwide become more stringent, electrical & electronic components are increasingly adopted by vehicle manufacturers. The growing sales of luxury vehicles are also boosting the battery sensor market growth. Over 200 million electric passenger cars are predicted to be on the road by 2030, a rapid increase from just over 2 million vehicles in 2016. As electric vehicles become more prevalent, there is a corresponding rise in the demand for battery sensors. (Source: irena.org)

Battery sensors can measure current, voltage, and temperature accurately and on demand. Using this information, the electrical system can be precisely rated in terms of its health and charge, ensuring the best possible performance. Apart from monitoring the battery, it is also capable of detecting defective electronic components in the automobile. Growing demand for battery sensors is expected to stem from the growing adoption of advanced technologies in modern vehicles.

MARKET DRIVERS:

  • Increasing sales of electric vehicles

As advanced technologies are increasingly being adopted in modern vehicles, the battery sensor demand is also expanding. Vehicles powered by electricity were designed primarily to replace conventional ways of transportation that are environmentally detrimental. Owing to technological advances, electric vehicles have become increasingly popular. By comparison, an electric vehicle is more efficient, has lower emissions and maintenance costs, is easier to charge at home, smoother to drive, and reduces noise from the engine. Additionally, electric vehicles do not require oil changes, although they cost slightly more than their equivalents powered by gasoline. By 2030, there could be 900 million electric two-, three-, and four-wheeled vehicles on the roads, more than four-wheeled cars. (Source: irena.org). By 2025, the Ministry of Industry and Information Technology (MIIT) of China predicts new energy vehicles, mostly electric vehicles (EVs), will represent 25% of all vehicle sales. Additionally, by 2030, the Indian government plans to have 30% of its vehicles electric. (Source: macropolo.org; investindia.gov)

As part of an investment program involving electric cars and battery factories, Tesla (TSLA) said it will invest up to $12 billion. Also, Mercedes-Benz maker Daimler plans to invest more than 40 billion euros ($47 billion) so it can compete with Tesla in the all-electric vehicle market by 2030. Such huge investments in electronic vehicles will continue boosting the demand for battery sensors.

  • Rising Adoption of Renewable Energy Storage Systems.

One of the main factors propelling the global battery sensor market is the increasing use of renewable energy storage systems. Energy storage systems are crucial for storing and controlling the intermittent electricity produced by the growing integration of renewable energy sources like solar and wind. In these storage systems, battery sensors are essential because they keep an eye on vital indicators like temperature, voltage, and charge level. Battery efficiency is ensured by this real-time monitoring, which improves performance and increases battery life. The need for sustainable and clean energy solutions is growing, and with it, so is the significance of battery sensors in preserving the dependability and security of energy storage systems.

MARKET RESTRAINTS:

  • Battery sensors can cause malfunction and affect the vehicle's performance.

Typically, battery sensors get damaged or shorted when dirt, moisture, or battery acid make their way into the sensor. BMW vehicles, for instance, have the battery located in the side compartment in the trunk, allowing water to leak onto the battery and damage the sensor. BMW refers to it as the Intelligent Battery Sensor or IBS. Failure of an IBS can result in many electrical problems, including no-start situations. In addition to being fragile, battery sensors can also be damaged during servicing or removal. The Stop/Start system may not function correctly due to a bad battery sensor in many vehicles. Therefore, such instances of malfunctioning can affect vehicle sales and negatively impact the demand for battery sensors.

The North American battery sensor market is anticipated to grow significantly.

The growing electric vehicle (EV) industry in North America is the main factor driving the battery sensor market in that area. Battery sensors have become essential parts of electric vehicles (EVs) as the automotive industry makes a significant transition to electrification. They are vital for controlling and monitoring battery performance. Electric car use is significantly on the rise in North America due to growing environmental consciousness and a move towards sustainable mobility. By keeping an eye on variables like temperature, voltage, and charge level, battery sensors guarantee the effective and safe operation of EV batteries. Furthermore, encouraging government programs, financial incentives, and expanding infrastructure for electric vehicle charging push the EV market's growth, which in turn influences the region's need for sophisticated battery sensor technology.

