封面
市场调查报告书
商品编码
1901407

分子开关作为治疗标靶:药物发现、药物传递机制与适应症(2026)

Molecular Switches As Therapeutic Targets, Drug Development, Drug Delivery Mechanism & Application By Indications Insight 2026

出版日期: | 出版商: KuicK Research | 英文 190 Pages | 商品交期: 最快1-2个工作天内

价格

"分子开关作为治疗标靶— "药物发现、药物传递机制和适应症(2026)" 报告的主要发现和亮点:”

  • 2022-2025年标靶分子开关的20种最畅销药物
  • 分子开关在药物传递和製剂中的作用
  • 分子开关在再生医学和奈米医学中的重要性
  • 分子开关作为治疗标靶的重要性
  • 分子开关在癌症治疗的应用:乳癌、摄护腺癌、肺癌、大肠癌、胃癌
  • 分子开关在神经系统疾病的应用:帕金森氏症、阿兹海默症、多种疾病硬化症
  • 自体免疫疾病与发炎性疾病中的分子开关:糖尿病、关节炎、狼疮、干癣
  • 竞争格局

分子开关标靶疗法的需求及本报告的意义

分子开关是生物分子,例如蛋白质、核酸和酶,它们可以根据特定讯号开启或关闭。这些讯号包括配体结合、磷酸化、氧化还原反应、机械应力以及环境因素,例如 pH 值和温度变化。这些生物分子的开启和关闭控制着基因表现、免疫反应、代谢、细胞分裂和程序性细胞死亡等生物过程。这些生物分子对生物过程的精确控制是疾病和治疗的基础。

本报告旨在为利益相关者提供分子开关靶向疗法的现状概述,帮助他们更好地了解其巨大的治疗潜力、正在进行的创新、以及推动这场变革的关键人物。

分子开关在疾病中的重要性

许多疾病的发生是因为分子开关 "卡住" 在 "开启" 或 "关闭" 状态。例如,在癌症中,生长因子 "开关" 可能永久处于 "开启" 状态,从而促进不受控制的细胞分裂。在免疫介导的疾病中,控制发炎调节的 "开关" 可能 "卡住" 在 "开启" 状态,阻止发炎和随后的组织损伤被 "关闭" 。在神经系统疾病中,控制讯号传导和蛋白质折迭的 "开关" 可能出现功能障碍。这些分子开关至关重要,因为它们代表了生物学中的决策点。调节这些点可以重置整个通路,而不仅仅是缓解症状。

标靶开关的药物及其市场影响

过去20年中一些最具影响力的药物作用于分子开关。在这方面,Keytruda(帕博利珠单抗)是一种领先的药物,该药物靶向PD-1免疫检查点,PD-1是一种抑制免疫反应的分子开关。它的作用机转是解除免疫系统的 "煞车" 。该药物的成功体现在其多种适应症和巨大的经济效益。仅在截至2025年9月的九个月内,其销售额就达到了233亿美元,使其成为最畅销的标靶分子开关的药物。

其他重要的治疗方案也基于类似的方法。标靶治疗药物Opdivo(纳武利尤单抗)针对相同的免疫检查点通路,而Yervoy(伊匹木单抗)则针对免疫开关CTLA-4。对于发炎性疾病,Skyridge和Dupixent等药物针对细胞激素相关的免疫开关。对于血液肿瘤,伊马替尼等激酶抑制剂和BTK抑制剂靶向支持癌细胞存活的酶免疫开关。

药物传递系统中的分子开关

除了作为药物标靶外,分子开关越来越多地被整合到药物递送系统中。递送系统。智慧递送系统目前正在被设计成仅在满足特定分子开关条件时才释放药物。例如,药物可以仅在含有与特定疾病密切相关的酶的组织中释放。 pH敏感开关仅在暴露于酸性pH值(例如癌细胞内部的pH值)时才释放药物。

