全球搜寻增强产生 (RAG) 市场按产品、类型、应用、部署类型、最终用户和地区划分 - 预测至 2030 年
市场调查报告书
商品编码
1856029

全球搜寻增强产生 (RAG) 市场按产品、类型、应用、部署类型、最终用户和地区划分 - 预测至 2030 年

Retrieval-augmented Generation (RAG) Market by Offering (Solution (RAG-enabled platforms, data management and indexing layers, retrieval & search models), Services), Type, Application, End User, and Deployment Type - Global Forecast to 2030

出版日期: | 出版商: MarketsandMarkets | 英文 350 Pages | 订单完成后即时交付

价格

据估计,搜寻增强生成 (RAG) 市场在 2025 年的价值为 19.4 亿美元,预计到 2030 年将达到 98.6 亿美元,复合年增长率为 38.4%。

调查范围
调查年度 2024-2030
基准年 2024
预测期 2025-2030
考虑单位 金额(百万美元/十亿美元)
部分 按产品/服务、类型、应用程式、部署类型、最终用户、区域
目标区域 北美洲、欧洲、亚太地区、中东和非洲、拉丁美洲

微软、AWS、Google、Anthropic 和 Cohere 等领先科技公司正在大力投资基于 RAG 的解决方案、整合和伙伴关係。云端超大规模云端服务商正在将 RAG 整合到其企业级 AI 服务中,例如 Azure OpenAI 服务和 AWS Bedrock,从而使企业能够更轻鬆地将搜寻功能整合到其生成式 AI 应用中。这个不断扩展的生态系统不仅提高了人们对 RAG 的认知度,而且透过为企业提供即用型、扩充性的解决方案,降低了采用 RAG 的门槛。持续的创业投资资金支持新兴企业,以及模型提供者和搜寻基础设施供应商之间的合作,将进一步加速市场成长。

检索增强生成(RAG)市场-IMG1

随着企业持续处理大量结构化和非结构化数据,强大的索引和高效的数据管理对于优化 RAG 效能至关重要。向量资料库、嵌入和即时资料撷取技术的进步正在推动这些解决方案的快速普及。在对高品质资料搜寻、低延迟效能和可扩展架构日益增长的需求驱动下,资料管理和索引层预计将以最快的速度成长,尤其是在医疗保健、金融服务和生命科学等处理复杂资料集的行业。

「按类型划分,基本款和扩展款 RAG 细分市场将在预测期内引领市场。

基础型和增强型 RAG 预计将占据最大的市场份额,这主要得益于寻求可靠搜寻增强生成能力的企业早期采用此类产品。这类产品将大规模语言模型与强大的搜寻架构结合,使组织能够整合结构化和非结构化资料来源,从而增强决策和知识生成能力。基础型 RAG 解决方案已广泛应用于企业搜寻、内容摘要和特定领域资料合成,具有高精度、扩充性和高效的运作效能。增强型 RAG 透过整合微调的领域知识、相关性排序和高阶嵌入机制,进一步提升了基础模型的效能。企业青睐这类产品,是因为它具有稳定性、成熟的应用案例和经证实的投资报酬率,使其成为市场规模最大的细分市场。此外,技术供应商不断透过预训练模型和即用即用整合功能来增强基础型 RAG 平台,进一步巩固了其市场领先地位。

在强劲的企业需求和快速成长的开发团体的推动下,亚太地区正成为RAG市场的主要成长中心。该地区的企业正在利用RAG来管理医疗保健、物流和能源等复杂且数据密集的行业。云端基础系统和5G网路的部署为边缘端的RAG助手和知识工具开启了新的机会。亚太地区的成长得益于政府、全球科技巨头和本地参与企业之间的伙伴关係,确保解决方案符合当地的法规和文化需求。亚太地区不仅是RAG快速普及的地区,也将影响RAG的全球未来发展,尤其是在多模态人工智慧和跨领域人工智慧等领域。