Key Developments:

  • In November 2023, the launch of Lithium-Ion Battery Failure Detection Sensor was announced by United Safety & Survivability Corporation, a leading global provider of innovative safety solutions. This innovative device raises the bar for the safety of electric cars in all sectors of the economy.
  • In March 2023, The HY-ALERTA 5021 Solid-State Area Hydrogen Monitor, developed by H2scan, a global pioneer in industrial hydrogen sensing, was introduced. It shields battery rooms from explosive hydrogen buildup and requires no maintenance for over a decade.
  • In May 2022, with the introduction of the Battery Impact Detection (BID) system and the Current Sensor Module (CSM) for electric cars, Continental expanded its array of sensors. The two novel approaches concentrate on maintaining battery parameters or safeguarding the battery.

Segmentation:

By Communication Protocol

  • CAN
  • LIN

By Voltage Type

  • 12V
  • 24V
  • 48V

By Industry Vertical

  • Automotive
  • Energy and Power
  • Others

By Geography

  • North America
  • USA
  • Canada
  • Others
  • South America
  • Brazil
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Others
  • Middle East and Africa
  • UAE
  • Saudi Arabia
  • Israel
  • Others
  • Asia Pacific
  • China
  • India
  • South Korea
  • Taiwan
  • Thailand
  • Indonesia
  • Japan
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base, and Forecast Years Timeline
  • 1.8. Key Benefits to the stakeholder

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Processes

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings
  • 3.2. CXO Perspective

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. GLOBAL BATTERY SENSOR MARKET, BY COMMUNICATION PROTOCOL

  • 5.1. Introduction
  • 5.2. CAN
    • 5.2.1. Market Trends and Opportunities
    • 5.2.2. Growth Prospects
    • 5.2.3. Geographic Lucrativeness
  • 5.3. LIN
    • 5.3.1. Market Trends and Opportunities
    • 5.3.2. Growth Prospects
    • 5.3.3. Geographic Lucrativeness

6. GLOBAL BATTERY SENSOR MARKET, BY VOLTAGE TYPE

  • 6.1. Introduction
  • 6.2. 12V
    • 6.2.1. Market Trends and Opportunities
    • 6.2.2. Growth Prospects
    • 6.2.3. Geographic Lucrativeness
  • 6.3. 24V
    • 6.3.1. Market Trends and Opportunities
    • 6.3.2. Growth Prospects
    • 6.3.3. Geographic Lucrativeness
  • 6.4. 48V
    • 6.4.1. Market Trends and Opportunities
    • 6.4.2. Growth Prospects
    • 6.4.3. Geographic Lucrativeness

7. GLOBAL BATTERY SENSOR MARKET, BY INDUSTRY VERTICAL

  • 7.1. Introduction
  • 7.2. Automotive
    • 7.2.1. Market Trends and Opportunities
    • 7.2.2. Growth Prospects
    • 7.2.3. Geographic Lucrativeness
  • 7.3. Energy and Power
    • 7.3.1. Market Trends and Opportunities
    • 7.3.2. Growth Prospects
    • 7.3.3. Geographic Lucrativeness
  • 7.4. Others
    • 7.4.1. Market Trends and Opportunities
    • 7.4.2. Growth Prospects
    • 7.4.3. Geographic Lucrativeness

