透过体内表达DNA或RNA的载体抗体:产业视角下的竞争企业、利害关係人、技术及研发管线分析
市场调查报告书
商品编码
1759020

透过体内表达DNA或RNA的载体抗体:产业视角下的竞争企业、利害关係人、技术及研发管线分析

Vectorized Antibodies by In Vivo Expression of DNA or RNA: A Competitive Business, Stakeholder, Technology and Pipeline Analysis from an Industry Perspective

出版日期: | 出版商: La Merie Publishing | 英文 381 Pages | 订单完成后即时交付

价格
简介目录

本报告对透过体内表达DNA或RNA的载体抗体的利害关係人、研发管线、候选药物概况及组成以及截至2025年6月的当前产业格局中的商业交易进行了评论和分析。

过去三十年来,被动免疫疗法主要利用哺乳动物细胞培养系统中体外产生的单株抗体,已成为一种在临床和商业上都取得成功的治疗方法。儘管治疗性抗体在临床上取得了成功,但它们仍然存在局限性,例如由于生产和管理而导致的成本高昂,以及高剂量重复给药所需的药物量。开发生产流程以及在商业规模上进行大批量抗体的GMP生产是一个复杂的过程。此外,这些抗体给药不方便,需要频繁给药,药物动力学特征不理想,难以注射至眼部(例如视网膜下注射)和中枢神经系统(例如透过导管置入鞘内注射),且全身给药副作用大且疗效有限,缺乏在癌症治疗中至关重要的组织特异性。

载体化抗体有望克服其中的许多局限性,为DNA和RNA技术公司进入比目前基因疗法已获批或正在开发的罕见疾病适应症更大的市场提供绝佳机会。

透过DNA或RNA在体内表现治疗性抗体可以克服传统抗体疗法的至少部分限制。抗体转基因可以透过病毒载体、质粒DNA直接注射到肌肉中、电穿孔或分子製剂(例如脂质奈米颗粒)进行全身给药。

眼科疾病是透过病毒DNA在体内表现的载体化抗体的主要适应症。多种抗VEGF载体化方案治疗湿性AMD的I期和II期临床试验结果证明了其安全性和耐受性,在改善视力和视网膜厚度方面表现稳定,并且治疗效果可持续长达4年。两种不同的抗VEGF载体化抗体正在III期临床试验中竞争。首个抗VEGF载体化抗体的最终结果预计将于2026年公布,并可能为一种载体化抗体技术提供临床验证。

本报告提供以下方面的最新资讯和分析:

  • 利害关係人:病毒DNA、溶瘤病毒DNA、非病毒DNA、RNA技术公司、服务提供者、生物製药合作伙伴
  • 利害关係人概况:技术、地区、成立年份、员工、财务状况、最高研发阶段
  • 载体抗体技术公司与生物製药公司之间的合作关係
  • 载体抗体技术:病毒DNA、溶瘤病毒DNA、非病毒DNA(质粒、片段)、载体製剂、细胞转导、RNA
  • 载体抗体候选产品组成:载体抗体候选产品组成:DNA或RNA、递送方式、给药途径
  • 载体抗体研发管线:眼科、肿瘤科、神经科、传染病及其他治疗领域领域
  • 载体抗体安全性和有效性的临床经验
  • 载体抗体的分子、临床前、临床概况
  • 竞争对手分析

方法论:

本报告评估了载体抗体研发领域的产业格局。它全面概述了製药和技术公司在透过体内表达DNA或RNA进行载体抗体领域的研发和合作活动。本报告是基于对企业利害关係人(包括生物製药和生物技术公司)的识别和描述。所有已发布资讯均附有完整参考文献,并透过超连结指向 190 余篇科学出版物(摘要、海报、简报、全文)或新闻稿、公司介绍、年度报告、美国证券交易委员会 (SEC) 披露、主页内容等来源。