新兴科技与创新

奈米技术、生物材料和合成生物学的快速发展使得分子开关的设计日益复杂。科学家们正在努力设计能够响应光、超音波和外部磁场而启动的人工开关。同时,模拟技术也被用来预测分子开关的行为。这些分子开关在mRNA疗法中也变得越来越重要,其中开关的活化和降解调节着细胞内治疗性蛋白质的产生时间。

分子开关标靶疗法的未来展望

随着我们对分子讯号传导理解的加深,分子开关有望在下一代疗法的开发中发挥更重要的作用。作为一种工具分子开关兼俱生物调节的特异性和革新药物领域的潜力,正处于科学与医学进步的交汇点。标靶分子开关疗法的成功表明,现代医学最有效的方法之一是调节生物决策点。

目录

第一章:研究方法

第二章:分子开关简介

第三章:分子开关的医学意义

第四章:分子开关在药物传递与释放的重要性

  • 概述
  • 正在进行的研究和开发

第五章:分子开关作为治疗手段的重要性

第六章:分子开关-广泛分类

第七章:标靶分子开关的主要药物销售趋势

第八章:分子开关在癌症适应症的应用

  • 乳癌
  • 摄护腺癌
  • 大肠癌
  • 肺癌
  • 胃癌

第九章:分子开关在神经系统疾病的应用

  • 帕金森氏症
  • 阿兹海默症
  • 多发性硬化症
  • 脊髓小脑性共济失调

第十章:分子开关在传染病的应用

  • 病毒感染
  • 细菌感染
  • 真菌感染

第11章:自体免疫疾病与发炎性疾病的分子开关

  • 糖尿病
  • 关节炎
  • 狼疮
  • 干癣

第12章:心血管疾病的分子开关

  • 心肌梗塞(心臟病发作)
  • 其他

第13章:代谢紊乱的分子开关

  • 肥胖症
  • 肝病
  • 胆固醇相关疾病

章节第十四章:分子开关在再生医学的重要性

第十五章:分子开关在昼夜节律和睡眠障碍的应用

第十六章:分子开关在血液学和输血医学的应用

第十七章:分子开关在药物製剂的应用

  • 智慧药物製剂与分子开关
  • 基于生物材料的药物传递系统
  • 自调节药物系统

第十八章:当前趋势与新兴科技

  • 奈米医学中的分子开关
  • 响应性药物系统的创新
  • 人工智慧与机器学习的整合
  • mRNA中的分子开关治疗学

第十九章:未来展望与方向

  • 分子开关技术的进展
  • 分子开关在个人化医疗领域的未来
  • 对药物发现与治疗的潜在影响

第二十章:竞争格局

  • 艾伯维
  • Akeso Bio
  • 阿斯特捷利康
  • 拜耳
  • BeOne Medicines
  • 百时美施贵宝
  • 勃林格殷格翰
  • Coherus Oncology
  • Eli礼来公司
  • 吉利德
  • 葛兰素史克
  • 信达生物
  • 强生
  • 默克公司
  • 诺华公司
  • 辉瑞
  • 再生元
  • 罗氏
  • 赛诺菲
  • Vertex 製药公司

Molecular Switches As Therapeutic Targets, Drug Development, Drug Delivery Mechanism and Application By Indications Insight 2026 Research Report Findings & Highlights:

  • Top 20 Drugs Sales Targeting Molecular Switches: 2022 Till 2025
  • Molecular Switches In Drug Delivery & Formulation
  • Molecular Switches Significance In Regenerative Medicine & Nanomedicine
  • Molecular Switches Significance As Therapeutic Targets
  • Molecular Switches In Cancer Therapeutics: Breast Cancer, Prostate Cancer, Lung Cancer, Colorectal Cancer, Gastric Cancer
  • Molecular Switches In Neurological Disorder: Parkinson's Disease, Alzheimer's Disease, Multiple Sclerosis
  • Molecular Switches In Autoimmune and Inflammatory Disorder: Diabetes, Arthritis, Lupus, Psoriasis
  • Competitive Landscape

Need For Molecular Switch Targeting Therapies & Why This Report

Molecular switches are biological molecules, such as proteins, nucleic acids, or enzymes, which switch on and off in response to certain signals. These signals may consist of ligand-binding, phosphorylation, redox events, mechanical stress, or environmental signals such as pH or temperature changes. These biological molecules switch on and off in order to control biological processes such as gene expression, immune reactions, metabolism, cell division, or programmed cell death. The precise control these biological molecules exercise on biological processes makes them a basis for disease and therapy alike.

