封面
市场调查报告书
商品编码
1574125

能源和电力领域的人工智慧 (AI) 市场:2024-2029 年预测

Artificial Intelligence (AI) in Energy and Power Market - Forecasts from 2024 to 2029

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 152 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

能源和电力领域的人工智慧 (AI) 市场预计将从 2024 年的 59.23 亿美元增至 2029 年的 177.45 亿美元,预测期内复合年增长率为 24.54%。

人工智慧 (AI) 正在成为能源和电力市场中越来越重要的工具。人工智慧可以自动化和改善能源相关流程,并提供更好的能源管理,以更低的成本实现更有效率的营运。此外,您还可以减少对环境的负面影响并全面启动更好的改进。在能源领域,人工智慧主要用于需求预测。

此外,透过分析消费行为、天气模式和其他变数的丰富资料,人工智慧系统可以更好地了解能源的使用方式,从而使公用事业公司能够更好地利用其资源。人工智慧将用于创建更具成本效益的能源生产和供应系统。例如,机器学习演算法可以分析来自太阳能和风力发电系统的资料,以检测模式并预测发电量。

此外,人工智慧驱动的系统可以监控和分析建筑物内的能源消耗过程,识别能源浪费或使用效率低下的地方,并确定如何以节能解决方案取代能源。这不仅有可能减少温室气体排放,还可以降低业主和租户的资本成本。然而,资料不足或过时可能会创建不正确的人工智慧模型,导致营运不良,从而造成财务损失和安全风险。因此,需要有效解决此制度问题,才能使市场不受阻碍地发展。

能源和电力市场中的人工智慧 (AI) 驱动因素:

  • 智慧电网的广泛采用预计将推动能源和电力领域人工智慧 (AI) 的成长。

智慧电网是其中一个突出的应用,人工智慧正在能源和电力领域中得到应用。智慧电网提供电力,同时使用先进的传感器、通讯技术和自动化系统,以确保这些服务的高效提供。透过在决策制定时即时比较大量资料,公用事业公司可以利用人工智慧做出更好的决策,从而使执行更顺畅并提高效能。

例如,2024年1月,西班牙Iberdrola Espana与BCAM合作进行了一个针对电网优化的AI创新资料计划。该倡议是全球智慧电网创新中心的一部分,将在配电能力和效率方面提高电网服务的可及性和质量,特别是在可再生能源整合和经济电气化方面。

能源和电力人工智慧(AI)市场的地理前景:

  • 北美地区预计将占据主要市场占有率。

由于美国等国家可再生能源部署和智慧电网技术的显着增加,预计北美将在人工智慧能源和电力市场中呈现最快的成长速度。美国政府增加使用可再生能源正在推动电力和能源产业人工智慧应用的增加。

美国能源资讯署报告称,到 2022 年,可再生能源发电将占美国电力供应总量的约 13%。此外,到2022年,美国可再生能源消耗总量的约61%将来自电力部门,去年可再生能源占美国发电量的五分之一以上,即21%。此外,该地区拥有一流的公共产业和人工智慧技术供应商,垂直专注于智慧电网和绿色能源技术,从而推动未来几年该地区市场的成长。

为什么要购买这份报告?

  • 洞察分析:深入洞察关键和新兴地区的市场,重点关注客户细分、政府政策、社会经济因素、消费者偏好、产业和其他子区隔。
  • 竞争格局:了解全球主要企业采取的策略倡议,并了解采用正确策略的市场渗透潜力。
  • 市场驱动因素和未来趋势:检视动态因素和关键市场趋势,并探讨它们将如何影响未来的市场发展。
  • 可行的建议:利用洞察力做出策略决策,在动态环境中发现新的业务流和收益。
  • 迎合广泛的受众:对新兴企业、研究机构、顾问、中小企业和大型企业有用且具有成本效益。

公司使用我们的报告的目的是什么?

产业与市场考量、机会评估、产品需求预测、打入市场策略、地理扩张、资本投资决策、法律规范与影响、新产品开拓、竞争影响

调查范围

  • 过去的资料/预测,2022-2029
  • 成长机会、挑战、供应链前景、法规结构、顾客行为、趋势分析
  • 竞争定位、策略和市场占有率分析
  • 区域收益成长和预测分析,包括细分市场和国家
  • 公司概况(策略、产品、财务资讯、主要发展等)