相关企业

  • 4D Molecular Therapeutics
  • AbbVie
  • Accesion Therapeutics
  • Adverum Biotechnologies
  • Aegis Life
  • Akamis Bio
  • AstraZeneca
  • Avirmax Biopharma
  • Be Biopharma
  • BioInvent
  • BiomEdit
  • BioNTech
  • Capsida Biotherapeutics
  • Ceva Sante Animale (Ceva Animal Health)
  • Charles River
  • Chengdu Kanghong Pharmaceutical Group
  • Chengdu Origen Biotechnology
  • China Resource Biopharma (CRBio)
  • China Resource Biopharma (CRBio)
  • Clearside Biomedical
  • Criya Therapeutics
  • De novo Biotherapeutics
  • Entos Pharmaceuticals
  • Frontera Therapeutics
  • Hopewell Therapeutics
  • Ikarovec
  • I-Mab
  • Immorna
  • ImmVira
  • Inovio Pharmaceuticals
  • Levatio
  • MeiraGTx Holdings
  • METiS Pharmaceuticals & METiS Therapeutics
  • Multiverse Pharma
  • Nanite
  • Neuracle Genetics
  • NuclixBio
  • Otsuka Pharmaceutical Co
  • PharmAbcine
  • PharmAbs
  • ProBio
  • Promab Biotechnologies
  • PulseSight Therapeutics (Eyevensys)
  • Rampart Bioscience
  • Regeneron Pharmaceuticals
  • REGENXBIO
  • RenBio
  • Reyon Pharmaceutical
  • Ring Therapeutics
  • RNAimmune
  • Sail Biomedicines
  • Scout Bio
  • Shanghai Pharmaceuticals Holding
  • Shape Therapeutics
  • Shattuck Labs
  • Skyline Therapeutics
  • ST Pharm
  • Suzhou Abogen Biosciences
  • Transgene
  • Vanotech
  • Vernagen
  • Vironexis Biotherapeutics
  • Xiamen Amoytop Biotech
  • Xuanzhu Biopharma

目录

频繁的简称

第1章 摘要整理

第2章 简介

第3章 相关利益者分析

  • 概要
  • 拥有载体抗体的病毒 DNA 技术公司
  • 拥有载体抗体的非病毒 DNA 技术公司抗体
  • 拥有载体抗体的RNA技术公司
  • 提供载体抗体RNA技术的服务提供者
  • 透过许可和合作协议建立的载体抗体合作伙伴关係

第4章 媒介化抗体技术的利害关係者的简介

  • 病毒载体DNA企业
    • 4D Molecular Therapeutics (4DMT)
    • Adverum Biotechnologies
    • Avirmax Biopharma
    • Capsida Therapeutics
    • Chengdu Origen Biotechnology
    • Cirrus Biotherapeutics
    • Frontera Therapeutics
    • Ikarovec
    • Kriya Therapeutics
    • MeiraGTx Holdings
    • Neuracle Genetics
    • Regeneron Pharmaceuticals
    • REGENXBIO
    • Ring Therapeutics
    • Scout Bio (now: Ceva)
    • Shape Therapeutics
    • Skyline Therapeutics
    • VectorY
    • Vironexis Biotherapeutics
    • Voyager Therapeutics
  • 肿瘤溶解性病毒DNA企业
    • Accession Therapeutics
    • Akamis Bio
    • ImmVira
    • Transgene
  • 非病毒DNA企业
    • Inovio Pharmaceuticals
    • PharmAbs
    • PulseSight Therapeutics
    • RenBio
    • Entos Pharmaceuticals
    • Nanite
    • Rampart Bioscience
    • Be Biopharma
    • BiomEdit
  • RNA企业
    • BioNTech
    • De novo Biotherapeutics
    • Hopewell Therapeutics
    • METiS Pharmaceuticals
    • RNAimmune
    • Shattuck Labs
    • Suzhou Abogen Bioscience
    • Immorna
    • Nuclix Bio
    • Sail Biomedicine
  • RNA服务公司
    • Charles River
    • Nutcracker Therapeutics
    • ProBio
    • ProMab Biotechnologies
    • ST Pharm
    • WuXi AppTec