本报告对全球搜寻增强生成 (RAG) 市场进行了分析,并按产品、类型、应用、部署类型、最终用户、区域趋势以及市场参与者概况对其进行了细分。

目录

第一章 引言

第二章调查方法

第三章执行摘要

第四章重要考察

第五章 市场概览与产业趋势

  • 介绍
  • 市场动态
  • 搜寻增强生成(RAG)市场:简史
  • 供应链分析
  • 生态系统
  • 案例研究
  • 波特五力模型
  • 专利分析
  • 搜寻增强生成 (RAG) 市场中影响买家/客户的干扰因素
  • 定价分析
  • 主要相关人员和采购标准
  • 技术分析
  • 监管状态
  • 大型会议和活动
  • 搜寻增强生成 (RAG) 市场技术蓝图
  • 搜寻增强生成 (RAG) 市场的最佳实践
  • 当前和新兴的经营模式经营模式
  • 搜寻增强生成 (RAG) 市场中使用的工具、框架和技术
  • 投资和资金筹措方案
  • 人工智慧/生成式人工智慧对搜寻增强和生成 (RAG) 市场的影响
  • 美国关税对2025年RAG市场的影响

第六章搜寻增强生成(RAG)市场(依产品/服务分类)

  • 介绍
  • 解决方案
  • 服务

第七章搜寻增强生成(RAG)市场(按类型划分)

  • 介绍
  • 基本 RAG 和增强型 RAG
  • 智能体和自适应 RAG
  • 基于知识结构化记忆体的 RAG
  • 隐私保护和去中心化 RAG
  • 其他的

第八章搜寻增强生成(RAG)市场(按应用领域划分)

  • 介绍
  • 企业搜寻
  • 领域特定数据综合
  • 内容摘要和生成
  • 个人化推荐和见解
  • 程式码和开发者生产力
  • 其他的

第九章搜寻增强生成 (RAG) 市场(按部署类型划分)

  • 介绍
  • 本地部署

第十章搜寻增强生成 (RAG) 市场(按最终用户划分)

  • 介绍
  • 医疗保健和生命科学
  • 零售与电子商务
  • 金融服务
  • 电讯
  • 教育
  • 媒体与娱乐
  • 其他的

第十一章搜寻增强生成 (RAG) 市场(按地区划分)

  • 介绍
  • 北美洲
    • 北美:宏观经济展望
    • 美国
    • 加拿大
  • 欧洲
    • 欧洲:宏观经济展望
    • 英国
    • 德国
    • 法国
    • 义大利
    • 其他的
  • 亚太地区
    • 亚太地区:宏观经济展望
    • 中国
    • 印度
    • 日本
    • 澳洲和纽西兰
    • 韩国
    • 其他的
  • 中东和非洲
    • 中东与非洲:宏观经济展望
    • 阿拉伯聯合大公国
    • 沙乌地阿拉伯王国
    • 南非
    • 其他的
  • 拉丁美洲
    • 拉丁美洲:宏观经济展望
    • 巴西
    • 墨西哥
    • 其他的

第十二章 竞争格局

  • 介绍
  • 主要参与企业的策略/优势,2022-2025年
  • 2024年收入分析
  • 2024年市占率分析
  • 品牌/产品对比
  • 估值和财务指标
  • 公司估值矩阵:主要参与企业,2024 年
  • 公司估值矩阵:Start-Ups/中小企业,2024 年
  • 竞争场景

第十三章:公司简介

  • 介绍
  • 主要参与企业
    • MICROSOFT
    • AWS
    • GOOGLE
    • ANTHROPIC
    • IBM
    • NVIDIA
    • COHERE
    • PINECONE
    • ELASTIC
    • MONGODB
  • 其他公司
    • PROGRESS SOFTWARE
    • RAGIE.AI
    • CLARIFAI
    • VECTARA
    • WEAVIATE
    • CHATBEES
    • ZILLIZ
    • QDRANT

第十四章:邻近/相关市场

  • 介绍
  • 生成式人工智慧市场
  • 大规模语言模型(LLM)市场

第十五章附录

Product Code: TC 9579

The retrieval-augmented generation (RAG) market is estimated to be USD 1.94 billion in 2025 and is projected to reach USD 9.86 billion by 2030 at a CAGR of 38.4%.

