封面
市场调查报告书
商品编码
1684190

个人化癌症疫苗全球市场:市场机会与临床试验展望(2025年)

Global Personalized Cancer Vaccine Market Opportunity & Clinical Trials Outlook 2025

出版日期: | 出版商: KuicK Research | 英文 130 Pages | 商品交期: 最快1-2个工作天内

价格

在生物技术进步和标靶治疗需求不断成长的推动下,个人化癌症疫苗成为下一代癌症治疗的变革力量,并具有新兴的商业潜力。这些疫苗是针对癌症的客製化治疗方法,利用患者独特的基因组成来製造专门针对和消灭癌细胞的疫苗。这种方法的成功获得关注,个人化癌症疫苗市场预计到2030年将大幅成长。 BioNTech、Moderna 和 myNEO Therapeutics 等规模较小的公司都站在前线,利用在 COVID-19 大流行期间磨练的mRNA 技术专业知识。

个人化癌症疫苗的兴起很大程度上归功于精准医疗革命,它根据每个患者的特征量身定制治疗方案。这些疫苗比传统治疗有几个优势,包括更高的特异性和有效性。例如,BioNTech 因其在个人化 mRNA 癌症疫苗方面的工作而备受关注,尤其是透过与製药巨头 Genentech 合作治疗胰臟癌。此次合作促成了基于 BioNTech 的iNeST 技术平台的自体基因cevumeran的开发。自体基因cevumeran目前进行一项针对胰臟导管腺癌、黑色素瘤和大肠直肠癌的临床试验。此次合作证明了将先进的mRNA 技术与个人化医疗相结合以治疗以前难以治疗的癌症的潜力。

个人化癌症疫苗的投资也蓬勃发展,创投家和製药公司向新创公司和合作公司投入了数十亿美元。例如,Merck公司和 Moderna 公司的合作已经取得了令人欣喜的成果,为癌症疫苗的未来带来了乐观的前景。然而儘管这项技术令人兴奋,但挑战依然存在。由于个人化癌症疫苗是针对每个人量身定制的,因此每位患者的生产成本可能超过 100,000 美元。高昂的成本是近期限制此类疫苗广泛使用的主要障碍之一。

好消息是,人工智慧辅助新抗原选择和机器人疫苗合成等自动化技术的持续进步有望长期降低製造成本。这些创新有望帮助简化疫苗开发并使更多患者能够获得治疗。此外,随着规模经济的实现,生产成本预计将下降,使个人化癌症疫苗在长期内更具成本效益。

儘管存在上述挑战,个人化癌症疫苗有望在未来几年成为癌症治疗组合的基石。伴随诊断的日益普及将改善患者的选择,并确保那些最有可能从这些疫苗中受益的人接种疫苗。这有可能重新定义癌症的治疗方式,从一刀切的治疗模式转变为个人化、精准和更有效的治疗模式。

总之,围绕个人化癌症疫苗的商业生态系统迅速发展,具有巨大的创新和获利机会。疫苗有望彻底改变癌症治疗,但解决製造业、智慧财产权、偿付等复杂问题将是充分发挥其潜力的关键。随着技术的不断进步和领域的不断成熟,个人化癌症疫苗可能成为一种标准治疗选择,为世界各地的患者带来希望,并有可能重塑癌症治疗的未来。

本报告研究了全球个人化癌症疫苗市场,并概述了市场以及药物趋势、临床试验趋势、区域趋势以及进入市场的公司的竞争格局。

目录

第1章 个人化癌症疫苗作为下一代免疫治疗方法

第2章 个人化癌症疫苗的作用机转

  • 肿瘤新抗原与人类白血球抗原的作用
  • 个人化癌症疫苗的作用机制
  • 药物基因体学中的基因多态性
  • 癌症药物基因体学和体细胞突变

第3章 生物标记在个人化疫苗中的作用

  • 药物基因组生物标记物
  • 预后与预测生物标记

第4章 Provenge - 首个核准的个人化癌症疫苗

  • 概述和专利资讯
  • 价格和剂量见解

第5章 个人化癌症疫苗的开发者、适应症和分期的临床见解

第6章 目前临床开发与未来商业展望

  • 当前市场发展状况
  • 未来市场展望

第7章 个人化癌症疫苗的临床趋势与见解(依发展指征)