目录

第一章简介

  • 市场概况
  • 市场定义
  • 调查范围
  • 市场区隔
  • 货币
  • 先决条件
  • 基准年和预测年时间表
  • 相关人员的主要利益

第二章调查方法

  • 研究设计
  • 调查过程

第三章执行摘要

  • 主要发现

第四章市场动态

  • 市场驱动因素
  • 市场限制因素
  • 波特五力分析
  • 产业价值链分析
  • 分析师观点

第五章 能源与电力领域的人工智慧市场:依技术分类

  • 介绍
  • 机器学习
  • 自然语言处理
  • 电脑视觉
  • 其他的

第六章 能源与电力领域的人工智慧市场:依应用分类

  • 介绍
  • 需求预测
  • 优化能源生产和发行
  • 能源管理
  • 智慧电网
  • 智慧电錶
  • 其他的

第七章 能源与电力领域的人工智慧市场:依最终用户划分

  • 介绍
  • 商业/工业
  • 住宅

第八章能源与电力领域的人工智慧市场:按地区划分

  • 介绍
  • 北美洲
    • 依技术
    • 按用途
    • 最终用户
    • 按国家/地区
  • 南美洲
    • 依技术
    • 按用途
    • 最终用户
    • 按国家/地区
  • 欧洲
    • 依技术
    • 按用途
    • 最终用户
    • 按国家/地区
  • 中东/非洲
    • 依技术
    • 按用途
    • 最终用户
    • 按国家/地区
  • 亚太地区
    • 依技术
    • 按用途
    • 最终用户
    • 按国家/地区

第九章竞争环境及分析

  • 主要企业及策略分析
  • 市场占有率分析
  • 合併、收购、协议和合作
  • 竞争对手仪表板

第十章 公司简介

  • General Electric
  • Siemens Energy
  • Schneider Electric
  • ABB Ltd.
  • Honeywell International Inc.
  • C3.ai Inc.
  • Eaton Corporation Plc
  • IBM Corporation
简介目录
Product Code: KSI061614652

Artificial Intelligence (AI) in the energy and power market is projected to witness a CAGR of 24.54% during the forecast period to reach US$17.745 billion by 2029, up from US$5.923 billion in 2024.

Artificial intelligence (AI) has been increasingly becoming a significant tool in the energy and power markets. It can automate and improve energy-related processes and provide more efficient operation at lower cost by providing better energy management. Additionally, it reduces adverse environmental impacts and fully initiates better enhancements. In energy sectors, AI is used mainly for demand forecasting.

Moreover, by analyzing the wealth of data available on consumer behavior, weather patterns, and other variables, AI systems can give a much more accurate idea of how energy is used, allowing utility companies to manage their resources better. AI is used to create more cost-effective energy production and distribution systems. For example, machine learning algorithms can analyze solar or wind energy systems data to detect patterns and predict how much power will be generated.

Additionally, AI-powered systems can monitor and analyze energy-consuming processes in buildings, identify where it is being wasted or used inefficiently, and how they can be replaced with an energy-saving solution. This has the potential to reduce greenhouse gas emissions as well as achieve capital cost savings for building owners and tenants. However, insufficient or outdated data could result in wrong AI models, leading to poor operationalization, financial loss, and safety danger. Hence, the system must be effectively dealt with for the market to grow without any hindrances.

ARTIFICIAL INTELLIGENCE (AI) IN ENERGY AND POWER MARKET DRIVER:

  • Increasing smart grid deployment is expected to drive AI in the energy and power market growth.

One of the prominent applications is smart grids, where AI is employed in the energy and power sectors. Smart grids use advanced sensors, communication technologies, and automation systems while providing electricity to ensure an efficient delivery of these services. Comparing large volumes of data in real-time as they come to a decision helps the utility make decisions better with AI, which is applied for smoother execution and performance improvement.

For instance, in January 2024, Spain's Iberdrola Espana is teaming with BCAM on the AI Innovation Data Space project targeting grid optimization. The initiative is part of the Global Smart Grids Innovation Hub, an interoperable workspace aimed at enhancing the access and quality of grid services in terms of distribution capacity and efficiency, especially for renewable integration and economic electrification.

Artificial Intelligence (AI) in Energy and Power Market Geographical Outlook:

  • The North American region is expected to hold a substantial market share.

North America is expected to experience one of the fastest growth rates in the AI energy and power market due to high incremental changes in renewable energy adoption and smart grid technologies dominantly across countries such as the United States. The growth in the use of renewable energy sources by the United States government has facilitated an increase in AI applications across its power and energy industry.

The U.S. Energy Information Administration reported that renewable energy generated approximately 13 percent of the entire U.S. electricity supply in 2022. Additionally, about 61% of all U.S. renewable energy consumption in 2022 was in the electric power sector, and renewables accounted for more than a fifth, i.e., 21% of U.S. electricity generation last year. Additionally, this region boasts some of the top utilities and AI technology providers, with a vertical focus on smart grid and green energy technologies, leading to regional market growth in the years ahead.