Scope of the Report
Years Considered for the Study2024-2030
Base Year2024
Forecast Period2025-2030
Units ConsideredValue (USD Million/ Billion)
SegmentsOffering, Type, Application, End User, Deployment Type, and Region
Regions coveredNorth America, Europe, Asia Pacific, Middle East & Africa, and Latin America

Major technology companies, including Microsoft, AWS, Google, Anthropic, and Cohere, are heavily investing in RAG-powered solutions, integrations, and partnerships. Cloud hyperscalers are embedding RAG into their enterprise AI offerings, such as Azure OpenAI Service and AWS Bedrock, making it easier for businesses to integrate retrieval capabilities into their generative AI applications. This ecosystem expansion not only raises awareness of RAG but also lowers barriers to adoption by providing enterprises with ready-to-use, scalable solutions. Continued venture funding into RAG startups and partnerships between model providers and retrieval infrastructure vendors further accelerate the market's growth trajectory.

Retrieval-augmented Generation (RAG) Market - IMG1

"Data management and indexing layer solution segment to witness significant growth during forecast period."

As enterprises continue to handle massive volumes of structured and unstructured data, robust indexing and efficient data management become critical for optimal RAG performance. Advances in vector databases, embeddings, and real-time data ingestion are driving rapid adoption of these solutions. With increasing demand for high-quality data retrieval, low-latency performance, and scalable architecture, the data management and indexing layer is projected to grow at the fastest rate, particularly in sectors with complex datasets like healthcare, financial services, and life sciences.

"By type, foundational and enhanced RAG segment to lead market during forecast period."

Foundational and enhanced RAG is projected to account for the largest market share due to its early adoption across enterprises seeking reliable retrieval-augmented generative capabilities. This type combines large language models with robust retrieval architectures, enabling organizations to integrate structured and unstructured data sources for enhanced decision-making and knowledge generation. Foundational RAG solutions are widely deployed in enterprise search, content summarization, and domain-specific data synthesis, offering high accuracy, scalability, and operational efficiency. Enhanced RAG variants further improve the performance of foundational models by incorporating fine-tuned domain knowledge, relevance ranking, and advanced embedding mechanisms. Enterprises favor this type for its stability, established use cases, and proven ROI, making it the most prominent sub-segment in terms of market size. Additionally, technology vendors continue to enhance foundational RAG platforms with pre-trained models and plug-and-play integration capabilities, further reinforcing their market leadership.

"Asia Pacific to record highest growth rate during forecast period."

Asia Pacific is becoming a key growth hub for the RAG market, driven by strong enterprise demand and a rapidly growing developer community. Companies in the region are using RAG to manage complex, data-heavy industries like healthcare, logistics, and energy. The rollout of cloud-based systems and 5G networks is opening up new opportunities for RAG-powered assistants and knowledge tools at the edge. Growth in the Asia Pacific comes from partnerships between governments, global tech giants, and local players, which ensures solutions meet local rules and cultural needs. Making Asia Pacific not just a fast adopter, but also a region that will influence the global future of RAG, especially in areas like multimodal and cross-domain AI.

Breakdown of primaries

The study contains insights from various industry experts, from solution vendors to Tier 1 companies. The break-up of the primaries is as follows:

  • By Company Type: Tier 1 - 35%, Tier 2 - 45%, and Tier 3 - 20%
  • By Designation: C-level -35%, D-level - 30%, and Others - 35%
  • By Region: North America - 40%, Europe - 20%, Asia Pacific - 25%, Middle East & Africa - 9%, Latin America - 6%

The major players in the retrieval-augmented generation (RAG) market include Microsoft (US), Amazon Web Services, Inc. (US), Anthropic (US), Google (US), IBM (US), Cohere (Canada), NVIDIA (US), Pinecone (US), Elastic N.V. (US), Progress Software Corporation (US), Vectra AI, Inc. (US), Ragie.ai (US), Clarifai (US), Chatbees (US), Zilliz (US), Weaviate (Netherlands), Qdrant (Berlin), and MongoDB (US). These players have adopted various growth strategies, such as partnerships, agreements, collaborations, new product launches, enhancements, and acquisitions, to expand their market footprint.