  • 恶性黑色素瘤
  • 肺癌
  • 乳癌
  • 摄护腺癌
  • 消化系统癌症
  • 妇科癌症
  • 脑肿瘤
  • 造血系统恶性肿瘤

第8章 个人化癌症疫苗的临床和市场洞察(依地区)

  • 美国
  • 欧盟
  • 中国
  • 印度
  • 澳洲
  • 韩国
  • 台湾
  • 英国

第9章 个人化癌症疫苗的独特开发平台

第10章 个人化癌症疫苗市场动态

  • 市场驱动因素与机会
  • 市场挑战与限制

第11章 竞争格局

  • BioNtech AG
  • CureVac AG
  • Evaxion Biotech
  • Geneos Therapeutics
  • Genentech
  • Merck
  • Moderna Therapeutics
  • NeoCura
  • Transgene
  • TuHURA Biosciences

Global Personalized Cancer Vaccine Market Opportunity & Clinical Trials Outlook 2025 Report Highlights & Findings:

  • Commercially Approved Personalized Cancer Vaccine: Provenge
  • Provenge Patent , Price & Dosage Insight
  • Global Clinical Research Trends By Region & Indication
  • Insight On More Than 18 Personalized Cancer Vaccines In Clinical Trials
  • Personalized Cancer Vaccines Clinical Insight By Developer, Indication & Phase
  • Insight On Key Personalized Cancer Vaccines Proprietary Development Platforms
  • Competitive Landscape

Personalized cancer vaccines are emerging as a transformative force in next generation cancer treatment methodology, with emergent commercial potential fueled by advancements in biotechnology and an increasing demand for targeted therapies. These vaccines represent a tailored approach to cancer treatment, utilizing a patient's unique genetic makeup to craft vaccines that specifically target and eliminate cancer cells. The success of this approach is gaining traction, and the market for personalized cancer vaccines is expected to grow significantly by 2030. Companies like BioNTech, Moderna, and smaller players such as myNEO Therapeutics are at the forefront, using their expertise in mRNA technology, which was initially honed during the COVID-19 pandemic.

The rise of personalized cancer vaccines is largely driven by the precision medicine revolution, which tailors treatments to individual patient characteristics. These vaccines offer several advantages over traditional therapies, including greater specificity and efficacy. BioNTech, for example, has gained attention for its work on personalized mRNA cancer vaccines, particularly through its collaboration with pharmaceutical giant Genentech to target pancreatic cancer. This partnership has led to the development of autogene cevumeran, which is based on BioNTech's iNeST technology platform. Autogene cevumeran is currently being tested in clinical trials for pancreatic ductal adenocarcinoma, melanoma, and colorectal cancer. The collaboration demonstrates the potential of combining advanced mRNA technology with personalized treatments to address cancers that have historically been difficult to treat.

Investment in personalized cancer vaccines is also soaring, with venture capital firms and pharmaceutical companies pouring significant funds into startups and partnerships. The collaboration between Merck and Moderna, for example, has already demonstrated promising results, contributing to the growing optimism around the future of cancer vaccines. However, despite the excitement surrounding the technology, challenges remain-particularly in manufacturing. Since personalized cancer vaccines are bespoke treatments tailored to each individual, production costs can exceed $100,000 per patient. This high cost is one of the major hurdles that could limit the widespread adoption of these vaccines in the near term.

The good news is that ongoing advancements in automation technologies, including AI-driven neoantigen selection and robotic vaccine synthesis, are expected to reduce production costs over time. These innovations will help streamline vaccine development and make the treatment more accessible to a broader patient population. Furthermore, as economies of scale come into play, the cost of production is likely to decrease, helping to make personalized cancer vaccines more cost-effective in the long term.

