封面
市场调查报告书
商品编码
1627538

分子交换器市场:治疗标的,医药品开发,药物输送机制,各适应症用途:2025年

Molecular Switches As Therapeutic Targets, Drug Development, Drug Delivery Mechanism & Application By Indications Insight 2025

出版日期: | 出版商: KuicK Research | 英文 150 Pages | 商品交期: 最快1-2个工作天内

价格

分子开关是动态实体,可以回应特定的环境或生物触发因素在不同状态之间转换。这些触发因素包括 pH 值、光照射、温度、氧化还原条件以及某些离子和生物分子的存在的变化。分子开关的概念为高度控制的诊断和治疗系统提供了基础,对医疗和製药领域产生了重大影响。精确控制生物反应的能力使得分子开关对于先进药物输送系统、即时诊断工具和个人化治疗介入的开发至关重要。

在製药领域,分子开关透过精确时空控制活性药物成分的释放,彻底改变了药物传递。 pH敏感分子开关已用于基于奈米颗粒的药物载体,其在正常生理条件下保持稳定,但在酸性环境中降解以释放有效负载。例如,FPBC@SN 奈米颗粒系统整合了一个针对乳癌细胞酸性细胞质的 pH 敏感分子开关。此系统释放索拉非尼(诱导铁死亡)和 IDO 抑制剂(增强肿瘤免疫力)。透过利用此类开关,这些系统可以减少脱靶效应,提高治疗指数,并解决肿瘤学中的重要课题。

本报告提供全球分子交换器市场相关调查,市场概要,以及分子交换器治疗目标的重要性,各市场区隔趋势,新兴技术与今后预测等资讯。

目录

第1章 分子交换器的简介

第2章 分子交换器的医学的意义

第3章 药物输送和放出的分子交换器的重要性

  • 概要
  • 进行中的研究开发

第4章 分子交换器治疗目标的重要性

第5章 分子交换器- 大分类

第6章 分子交换器,癌症各适应症

  • 乳癌
  • 前列腺癌症
  • 大肠癌症
  • 肺癌症
  • 胃癌

第7章 分子交换器,神经各疾病

  • 帕金森氏症
  • 阿兹海默症
  • 多发性硬化症

第8章 分子交换器,感染疾病

  • 病毒感染
  • 细菌感染

第9章 分子交换器,自体免疫疾病和发炎性各疾病

  • 糖尿病
  • 关节炎
  • 狼疮
  • 干癣

第10章 分子交换器,各心血管疾病

  • 心肌梗塞(心臟病发作)
  • 其他

第11章 再生医疗的分子交换器的重要性

第12章 把分子交换器作为标的主要医药品的销售趋势

第13章 医药品处方的分子交换器

  • 智慧型药物配方与分子开关
  • 基于生物材料的药物传输系统
  • 自我调节药物系统

第14章 目前趋势与新兴技术

  • 奈米医学中的分子开关
  • 响应性药物系统的创新
  • 与人工智慧和机器学习集成

第15章 未来展望与方向性

  • 分子开关技术的进展
  • 使用分子开关的个人化医疗的未来
  • 对药物发现与治疗的潜在影响

Molecular Switches As Therapeutic Targets, Drug Development, Drug Delivery Mechanism & Application By Indications Insight 2025 Research Insights:

  • Top 20 Drugs Sales Targeting Molecular Switches: 2022 - 2024
  • Molecular Switches Significance In Regenerative Medicine & Nanomedicine
  • Molecular Switches Significance In Drug Delivery & Release
  • Molecular Switches Significance As Therapeutic Targets
  • Molecular Switches In Cancer Therapeutics: Breast Cancer, Prostate Cancer, Lung Cancer, Colorectal Cancer, Gastric Cancer
  • Molecular Switches In Neurological Disorder: Parkinson's Disease, Alzheimer's Disease, Multiple Sclerosis
  • Molecular Switches In Autoimmune & Inflammatory Disorder: Diabetes, Arthritis, Lupus, Psoriasis

Molecular switches are dynamic entities capable of transitioning between distinct states in response to specific environmental or biological triggers. These triggers can include changes in pH, light exposure, temperature, redox conditions, or the presence of certain ions or biomolecules. The concept of molecular switching has significantly influenced the medical and pharmaceutical domain by providing a foundation for highly controlled diagnostic and therapeutic systems. The ability to precisely regulate biological responses has made molecular switches indispensable in the development of advanced drug delivery systems, real-time diagnostic tools, and personalized therapeutic interventions.