Research Coverage

The market study covers the retrieval-augmented generation (RAG) market size and growth potential across different segments, including offering, type, application, end user, deployment type, and region. The offerings studied include solutions (RAG-enabled platforms, data management and indexing layers, retrieval & search models, and other solutions), and services (managed and professional). The type segment includes foundational & enhanced RAG, agentic & adaptive RAG, knowledge-structured & memory-based RAG, privacy-preserving & distributed RAG, and other types. The application segment includes enterprise search, domain-specific data synthesis, content summarization & generation, personalized recommendations & insights, code & developer productivity, and other applications. The end user segment includes healthcare & life sciences, retail & e-commerce, financial services, telecommunications, education, media & entertainment, software & technology providers, and other end users. The deployment type segment includes on-premises and cloud. The regional analysis of the retrieval-augmented generation (RAG) market covers North America, Europe, Asia Pacific, the Middle East & Africa, and Latin America.

Key Benefits of Buying the Report

The report will help market leaders and new entrants with information on the closest approximations of the global retrieval-augmented generation (RAG) market's revenue numbers and subsegments. It will also help stakeholders understand the competitive landscape, gain insights, and plan suitable go-to-market strategies. Moreover, the report will provide insights for stakeholders to understand the market's pulse and provide them with information on key market drivers, restraints, challenges, and opportunities.

The report provides the following insights.

Analysis of key drivers (Enhancing accuracy with context-aware AI responses, accelerating enterprise digitization), restraints (Managing high infrastructure costs, ensuring data privacy and protection), opportunities (Integrating RAG with domain-specific applications, expanding multilingual support), and challenges (Managing vendor fragmentation, mitigating risks of AI hallucinations) that are influencing the growth of the retrieval-augmented generation (RAG) market.

Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the retrieval-augmented generation (RAG) market

Market Development: The report provides comprehensive information about lucrative markets, analyzing the retrieval-augmented generation (RAG) market across various regions.

Market Diversification: Comprehensive information about new products and services, untapped geographies, recent developments, and investments in the retrieval-augmented generation (RAG) market.

Competitive Assessment: In-depth assessment of market shares, growth strategies and service offerings of leading players such as Microsoft (US), Amazon Web Services, Inc. (US), Anthropic (US), Google (US), IBM (US), Cohere (Canada), NVIDIA (US), Pinecone (US), Elastic N.V. (US), Progress Software Corporation (US), Vectra AI, Inc. (US), Ragie.ai (US), Clarifai (US), Chatbees (US), Zilliz (US), Weaviate (Netherlands), Qdrant (Berlin), and MongoDB (US).

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 STUDY OBJECTIVES
  • 1.2 MARKET DEFINITION
  • 1.3 STUDY SCOPE
    • 1.3.1 MARKET SEGMENTATION AND REGIONS COVERED
    • 1.3.2 INCLUSIONS AND EXCLUSIONS
  • 1.4 YEARS CONSIDERED
  • 1.5 CURRENCY CONSIDERED
  • 1.6 STAKEHOLDERS

2 RESEARCH METHODOLOGY

  • 2.1 RESEARCH DATA
    • 2.1.1 SECONDARY DATA
    • 2.1.2 PRIMARY DATA
      • 2.1.2.1 Breakdown of primary profiles
  • 2.2 MARKET SIZE ESTIMATION
    • 2.2.1 TOP-DOWN APPROACH
    • 2.2.2 BOTTOM-UP APPROACH
    • 2.2.3 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET ESTIMATION: DEMAND-SIDE ANALYSIS
  • 2.3 DATA TRIANGULATION
  • 2.4 RISK ASSESSMENT
  • 2.5 RESEARCH ASSUMPTIONS
  • 2.6 RESEARCH LIMITATIONS

3 EXECUTIVE SUMMARY

4 PREMIUM INSIGHTS

  • 4.1 ATTRACTIVE OPPORTUNITIES FOR PLAYERS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • 4.2 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING
  • 4.3 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION
  • 4.4 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE
  • 4.5 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION
  • 4.6 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE
  • 4.7 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER
  • 4.8 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER AND REGION