8. GLOBAL BATTERY SENSOR MARKET, BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. North America
    • 8.2.1. By Communication Protocol
    • 8.2.2. By Voltage Type
    • 8.2.3. By Industry Vertical
    • 8.2.4. By Country
      • 8.2.4.1. USA
        • 8.2.4.1.1. Market Trends and Opportunities
        • 8.2.4.1.2. Growth Prospects
      • 8.2.4.2. Canada
        • 8.2.4.2.1. Market Trends and Opportunities
        • 8.2.4.2.2. Growth Prospects
      • 8.2.4.3. Mexico
        • 8.2.4.3.1. Market Trends and Opportunities
        • 8.2.4.3.2. Growth Prospects
  • 8.3. South America
    • 8.3.1. By Communication Protocol
    • 8.3.2. By Voltage Type
    • 8.3.3. By Industry Vertical
    • 8.3.4. By Country
      • 8.3.4.1. Brazil
        • 8.3.4.1.1. Market Trends and Opportunities
        • 8.3.4.1.2. Growth Prospects
      • 8.3.4.2. Others
        • 8.3.4.2.1. Market Trends and Opportunities
        • 8.3.4.2.2. Growth Prospects
  • 8.4. Europe
    • 8.4.1. By Communication Protocol
    • 8.4.2. By Voltage Type
    • 8.4.3. By Industry Vertical
    • 8.4.4. By Country
      • 8.4.4.1. Germany
        • 8.4.4.1.1. Market Trends and Opportunities
        • 8.4.4.1.2. Growth Prospects
      • 8.4.4.2. France
        • 8.4.4.2.1. Market Trends and Opportunities
        • 8.4.4.2.2. Growth Prospects
      • 8.4.4.3. United Kingdom
        • 8.4.4.3.1. Market Trends and Opportunities
        • 8.4.4.3.2. Growth Prospects
      • 8.4.4.4. Spain
        • 8.4.4.4.1. Market Trends and Opportunities
        • 8.4.4.4.2. Growth Prospects
      • 8.4.4.5. Others
        • 8.4.4.5.1. Market Trends and Opportunities
        • 8.4.4.5.2. Growth Prospects
  • 8.5. Middle East and Africa
    • 8.5.1. By Communication Protocol
    • 8.5.2. By Voltage Type
    • 8.5.3. By Industry Vertical
    • 8.5.4. By Country
      • 8.5.4.1. UAE
        • 8.5.4.1.1. Market Trends and Opportunities
        • 8.5.4.1.2. Growth Prospects
      • 8.5.4.2. Saudi Arabia
        • 8.5.4.2.1. Market Trends and Opportunities
        • 8.5.4.2.2. Growth Prospects
      • 8.5.4.3. Israel
        • 8.5.4.3.1. Market Trends and Opportunities
        • 8.5.4.3.2. Growth Prospects
      • 8.5.4.4. Others
        • 8.5.4.4.1. Market Trends and Opportunities
        • 8.5.4.4.2. Growth Prospects
  • 8.6. Asia Pacific
    • 8.6.1. By Communication Protocol
    • 8.6.2. By Voltage Type
    • 8.6.3. By Industry Vertical
    • 8.6.4. By Country
      • 8.6.4.1. China
        • 8.6.4.1.1. Market Trends and Opportunities
        • 8.6.4.1.2. Growth Prospects
      • 8.6.4.2. India
        • 8.6.4.2.1. Market Trends and Opportunities
        • 8.6.4.2.2. Growth Prospects
      • 8.6.4.3. South Korea
        • 8.6.4.3.1. Market Trends and Opportunities
        • 8.6.4.3.2. Growth Prospects
      • 8.6.4.4. Taiwan
        • 8.6.4.4.1. Market Trends and Opportunities
        • 8.6.4.4.2. Growth Prospects
      • 8.6.4.5. Thailand
        • 8.6.4.5.1. Market Trends and Opportunities
        • 8.6.4.5.2. Growth Prospects
      • 8.6.4.6. Indonesia
        • 8.6.4.6.1. Market Trends and Opportunities
        • 8.6.4.6.2. Growth Prospects
      • 8.6.4.7. Japan
        • 8.6.4.7.1. Market Trends and Opportunities
        • 8.6.4.7.2. Growth Prospects
      • 8.6.4.8. Others
        • 8.6.4.8.1. Market Trends and Opportunities
        • 8.6.4.8.2. Growth Prospects

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. FURUKAWA ELECTRIC CO., LTD
  • 10.2. NXP Semiconductors
  • 10.3. Robert Bosch GmbH
  • 10.4. Hella GmbH & Co. KGaA (Forvia SE)
  • 10.5. Continental AG (Schaeffler Group)
  • 10.6. Vishay Intertechnology