第5章 媒介化抗体技术的分析

  • 抗体的生物内表现的病毒载体DNA技术
  • 抗体的生物内表现的肿瘤溶解性病毒DNA技术
  • 抗体的生物内表现的非病毒DNA技术
  • 抗体的生物内表现的RNA技术

第6章 媒介化抗体技术的简介

  • 抗体的生物内表现的病毒载体DNA技术
  • 抗体的生物内表现的肿瘤溶解性病毒DNA技术
  • 抗体的生物内表现的非病毒DNA技术
  • 抗体的生物内表现的RNA技术

第7章 抗体的生物内表现的开发平台(管线)及产品候补的分析

  • 概要
  • 眼科领域载体抗体管线分析
  • 肿瘤领域载体抗体管线分析
  • 传染病领域载体抗体管线分析
  • 神经学领域载体抗体管线分析
  • 自体免疫、代谢和罕见疾病领域载体抗体管线分析

第8章 媒介化抗体产品候补的简介

  • 用于抗体体内表现的病毒载体DNA候选产品
  • 用于抗体体内表现的Onolitic病毒DNA候选产品
  • 非病毒DNA产品抗体体内表现候选物
  • 抗体体内表现的RNA候选物

第9章 参考文献

简介目录
Product Code: LMFR0043

This report provides you with a landscape description and analysis of Vectorized antibodies by in vivo expression of DNA or RNA regarding stakeholders, R&D pipeline, profile & composition of drug candidates and business deals from an industry perspective as of June 2025.

Passive immunotherapy with monoclonal antibodies produced ex vivo mostly in mammalian cell culture systems has become a clinically and commercially successful treatment modality during the last three decades. Despite the clinical success of therapeutic antibodies, they still have limitations including the high cost, caused in great part by manufacturing and control, and the amount of drug needed for repeated administrations at high doses. Development of the manufacturing process as well as commercial scale GMP manufacturing of antibodies in great amounts is a complex process. Other limitiations refer to the inconvenience of frequent administrations associated with an unsatisfactory pharmacokinetic profile, challenging administration procedures to the eye (e.g. subretinal injection) or the central nervous system (e.g. intrathecal infusion with indwelling catheter) or side effects and limited efficacy upon systemic administration without tissue specificity, an important aspect in cancer therapy.

Vectorized antibodies hold promise to overcome many of these limitations and provide a great opportunity for DNA and RNA technology companies to enter larger markets compared with the rare disease indications for which current gene therapies are approved or in development.

In vivo expression of therapeutics antibodies by DNA or RNA may overcome at least some of the limitations of conventional antibody therapy. The antibody transgene may be delivered by viral vectors, by direct injection of plasmid DNA into the muscle followed by electroporation or by molecular formulations, such as lipid nanoparticles, for systemic administration.

Ophthalmic diseases are the lead indication for vectorized antibodies expressed in vivo by viral DNA. Clinical results from phase I and II clinical studies of various anti-VEGF vectorized programs for treatment of wet AMD demonstrated safety and tolerability and stable to improved vision and retinal thickness as well as long-term, durable treatment effects up to 4 years. Three distinct anti-VEGF vectorized antibodies are competing in clinical phase III. Topline results from the first anti-VEGF vectorized antibody are expected in 2026 and may provide clinical validation of one vectorized antibody technology.