In the pharmaceutical sector, molecular switches have revolutionized drug delivery by enabling precise spatiotemporal control over the release of active pharmaceutical ingredients. One of the most widely explored triggers is pH, as pathological conditions like cancer and inflammation often create acidic microenvironments. pH-sensitive molecular switches are employed in nanoparticle-based drug carriers, which remain stable under normal physiological conditions but disassemble in acidic environments to release their payload. For example, the FPBC@SN nanoparticle system integrates a pH-sensitive molecular switch to target acidic cytoplasm in breast cancer cells. This system releases both sorafenib, which induces ferroptosis, and an IDO inhibitor to enhance tumor immunity. By leveraging such switches, these systems reduce off-target effects and enhance the therapeutic index, addressing key challenges in oncology.

Table of Contents

1. Introduction To Molecular Switches

  • 1.1 Overview
  • 1.2 History & Emergence In Medicine

2. Molecular Switches Clinical Significance In Medicine

3. Molecular Switches Significance In Drug Delivery & Release

  • 3.1 Overview
  • 3.2 Ongoing Research & Developments

4. Molecular Switches Significance As Therapeutic Targets

5. Molecular Switches - Broad Classification

6. Molecular Switches By Cancer Indication

  • 6.1 Breast Cancer
  • 6.2 Prostate Cancer
  • 6.3 Colorectal cancer
  • 6.4 Lung Cancer
  • 6.5 Gastric Cancer

7. Molecular Switches By Neurological Disorder

  • 7.1 Parkinson's Disease
  • 7.2 Alzheimer's Disease
  • 7.3 Multiple Sclerosis

8. Molecular Switches By Infectious Disease

  • 8.1 Viral Infection
  • 8.2 Bacterial Infection

9. Molecular Switches By Autoimmune & Inflammatory Disorder

  • 9.1 Diabetes
  • 9.2 Arthritis
  • 9.3 Lupus
  • 9.4 Psoriasis

10. Molecular Switches By Cardiovascular Disease

  • 10.1 Myocardial Infarction (Heart Attack)
  • 10.2 Others

11. Molecular Switches Significance In Regenerative Medicine

12. Sales Insight Of Key Drugs Targeting Molecular Switches

13. Molecular Switches In Drug Formulation

  • 13.1 Smart Drug Formulations & Molecular Switches
  • 13.2 Biomaterial Based Drug Delivery Systems
  • 13.3 Self Regulating Drug Systems

14. Current Trends & Emerging Technologies

  • 14.1 Molecular Switches In Nanomedicine
  • 14.2 Innovations In Responsive Drug Systems
  • 14.3 Integration With Artificial Intelligence & Machine Learning

15. Future Perspectives & Directions

  • 15.1 Advancements In Molecular Switch Technology
  • 15.2 The Future Of Personalized Medicine With Molecular Switches
  • 15.3 Potential Impact On Drug Discovery & Therapeutics

List of Figures

  • Figure 1-1: Molecular Switches - Introduction
  • Figure 1-2: Molecular Switches - Emergence & Evolution
  • Figure 3-1: Molecular Switches In Drug Delivery & Release
  • Figure 3-2: Drug Delivery Systems With Molecular Switches
  • Figure 3-3: Peptide-Based Drug Delivery System
  • Figure 3-4: Switchable Molecular Tweezers
  • Figure 3-5: Rotaxane-Based Drug Delivery System
  • Figure 3-6: Enzyme-Activatable Drug Delivery System
  • Figure 3-7: Light-Responsive Drug Delivery Systems
  • Figure 3-8: Photo-Responsive Drug Delivery Using Spiropyran
  • Figure 3-9: Photopharmacological Approach For Neuropathic Pain
  • Figure 3-10: Insulin Prodrug Activation
  • Figure 6-1: AR Activation & Its Dual Role In Tumor Growth
  • Figure 6-2: PRL-3 Activation & AMPI-109's Impact On TNBC
  • Figure 6-3: Molecular Switch in Prostate Cancer
  • Figure 7-1: PINK1-Parkin Molecular Switch In Parkinson's Disease
  • Figure 8-1: Molecular Switches In Viral infections

Figure 11 1: Molecular Switches In Regenerative Medicine

  • Figure 13-1: Smart Drug Delivery With Molecular Switches
  • Figure 13-2: Biomaterial Based Drug Delivery Systems With Molecular Switches
  • Figure 13-3: Self-regulating Drug Systems With Molecular Switches
  • Figure 14-1: Molecular Switches In Nanomedicine
  • Figure 14-2: Molecular switches In Responsive Drug Systems
  • Figure 14-3: Integration Of Molecular Switches With Artificial Intelligence & Machine Learning

List of Tables

  • Table 1-1: Traditional v/s Molecular Switch Enabled Drug Delivery
  • Table 4-1: Examples Of Approved Drugs Targeting Molecular Switches
  • Table 5-1: Molecular Switches - Broad Classification
  • Table 12-1: Top 20 Drugs Targeting Molecular Switches (US$ Billion), 2022-2024