5 MARKET OVERVIEW AND INDUSTRY TRENDS

  • 5.1 INTRODUCTION
  • 5.2 MARKET DYNAMICS
    • 5.2.1 DRIVERS
      • 5.2.1.1 Enhancing Accuracy with Context-aware AI Responses
      • 5.2.1.2 Accelerating Enterprise Digitalization
    • 5.2.2 RESTRAINTS
      • 5.2.2.1 Managing High Infrastructure Costs
      • 5.2.2.2 Ensuring Data Privacy and Protection
    • 5.2.3 OPPORTUNITIES
      • 5.2.3.1 Integrating RAG with Domain-specific Applications
      • 5.2.3.2 Expanding Multilingual Support
    • 5.2.4 CHALLENGES
      • 5.2.4.1 Mitigating Risks of AI Hallucinations
      • 5.2.4.2 Managing Vendor Fragmentation
  • 5.3 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: BRIEF HISTORY
  • 5.4 SUPPLY CHAIN ANALYSIS
  • 5.5 ECOSYSTEM
  • 5.6 CASE STUDIES
    • 5.6.1 FILEVINE AND ZILLIZ CLOUD REVOLUTIONIZED CASE MANAGEMENT WITH VECTOR SEARCH
    • 5.6.2 NEOPLE ASSISTANTS TRANSFORMING CUSTOMER SERVICE WITH WEAVIATE
    • 5.6.3 DUST ADDRESSED COMPLEXITIES FACED BY QDRANT BY DEPLOYING LLMS
  • 5.7 PORTER'S FIVE FORCES MODEL
    • 5.7.1 THREAT OF NEW ENTRANTS
    • 5.7.2 THREAT OF SUBSTITUTES
    • 5.7.3 BARGAINING POWER OF BUYERS
    • 5.7.4 BARGAINING POWER OF SUPPLIERS
    • 5.7.5 INTENSITY OF COMPETITIVE RIVALRY
  • 5.8 PATENT ANALYSIS
    • 5.8.1 METHODOLOGY
    • 5.8.2 LIST OF PATENTS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2020-2024
  • 5.9 DISRUPTIONS IMPACTING BUYERS/CLIENTS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • 5.10 PRICING ANALYSIS
    • 5.10.1 AVERAGE SELLING PRICE OF KEY PLAYERS, 2024
    • 5.10.2 INDICATIVE PRICING ANALYSIS OF KEY PLAYERS, BY SOLUTION, 2024
  • 5.11 KEY STAKEHOLDERS AND BUYING CRITERIA
    • 5.11.1 KEY STAKEHOLDERS IN BUYING PROCESS
    • 5.11.2 BUYING CRITERIA
  • 5.12 TECHNOLOGY ANALYSIS
    • 5.12.1 KEY TECHNOLOGIES
      • 5.12.1.1 Large Language Models (LLMs) and Transformer-based Generators
      • 5.12.1.2 Embedding Models
      • 5.12.1.3 Dense Retrieval Mechanisms
      • 5.12.1.4 Vector Databases
    • 5.12.2 COMPLEMENTARY TECHNOLOGIES
      • 5.12.2.1 Reranking Models
      • 5.12.2.2 Knowledge Graphs
      • 5.12.2.3 Semantic Search and NLP Techniques
      • 5.12.2.4 Reasoning and Memory Modules
    • 5.12.3 ADJACENT TECHNOLOGIES
      • 5.12.3.1 Multimodal AI Processing
      • 5.12.3.2 Data Privacy and Security Tools
      • 5.12.3.3 AI/ML Frameworks and Orchestration Tools
  • 5.13 REGULATORY LANDSCAPE
    • 5.13.1 REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
    • 5.13.2 KEY REGULATIONS
      • 5.13.2.1 North America
        • 5.13.2.1.1 California Consumer Privacy Act (CCPA)
        • 5.13.2.1.2 Canada's Directive on Automated Decision-making
        • 5.13.2.1.3 AI and Automated Decision Systems (AADS) Ordinance (New York City)
      • 5.13.2.2 Europe
        • 5.13.2.2.1 General Data Protection Regulation (GDPR)
        • 5.13.2.2.2 European Union's Artificial Intelligence Act (AIA)