The report brings you up-to-date with information about and analysis of:

  • Stakeholders: companies with technologies in viral DNA, oncolytic virus DNA, non-viral DNA and RNA; service providers and biopharmaceutical partners;
  • Coroporate profiles of stakeholders: technology, territory, year of foundation, employees, financial situation and highest R&D stage
  • Partnerships o f vectorized antibody technology companies and biopharmaceutical companies;
  • Vectorized antibody technologies; viral DNA, oncolytic virus DNA, non-viral DNA (plasmid, molecular formulation, cellular delivery) and RNA;
  • Compositions of vectorized antibody product candidates: DNA or RNA, delivery method and route of administration;
  • Pipeline of vectorized antibodies: in ophthalmology, oncology, neurology, infectious disease and other therapeutic areas;
  • Clinical experience in safety and efficacy with vectorized antibodies;
  • Molecular, preclinical and clinical profile of vectorized antibodies;
  • Competitor analysis.

Methodology:

This report evaluates the industry landscape of vectorized antibodies in research and development. The report provides a comprehensive overview of the R&D and partnering activities of pharmaceutical and technology companies in the field of vectorized antibodies by in vivo expression of DNA or RNA. This report is based on the identification and description of corporate stakeholders including biopharmaceutical companies and biotechnology companies. All publicly available information is fully referenced, either with more than 190 scientific references (abstracts, posters, presentations, full paper) or hyperlinks leading to the source of information, such as press releases, corporate presentations, annual reports, SEC disclosures and homepage content.

Who will benefit from the report?

  • Business development and licensing (BDL) specialists;
  • Venture capital, private equity and investment managers;
  • Managers of Big Pharma venture capital firms;
  • Financial analysts;
  • CEO, COO and managing directors;
  • Corporate strategy analysts and managers;
  • Chief Technology Officer;
  • R&D Portfolio, Technology and Strategy Management;
  • Clinical and preclinical development specialists.

Related Companies:

  • 4D Molecular Therapeutics
  • AbbVie
  • Accesion Therapeutics
  • Adverum Biotechnologies
  • Aegis Life
  • Akamis Bio
  • AstraZeneca
  • Avirmax Biopharma
  • Be Biopharma
  • BioInvent
  • BiomEdit
  • BioNTech
  • Capsida Biotherapeutics
  • Ceva Sante Animale (Ceva Animal Health)
  • Charles River
  • Chengdu Kanghong Pharmaceutical Group
  • Chengdu Origen Biotechnology
  • China Resource Biopharma (CRBio)
  • China Resource Biopharma (CRBio)
  • Clearside Biomedical
  • Criya Therapeutics
  • De novo Biotherapeutics
  • Entos Pharmaceuticals
  • Frontera Therapeutics
  • Hopewell Therapeutics
  • Ikarovec
  • I-Mab
  • Immorna
  • ImmVira
  • Inovio Pharmaceuticals
  • Levatio
  • MeiraGTx Holdings
  • METiS Pharmaceuticals & METiS Therapeutics
  • Multiverse Pharma
  • Nanite
  • Neuracle Genetics
  • NuclixBio
  • Otsuka Pharmaceutical Co
  • PharmAbcine
  • PharmAbs
  • ProBio
  • Promab Biotechnologies
  • PulseSight Therapeutics (Eyevensys)
  • Rampart Bioscience
  • Regeneron Pharmaceuticals
  • REGENXBIO
  • RenBio
  • Reyon Pharmaceutical
  • Ring Therapeutics
  • RNAimmune
  • Sail Biomedicines
  • Scout Bio
  • Shanghai Pharmaceuticals Holding
  • Shape Therapeutics
  • Shattuck Labs
  • Skyline Therapeutics
  • ST Pharm
  • Suzhou Abogen Biosciences
  • Transgene
  • Vanotech
  • Vernagen
  • Vironexis Biotherapeutics
  • Xiamen Amoytop Biotech
  • Xuanzhu Biopharma

Table of Contents

Frequent Abbreviations

1. Executive Summary

2. Introduction

3. Stakeholder Analysis

  • 3.1. Overview
  • 3.2. Viral DNA Technology Companies with Vectorized Antibodies
  • 3.3. Non-Viral DNA Technology Companies with Vectorized Antibodies
  • 3.4. RNA Technology Companies with Vectorized Antibodies
  • 3.5. Service Providers with RNA Technology for Vectorized Antibodies
  • 3.6. Partnerships with Licensing and Collaboration Agreements for Vectorized Antibodies