Despite the aforementioned challenges, personalized cancer vaccines are anticipated to become a cornerstone of oncology treatment portfolios in the coming years. The increasing availability of companion diagnostics will help refine patient selection, ensuring that those most likely to benefit from these vaccines receive them. This could potentially redefine how cancers are treated, shifting from a one-size-fits-all model to one that is personalized, precise, and more effective.

In conclusion, the commercial ecosystem surrounding personalized cancer vaccines is evolving rapidly, with significant opportunities for innovation and profitability. The promise of these vaccines to revolutionize cancer treatment is clear, but successful navigation of the complexities of manufacturing, intellectual property, and reimbursement will be key to realizing their full potential. As technology continues to advance and the field matures, personalized cancer vaccines could become a standard treatment option, offering hope for patients worldwide and reshaping the future of cancer care.

Table of Contents

1. Personalized Cancer Vaccines As Next Generation Immunotherapeutic Approach

  • 1.1 Approach To Cancer Vaccine Strategy
  • 1.2 Cancer Vaccines - Current Progress & Challenges

2. Personalized Cancer Vaccine Mechanism Of Action

  • 2.1 Role of Tumor Neoantigens & Human Leukocyte Antigen
  • 2.2 Personalized Cancer Vaccine Working Mechanism
  • 2.3 Genetic Polymorphism In Pharmacogenomics
  • 2.4 Cancer Pharmacogenomics & Somatic Mutations

3. Role of Biomarkers In Personalized Vaccines

  • 3.1 Pharmacogenomic Biomarkers
  • 3.2 Prognostic & Predictive Biomarkers

4. Provenge - 1st Approved Personalized Cancer Vaccine

  • 4.1 Overview & Patent Insight
  • 4.2 Pricing & Dosing Insight

5. Personalized Cancer Vaccines Clinical Insight By Developer, Indication & Phase

6. Current Clinical Development & Future Commercialization Outlook

  • 6.1 Current Market Development Scenario
  • 6.2 Future Market Outlook

7. Personalized Cancer Vaccines Clinical Tends & Developments Insight By Indication

  • 7.1 Melanoma
  • 7.2 Lung Cancer
  • 7.3 Breast Cancer
  • 7.4 Prostate Cancer
  • 7.5 Gastrointestinal Cancers
  • 7.6 Gynecological Cancers
  • 7.7 Brain Tumor
  • 7.8 Hematological Malignancies

8. Personalized Cancer Vaccines Clinical & Market Insight By Region

  • 8.1 US
  • 8.2 EU
  • 8.3 China
  • 8.4 India
  • 8.5 Australia
  • 8.6 South Korea
  • 8.7 Taiwan
  • 8.8 UK

9. Personalized Cancer Vaccines Proprietary Development Platforms

  • 9.1 BioNTech - iNeST
  • 9.2 BioVaxys - DPX & Haptenix Platforms
  • 9.3 CureVac - proprietary mRNA technology
  • 9.4 Evaxion - PIONEER & ObsERV Technologies
  • 9.5 Geneos - GT-EPIC(TM) platform
  • 9.6 Moderna - mRNA Design Studio
  • 9.7 myNEO Therapeutics - ImmunoEngine
  • 9.8 Nouscom - Unnamed Technology
  • 9.9 Nykode Therapeutics - Vaccibody
  • 9.10 Transgene - myvac

10. Personalized Cancer Vaccine Market Dynamics

  • 10.1 Market Drivers & Opportunities
  • 10.2 Market Challenges & Restraints

11. Competitive Landscape

  • 11.1 BioNtech AG
  • 11.2 CureVac AG
  • 11.3 Evaxion Biotech
  • 11.4 Geneos Therapeutics
  • 11.5 Genentech
  • 11.6 Merck
  • 11.7 Moderna Therapeutics
  • 11.8 NeoCura
  • 11.9 Transgene
  • 11.10 TuHURA Biosciences