Reasons for buying this report:-

  • Insightful Analysis: Gain detailed market insights covering major as well as emerging geographical regions, focusing on customer segments, government policies and socio-economic factors, consumer preferences, industry verticals, other sub- segments.
  • Competitive Landscape: Understand the strategic maneuvers employed by key players globally to understand possible market penetration with the correct strategy.
  • Market Drivers & Future Trends: Explore the dynamic factors and pivotal market trends and how they will shape up future market developments.
  • Actionable Recommendations: Utilize the insights to exercise strategic decision to uncover new business streams and revenues in a dynamic environment.
  • Caters to a Wide Audience: Beneficial and cost-effective for startups, research institutions, consultants, SMEs, and large enterprises.

What do businesses use our reports for?

Industry and Market Insights, Opportunity Assessment, Product Demand Forecasting, Market Entry Strategy, Geographical Expansion, Capital Investment Decisions, Regulatory Framework & Implications, New Product Development, Competitive Intelligence

Report Coverage:

  • Historical data & forecasts from 2022 to 2029
  • Growth Opportunities, Challenges, Supply Chain Outlook, Regulatory Framework, Customer Behaviour, and Trend Analysis
  • Competitive Positioning, Strategies, and Market Share Analysis
  • Revenue Growth and Forecast Assessment of segments and regions including countries
  • Company Profiling (Strategies, Products, Financial Information, and Key Developments among others)

Market Segmentation:

The Artificial Intelligence (AI) in Energy and Power Market is segmented and analyzed as below:

By Technology

  • Machine Learning
  • Natural Language Processing
  • Computer Vision
  • Others

By Application

  • Demand Forecasting
  • Energy Production and Distribution Optimization
  • Energy Management
  • Smart Grids
  • Smart Meter
  • Others

By End-User

  • Commercial and Industrial
  • Residential

By Geography

  • North America
  • USA
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • Israel
  • UAE
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Vietnam
  • Indonesia
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base and Forecast Years Timeline
  • 1.8. Key benefits for the stakeholders

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Process

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. AI IN ENERGY AND POWER MARKET BY TECHNOLOGY

  • 5.1. Introduction
  • 5.2. Machine Learning
  • 5.3. Natural Language Processing
  • 5.4. Computer Vision
  • 5.5. Others

6. AI IN ENERGY AND POWER MARKET BY APPLICATION

  • 6.1. Introduction
  • 6.2. Demand Forecasting
  • 6.3. Energy Production and Distribution Optimization
  • 6.4. Energy Management
  • 6.5. Smart Grids
  • 6.6. Smart Meter
  • 6.7. Others

7. AI IN ENERGY AND POWER MARKET BY END-USER

  • 7.1. Introduction
  • 7.2. Commercial and Industrial
  • 7.3. Residential

8. AI IN ENERGY AND POWER MARKET BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. North America
    • 8.2.1. By Technology
    • 8.2.2. By Application
    • 8.2.3. End-User
    • 8.2.4. By Country
      • 8.2.4.1. USA
      • 8.2.4.2. Canada
      • 8.2.4.3. Mexico
  • 8.3. South America
    • 8.3.1. By Technology
    • 8.3.2. By Application
    • 8.3.3. End-User
    • 8.3.4. By Country
      • 8.3.4.1. Brazil
      • 8.3.4.2. Argentina
      • 8.3.4.3. Others
  • 8.4. Europe
    • 8.4.1. By Technology
    • 8.4.2. By Application
    • 8.4.3. End-User
    • 8.4.4. By Country
      • 8.4.4.1. UK
      • 8.4.4.2. Germany
      • 8.4.4.3. France
      • 8.4.4.4. Spain
      • 8.4.4.5. Others
  • 8.5. Middle East and Africa
    • 8.5.1. By Technology
    • 8.5.2. By Application
    • 8.5.3. End-User
    • 8.5.4. By Country
      • 8.5.4.1. Saudi Arabia
      • 8.5.4.2. Israel
      • 8.5.4.3. UAE
      • 8.5.4.4. Others
  • 8.6. Asia Pacific
    • 8.6.1. By Technology
    • 8.6.2. By Application
    • 8.6.3. End-User
    • 8.6.4. By Country
      • 8.6.4.1. China
      • 8.6.4.2. Japan
      • 8.6.4.3. India
      • 8.6.4.4. South Korea
      • 8.6.4.5. Australia
      • 8.6.4.6. Vietnam
      • 8.6.4.7. Indonesia
      • 8.6.4.8. Others

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. General Electric
  • 10.2. Siemens Energy
  • 10.3. Schneider Electric
  • 10.4. ABB Ltd.
  • 10.5. Honeywell International Inc.
  • 10.6. C3.ai Inc.
  • 10.7. Eaton Corporation Plc
  • 10.8. IBM Corporation