4. Profiles of Stakeholders in Vectorized Antibody Technologies

  • 4.1. Viral Vector DNA Companies
    • 4.1.1. 4D Molecular Therapeutics (4DMT)
    • 4.1.2. Adverum Biotechnologies
    • 4.1.3. Avirmax Biopharma
    • 4.1.4. Capsida Therapeutics
    • 4.1.5. Chengdu Origen Biotechnology
    • 4.1.6. Cirrus Biotherapeutics
    • 4.1.7. Frontera Therapeutics
    • 4.1.8. Ikarovec
    • 4.1.9. Kriya Therapeutics
    • 4.1.10. MeiraGTx Holdings
    • 4.1.11. Neuracle Genetics
    • 4.1.12. Regeneron Pharmaceuticals
    • 4.1.13. REGENXBIO
    • 4.1.14. Ring Therapeutics
    • 4.1.15. Scout Bio (now: Ceva)
    • 4.1.16. Shape Therapeutics
    • 4.1.17. Skyline Therapeutics
    • 4.1.18. VectorY
    • 4.1.19. Vironexis Biotherapeutics
    • 4.1.20. Voyager Therapeutics
  • 4.2. Oncolytic Virus DNA Companies
    • 4.2.1. Accession Therapeutics
    • 4.2.2. Akamis Bio
    • 4.2.3. ImmVira
    • 4.2.4. Transgene
  • 4.3. Non-Viral DNA Companies
    • 4.3.1. Inovio Pharmaceuticals
    • 4.3.2. PharmAbs
    • 4.3.3. PulseSight Therapeutics
    • 4.3.4. RenBio
    • 4.3.5. Entos Pharmaceuticals
    • 4.3.6. Nanite
    • 4.3.7. Rampart Bioscience
    • 4.3.8. Be Biopharma
    • 4.3.9. BiomEdit
  • 4.4. RNA Companies
    • 4.4.1. BioNTech
    • 4.4.2. De novo Biotherapeutics
    • 4.4.3. Hopewell Therapeutics
    • 4.4.4. METiS Pharmaceuticals
    • 4.4.5. RNAimmune
    • 4.4.6. Shattuck Labs
    • 4.4.7. Suzhou Abogen Bioscience
    • 4.4.8. Immorna
    • 4.4.9. Nuclix Bio
    • 4.4.10. Sail Biomedicine
  • 4.5. RNA Service Companies
    • 4.5.1. Charles River
    • 4.5.2. Nutcracker Therapeutics
    • 4.5.3. ProBio
    • 4.5.4. ProMab Biotechnologies
    • 4.5.5. ST Pharm
    • 4.5.6. WuXi AppTec

5. Analysis of Vectorized Antibody Technologies

  • 5.1. Viral Vector DNA Technologies for In Vivo Expression of Antibodies
  • 5.2. Oncolytic Virus DNA Technologies for in vivo Expression of Antibodies
  • 5.3. Non-Viral DNA Technologies for in vivo Expression of Antibodies
  • 5.4. RNA Technologies for in vivo Expression of Antibodies