List of Figures

  • Figure 1-1: Cancer Vaccine Types
  • Figure 1-2: Advantages Of Targeting Neoantigens In Cancer Vaccine Development
  • Figure 2-1: Personalized Cancer Vaccine - Mechanism
  • Figure 2-2: Demonstrating Genomic Polymorphism In Pharmacogenomics
  • Figure 2-3: Source of Pharmacological & Pharmacogenetic Variability
  • Figure 3-1: Biomarkers In Personalized Medicine
  • Figure 3-2: Roadmap For Developing Predictive Biomarkers
  • Figure 4-1: Provenge - Approval Year By Region
  • Figure 4-2: Provenge - Cost Per Unit & Supply (US$), March'2025
  • Figure 6-1: Global Personalized Cancer Vaccines Market - Future Outlook
  • Figure 7-1: KEYNOTE-942 Phase 2 Study (NCT03897881) - Initiation & Completion Year
  • Figure 7-2: BNT111-01 Phase 2 Study (NCT04526899) - Initiation & Completion Year
  • Figure 7-3: KEYNOTE-D36 Phase 2 Study (NCT05309421) - Initiation & Completion Year
  • Figure 7-4: MC210102 Phase 1 Study (NCT05269381) - Initiation & Completion Year
  • Figure 7-5: INTerpath-002 Phase 3 Study (NCT06077760) - Initiation & Completion Year
  • Figure 7-6: INTerpath-009 Phase 3 Study (NCT06623422) - Initiation & Completion Year
  • Figure 7-7: KEYNOTE-603 Phase 1 Study (NCT03313778) - Initiation & Completion Year
  • Figure 7-8: MCC-20915 Phase 2 Study (NCT05325632) - Initiation & Completion Year
  • Figure 7-9: FK-PC101-01 Phase 2 Study (NCT06636682) - Initiation & Completion Year
  • Figure 7-10: 19-039 Phase 1 Study (NCT04161755) - Initiation & Completion Year
  • Figure 7-11: IMCODE003 Phase 2 Study (NCT05968326) - Initiation & Completion Year
  • Figure 7-12: GT-30 Phase 1/2 Study (NCT04251117) - Initiation & Completion Year
  • Figure 7-13: QUILT 502 Phase 1/2 Study (NCT06253494) - Initiation & Completion Year
  • Figure 9-1: BioNTech - iNeST
  • Figure 9-2: BioVaxys - DPX & Haptenix Platforms
  • Figure 9-3: CureVac - proprietary mRNA technology
  • Figure 9-4: Evaxion -Proprietary Technologies
  • Figure 9-5: Geneos - GT-EPIC Platform
  • Figure 9-6: Moderna - mRNA Design Studio Features
  • Figure 9-7: myNEO Therapeutics - ImmunoEngine
  • Figure 9-8: Nouscom - Unnamed Technology
  • Figure 9-9: Nykode Therapeutics - Vaccibody Structure
  • Figure 9-10: Nykode Therapeutics - Vaccibody Mechanism Of Action
  • Figure 9-11: Transgene - myvac Platform
  • Figure 10-1: Global Personalized Cancer Vaccines Market - Drivers & Opportunities
  • Figure 10-2: Global Personalized Cancer Vaccines Market - Challenges & Restraints

List of Tables

  • Table 5-1: Personalized Cancer Vaccines By Developer, Indication & Phase
  • Table 7-1: Melanoma - Personalized Vaccines In Clinical Trials
  • Table 7-2: Lung Cancer - Personalized Vaccines In Clinical Trials
  • Table 7-3: Breast Cancer - Personalized Vaccines In Clinical Trials
  • Table 7-4: Prostate Cancer - Personalized Vaccines In Clinical Trials
  • Table 7-5: Gastrointestinal Cancer - Personalized Vaccines In Clinical Trials
  • Table 7-6: Gynecological Cancer - Personalized Vaccines In Clinical Trials
  • Table 7-7: Brain Cancer - Personalized Vaccines In Clinical Trials
  • Table 7-8: Hematological Malignancies - Personalized Vaccines In Clinical Trials