The report is designed to give stakeholders an overview of the current landscape regarding Molecular Switch Targeting Therapies, offering an understanding of their immense therapeutic potential, ongoing innovations, and key players driving revolution in this space.

Why Molecular Switches Matter In Disease

Many diseases occur because molecular switches get 'stuck' in the 'on' or 'off' position. For example, in cancer, the growth-factor 'switches' could be perpetually switched 'on,' thereby fueling unchecked cell division. In immune related ailments, the 'switches' controlling the regulation of inflammation could get 'stuck' in the 'on' position, thereby failing to switch 'off' the inflammation and subsequent tissue damage. In the case of neurological disorders, the 'switches' controlling the transmission of signals or the folding of proteins could malfunction. Such molecular switches are crucial because they are points of decision in a biological context. Modulating such points could reset the entire pathway rather than merely tackling the symptoms.

Switch Targeted Medicines & Market Impact

Some of the most impactful drugs over the last two decades act on molecular switches. In this regard, the key drug that works on the PD-1 immune checkpoint, which is a molecular switch that inhibits the immune response, is Keytruda (pembrolizumab). It works by removing the brakes on the immune system. The success of the drug can be gauged by its multiple indications and its financial success as well; reportedly earning US$ 23.30 Billion in the first 9 months of 2025 alone and becoming the top selling drug focused on a molecular switch.

Other important therapeutic options are based on analogous approaches. The targeted therapies Opdivo (nivolumab) target the same immune checkpoint pathway and Yervoy (ipilimumab) targets CTLA-4, an immune switch. In inflammatory disorders, medications such as Skyrizzi and Dupixent target immune switches involving cytokines. For blood cancers, kinase inhibitors such as imatinib and BTK inhibitors target the enzymatic immune switch that supports the survival of cancerous cells.

Molecular Switches In Drug Delivery Systems

In addition to their role as drug targets, molecular switches are being incorporated increasingly at the level of drug delivery designs. Smart delivery systems can be designed to release drugs only when a particular molecular switch condition has been satisfied. For instance, their release of drugs will occur only in tissue where specific enzymes are present that are closely associated with a particular disease. pH sensitive switches will release drugs only when they are exposed to an acidic pH, which would be found in cancerous cells.

Emerging Technologies & Innovation

Nanotechnology, biomaterials, and synthetic biology are witnessing rapid developments that are increasing the complexity of designing molecular switches. Scientists are working on designing artificial switches that activate in response to light, ultrasound waves, or external magnetic fields. At the same time, simulations are being employed in predicting the behavior of molecular switches. These molecular switches are also gaining importance in mRNA therapies in which the activation and degradation of the switch regulate the production time of the therapeutic protein within a cell.

For Molecular Switch Targeting Therapies Future Outlook

As knowledge about molecular signaling advances, molecular switches are poised to play an even more pivotal role in the development of the next wave of therapies. As a tool that combines specificity as a biological modulator with pharmaceutically disruptive potential, molecular switches find themselves at a crossroads of scientific and pharmaceutical progress. The success of switch-targeted therapies is a testament that one of the most effective approaches in contemporary medicine is modulating biology at its decision making nodes.