6. Profiles of Vectorized Antibody Technologies

  • 6.1. Viral Vector DNA Technologies for in vivo Expression of Antibodies
    • 6.1.1. Therapeutic Vector Evolution (4DMT)
    • 6.1.2. AAV.7m8 VectorPlatform (Adverum)
    • 6.1.3. Macular Retina-Targeting AAV2 Capsid (Avirmax)
    • 6.1.4. CNS-Selective AAV Gene Therapy (Capsida)
    • 6.1.5. AAV8 and Variant Gene Therapy with Vectorized Antibodies (Chengdu)
    • 6.1.6. APEX Technology & Manufacturing platform (Frontera)
    • 6.1.7. AAV Gene Therapy & Riboswitch Technology (MeiraGTx)
    • 6.1.8. NAV Technology Platform (REGENXBIO)
    • 6.1.9. Anellogy platform (Ring Tx)
    • 6.1.10. AAV.ai Capsid Discovery Platform (Shape)
    • 6.1.11. Advanced adeno-associated virus (AAV) based platform (Skyline)
    • 6.1.12. VecTab, VecTron & VeCap (VectorY)
    • 6.1.13. TRACER Capsid Discovery Platform (Voyager)
  • 6.2. Oncolytic Virus DNA Technologies for in vivo Expression of Antibodies
    • 6.2.1. TROCEPT Technology Platform (Accession)
    • 6.2.2. Tumor-Specific Immuno-Gene Therapy (T-SIGn) Platform (Akamis)
    • 6.2.3. Invir.IO (Transgene)
  • 6.3. Non-Viral DNA Technologies for in vivo Expression of Antibodies
    • 6.3.1. DNA-encoded Monoclonal Antibodies: DMAbs (Inovio)
    • 6.3.2. Ciliary Electro-Transfection of Plasmid (PulseSight)
    • 6.3.3. MYO Technology (RenBio)
    • 6.3.4. Fusogenix PLV Technology (Entos)
    • 6.3.5. SAYER Technology (Nanite)
    • 6.3.6. HALO DNA-LNP (Rampart)
    • 6.3.7. B Cell Engineering Platform (Be Biopharma)
    • 6.3.8. Probiotic Vectored Antibody: pvAb (BiomEdit)
  • 6.4. RNA Technologies for in vivo Expression of Antibodies
    • 6.4.1. RiboMab Technology (BioNTech)
    • 6.4.2. AiLNP & AiRNA (METiS)
    • 6.4.3. Linear mRNA and Circular RNA (Abogen)
    • 6.4.4. mRNA-Encoded Antibody Platform (Charles River)
    • 6.4.5. RNA Precision Manufacturing Platform (Nutcracker)
    • 6.4.6. ringRNA & Ribo-grAb ("RNA-generated recombinant Antibodies") (Ring Therapeutics)
    • 6.4.7. Endless RNA (eRNA) (Sail)

7. Analysis of Pipeline and Product Candidates for in vivo Expression of Antibodies

  • 7.1. Overview
  • 7.2. Analysis of the Pipeline of Vectorized Antibodies in Ophthalmology
    • 7.2.1. Clinical Experience on the Safety and Efficacy of Vectorized Antibodies in Ophthalmology
  • 7.3. Analysis of the Pipeline of Vectorized Antibodies in Oncology
    • 7.3.1. Clinical Experience with the Safety and Efficacy of Vectorized Antibodies in Oncology
  • 7.4. Analysis of the Pipeline of Vectorized Antibodies in Infectious Diseases
  • 7.5. Analysis of the Pipeline of Vectorized Antibodies in Neurology
  • 7.6. Pipeline of Vectorized Antibodies in Autoimmune, Metabolic and Rare Diseases