Table of Contents

1. Research Methodology

2. Introduction To Molecular Switches

  • 2.1 Overview
  • 2.2 History & Emergence In Medicine

3. Molecular Switches Clinical Significance In Medicine

4. Molecular Switches Significance In Drug Delivery & Release

  • 4.1 Overview
  • 4.2 Ongoing Research & Developments

5. Molecular Switches Significance As Therapeutic Targets

6. Molecular Switches - Broad Classification

7. Sales Insight Of Key Drugs Targeting Molecular Switches

8. Molecular Switches By Cancer Indication

  • 8.1 Breast Cancer
  • 8.2 Prostate Cancer
  • 8.3 Colorectal cancer
  • 8.4 Lung Cancer
  • 8.5 Gastric Cancer

9. Molecular Switches By Neurological Disorder

  • 9.1 Parkinson's Disease
  • 9.2 Alzheimer's Disease
  • 9.3 Multiple Sclerosis
  • 9.4 Spinocerebellar Ataxia

10. Molecular Switches By Infectious Disease

  • 10.1 Viral Infection
  • 10.2 Bacterial Infection
  • 10.3 Fungal Infections

11. Molecular Switches By Autoimmune & Inflammatory Disorder

  • 11.1 Diabetes
  • 11.2 Arthritis
  • 11.3 Lupus
  • 11.4 Psoriasis

12. Molecular Switches By Cardiovascular Disease

  • 12.1 Myocardial Infarction (Heart Attack)
  • 12.2 Others

13. Molecular Switches By Metabolic Disorder

  • 13.1 Obesity
  • 13.2 Liver Diseases
  • 13.3 Cholesterol-Driven Conditions

14. Molecular Switches Significance In Regenerative Medicine

15. Molecular Switches In Circadian & Sleep Disorders

16. Molecular Switches By Hematological & Transfusion Medicine

17. Molecular Switches In Drug Formulation

  • 17.1 Smart Drug Formulations & Molecular Switches
  • 17.2 Biomaterial Based Drug Delivery Systems
  • 17.3 Self Regulating Drug Systems

18. Current Trends & Emerging Technologies

  • 18.1 Molecular Switches In Nanomedicine
  • 18.2 Innovations In Responsive Drug Systems
  • 18.3 Integration With Artificial Intelligence & Machine Learning
  • 18.4 Molecular Switches In mRNA Therapeutics

19. Future Perspectives & Directions

  • 19.1 Advancements In Molecular Switch Technology
  • 19.2 The Future Of Personalized Medicine With Molecular Switches
  • 19.3 Potential Impact On Drug Discovery & Therapeutics

20. Competitive Landscape

  • 20.1 AbbVie
  • 20.2 Akeso Bio
  • 20.3 AstraZeneca
  • 20.4 Bayer
  • 20.5 BeOne Medicines
  • 20.6 Bristol Myers Squibb
  • 20.7 Boehringer Ingelheim
  • 20.8 Coherus Oncology
  • 20.9 Eli Lilly
  • 20.10 Gilead
  • 20.11 GSK
  • 20.12 Innovent
  • 20.13 JNJ
  • 20.14 Merck
  • 20.15 Novartis
  • 20.16 Pfizer
  • 20.17 Regeneron
  • 20.18 Roche
  • 20.19 Sanofi
  • 20.20 Vertex Pharmaceuticals

List of Figures

  • Figure 2-1: Molecular Switches - Introduction
  • Figure 2-2: G-Protein As A Classical Molecular Switch
  • Figure 2-3: Molecular Switches In Gene Therapy & Regenerative Medicine
  • Figure 2-4: Molecular Switches - Emergence & Evolution
  • Figure 3-1: Molecular Switch Dysfunction To Disease Progression
  • Figure 3-2: Therapeutic Modulation Of Molecular Switches
  • Figure 3-3: Molecular Switches In Precision Medicine
  • Figure 4-1: Molecular Switches In Drug Delivery & Release
  • Figure 4-2: Drug Delivery Systems With Molecular Switches
  • Figure 4-3: Peptide-Based Drug Delivery System
  • Figure 4-4: Switchable Molecular Tweezers
  • Figure 4-5: Rotaxane-Based Drug Delivery System
  • Figure 4-6: Enzyme-Activatable Drug Delivery System
  • Figure 4-7: Light-Responsive Drug Delivery Systems
  • Figure 4-8: Photo-Responsive Drug Delivery Using Spiropyran
  • Figure 4-9: Photopharmacological Approach For Neuropathic Pain
  • Figure 4-10: Insulin Prodrug Activation
  • Figure 8-1: AR Activation & Its Dual Role In Tumor Growth
  • Figure 8-2: PRL-3 Activation & AMPI-109's Impact On TNBC
  • Figure 8-3: Molecular Switch in Prostate Cancer
  • Figure 9-1: PINK1-Parkin Molecular Switch In Parkinson's Disease
  • Figure 9-2: Receptor Switching Mechanism Regulating Amyloid Beta Production
  • Figure 9-3: Protective LIMK1 Molecular Switch In Synaptic Plasticity
  • Figure 9-4: Alzheimer's disease - Molecular Switch-Based Diagnostic Strategy
  • Figure 9-5: Multiple Sclerosis - STAT3 Molecular Switch Controlling OPC Fate
  • Figure 9-6: Therapeutic Molecular Switch Modulation Via S1P Receptors
  • Figure 9-7: Spinocerebellar Ataxias - Targeting Molecular Switches As Therapeutic Concept
  • Figure 10-1: Molecular Switches In Viral infections
  • Figure 10-2: Molecular Switches Driving Bacterial Infection & Mortality
  • Figure 10-3: Molecular Switch-Driven Adaptation Of Candida albicans To Host Environment
  • Figure 10-4: Therapeutic Targeting Of Fungal Molecular Switches
  • Figure 11-1: Role Of Molecular Switches In Diabetes Progression
  • Figure 11-2: Molecular Switches Driving Arthritis Pathogenesis
  • Figure 11-3: Arthritis - Therapeutic Targeting Of Molecular Switches
  • Figure 11-4: Molecular Switches Governing Lupus Pathogenesis
  • Figure 11-5: Lupus - Molecular Switch-Driven Therapeutic Paradigm
  • Figure 11-6: Molecular Switch-Driven Pathogenesis Of Psoriasis
  • Figure 11-7: Psoriasis - Molecular Switch Framework for Precision Therapy
  • Figure 14-1: Regeneration - General Mechanism Of Molecular Switches
  • Figure 14-2: Molecular Switches In Regenerative Medicine
  • Figure 15-1: Sleep Disorders - Integrated Molecular Switch Framework
  • Figure 15-2: Cv-c Molecular Switch Controlling Sleep Homeostasis
  • Figure 16 1: Complement C3 Switch in RBC Alloimmunization
  • Figure 17-1: Smart Drug Delivery With Molecular Switches
  • Figure 17-2: Biomaterial Based Drug Delivery Systems With Molecular Switches
  • Figure 17-3: Self-regulating Drug Systems With Molecular Switches
  • Figure 18-1: Molecular Switches In Nanomedicine
  • Figure 18-2: Molecular switches In Responsive Drug Systems
  • Figure 18-3: Integration Of Molecular Switches With Artificial Intelligence & Machine Learning
  • Figure 18-4: General mRNA Molecular Switch Workflow

List of Tables

  • Table 2-1: Traditional v/s Molecular Switch Enabled Drug Delivery
  • Table 5-1: Examples Of Approved Drugs Targeting Molecular Switches
  • Table 6-1: Molecular Switches - Broad Classification
  • Table 7-1: Top 20 Drugs Targeting Molecular Switches (US$ Billion), 2022-2025
  • Table 9-1: Alzheimer's Disease - Protective vs Pathogenic Molecular Switches
  • Table 9-2: Spinocerebellar Ataxia - PolyQ Expansion-Driven Protein Aggregation
  • Table 9-3: Spinocerebellar Ataxias - Molecular Switches Involved
  • Table 11-1: Arthritis - Key Molecular Switches Identified
  • Table 15-1: Cv-c-Mediated Molecular Switch In Sleep Homeostasis (Drosophila Model)
  • Table 15-2: Circadian Rhythm & Sleep Regulation - Key Molecular Switches Involved
  • Table 16-1: CD47 Molecular Switch In RBC Clearance
  • Table 19-1: Applications & Advancements Of Molecular Switches In Medicine
  • Table 19-2: Key Applications Of Molecular Switches In Therapeutics
  • Table 19-3: Advantages Of Molecular Switch-Based Therapeutics vs Conventional Approaches