8. Profiles of Vectorized Antibody Product Candidates

  • 8.1. Viral Vector DNA Product Candidates for in vivo Expression of Antibodies
    • 8.1.1. 4D-150
    • 8.1.2. AAV8.2-anti-C5 scFv
    • 8.1.3. AAV8.CAT311 Gene Therapy with Vectorized Antibodies
    • 8.1.4. AAV-anti-TNFalpha- scFv
    • 8.1.5. ABI-110
    • 8.1.6. FT-003
    • 8.1.7. IKC151V
    • 8.1.8. Ixoberogene soroparvovec; ixo-vec
    • 8.1.9. KH631
    • 8.1.10. KH658
    • 8.1.11. KRIYA-586
    • 8.1.12. NG101; RY104
    • 8.1.13. SKG0106
    • 8.1.14. Surabgene lomparvovec; sura-vec; ABBV-RGX-314
    • 8.1.15. Vectorized Anti-Amyloid Antibody
    • 8.1.16. VNX-101
    • 8.1.17. VNX-202
    • 8.1.18. VTX-001
    • 8.1.19. VTX-002
    • 8.1.20. VTX-003
  • 8.2. Onolytic Virus DNA Product Candidates for in vivo Expression of Antibodies
    • 8.2.1. BT-001
    • 8.2.2. MVR-C5252
    • 8.2.3. MVR-T3011
    • 8.2.4. NG-350A
    • 8.2.5. TG6050
    • 8.2.6. TROCEPT-01; ATTR-01
  • 8.3. Non-Viral DNA Product Candidates for in vivo Expression of Antibodies
    • 8.3.1. DNA-based Anti-Zika Antibody
    • 8.3.2. DNA-based Incretin Receptor Agonists
    • 8.3.3. EYS606
    • 8.3.4. Optimized dMAb AZD5396 and dMAb AZD8076 with Hylenex-R Recombinant
    • 8.3.5. PST-809 (EYS809)
    • 8.3.6. DNA-Encoded PGT121 Antibody
    • 8.3.7. HALO BTE-LNP
    • 8.3.8. HALO TNALP-LNP
    • 8.3.9. BE-102
    • 8.3.10. BiTE BCM
    • 8.3.11. RMP100-HSPC-TNALP
  • 8.4. RNA Product Candidates for in vivo Expression of Antibodies
    • 8.4.1. ABO2203
    • 8.4.2. BNT141
    • 8.4.3. BNT142
    • 8.4.4. LNP-mRNA BiTE
    • 8.4.5. MTS105
    • 8.4.6. NTX-470
    • 8.4.7. NTX-0471
    • 8.4.8. NTX-472
    • 8.4.9. RV-525

9. References

Figures & Tables

  • Table 1: Corporate Stakeholders in Vectorized Antibody R&D
  • Table 2: Product Categories Pursued by Viral DNA Technology Companies
  • Table 3: Profiles of Viral DNA Companies with Vectorized Antibody Technologies
  • Table 4: Product Categories Pursued by Non-Viral DNA Technology Companies
  • Table 5: Profiles of Non-Viral DNA Companies with Vectorized Antibody Technologies
  • Table 6: Product Categories Pursued by RNA Technology Companies
  • Table 7: Profiles of RNA Companies with Vectorized Antibody Technologies
  • Table 8: Partnerships of Pharma/Biotech and Companies with Vectorized Antibody Technologies
  • Table 9: Overview of Kriya Therapeutics' AAV Gene Therapy R&D Pipeline
  • Table 10: REGENXBIO's Pipeline of Vectorized Antibodies
  • Table 11: Aegis Life's Pipeline of Vectorized Antibodies for Infectious Diseases
  • Table 12: Overview of Viral Vectors Used for in vivo Expression of Antibodies by DNA
  • Table 13: Oncolytic Virus Technologies with DNA for in vivo Expression of Antibodies
  • Table 14: Overview of Non-Viral DNA Technologies for in vivo Expression of Antibodies
  • Table 15: Overview of RNA Technologies for in vivo Expression of Antibodies
  • Table 16: Clinical and Non-Clinical Stage Vectorized Antibodies per Technology Modality and per Therapeutic Area
  • Table 17: Preclinical and Research Stage Vectorized Antibodies per Technology Modality and per Therapeutic Area
  • Table 18: Pipeline of Vectorized Antibodies in Ophthalmology
  • Table 19: Pipeline of Vectorized Antibodies in Oncology
  • Table 20: Pipeline of Vectorized Antibodies in Infectious Diseases
  • Table 21: Pipeline of Vectorized Antibodies in Neurology
  • Table 22: Pipeline of Vectorized Antibodies in Autoimmune, Metabolic & Rare Diseases
  • Table 23: Overview of Clinical Development Program of ABBV-RGX-314