        • 5.13.2.2.3 Ethical Guidelines for Trustworthy AI by the European Commission
      • 5.13.2.3 Asia Pacific
        • 5.13.2.3.1 Personal Information Protection Law (PIPL) - China
        • 5.13.2.3.2 Artificial Intelligence Ethics Guidelines - Japan
        • 5.13.2.3.3 AI Strategy and Governance Framework - Australia
      • 5.13.2.4 Middle East & Africa
        • 5.13.2.4.1 UAE AI Regulation and Ethics Guidelines
        • 5.13.2.4.2 South Africa's Protection of Personal Information Act (POPIA)
        • 5.13.2.4.3 Egypt's Data Protection Law
      • 5.13.2.5 Latin America
        • 5.13.2.5.1 Brazil - General Data Protection Law (LGPD)
        • 5.13.2.5.2 Mexico - Federal Law on the Protection of Personal Data Held by Private Parties (LFPDPPP)
        • 5.13.2.5.3 Argentina - Personal Data Protection Law (PDPL)
  • 5.14 KEY CONFERENCES & EVENTS
  • 5.15 TECHNOLOGY ROADMAP FOR RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
    • 5.15.1 SHORT-TERM ROADMAP (2025-2026)
    • 5.15.2 MID-TERM ROADMAP (2027-2028)
    • 5.15.3 LONG-TERM ROADMAP (2029-2030)
  • 5.16 BEST PRACTICES IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
    • 5.16.1 ENSURE HIGH-QUALITY KNOWLEDGE BASES
    • 5.16.2 IMPLEMENT HYBRID SEARCH TECHNIQUES
    • 5.16.3 ADOPT EXPLAINABLE AI PRACTICES
    • 5.16.4 HUMAN-IN-THE-LOOP MECHANISMS
    • 5.16.5 EMBED SECURITY AND COMPLIANCE FROM THE START
    • 5.16.6 OPTIMIZE FOR LATENCY AND SCALE
    • 5.16.7 MAINTAIN CONTINUOUS FEEDBACK LOOPS
  • 5.17 CURRENT AND EMERGING BUSINESS MODELS
  • 5.18 TOOLS, FRAMEWORKS, AND TECHNIQUES USED IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • 5.19 INVESTMENT AND FUNDING SCENARIO
  • 5.20 IMPACT OF AI/GENERATIVE AI ON RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
    • 5.20.1 USE CASES OF GENERATIVE AI IN RETRIEVAL-AUGMENTED GENERATION (RAG)
  • 5.21 IMPACT OF 2025 US TARIFF - RAG MARKET
    • 5.21.1 INTRODUCTION
    • 5.21.2 KEY TARIFF RATES
    • 5.21.3 PRICE IMPACT ANALYSIS
      • 5.21.3.1 Strategic Shifts and Emerging Trends
    • 5.21.4 IMPACT ON COUNTRY/REGION
      • 5.21.4.1 US
      • 5.21.4.2 Asia Pacific
      • 5.21.4.3 Europe
    • 5.21.5 IMPACT ON END-USE INDUSTRIES
      • 5.21.5.1 Healthcare & Life Sciences
      • 5.21.5.2 Retail & E-commerce
      • 5.21.5.3 Media & Entertainment
      • 5.21.5.4 Financial Services

6 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING

  • 6.1 INTRODUCTION
    • 6.1.1 OFFERING: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS
  • 6.2 SOLUTIONS
    • 6.2.1 RAG SOLUTIONS TO EVOLVE TOWARD MORE AUTONOMOUS AND ADAPTIVE FRAMEWORKS
    • 6.2.2 RAG-ENABLED PLATFORMS
    • 6.2.3 DATA MANAGEMENT AND INDEXING LAYER
      • 6.2.3.1 Need for scalable and intelligent indexing drives solution growth
    • 6.2.4 RETRIEVAL AND SEARCH MODELS
      • 6.2.4.1 Growing enterprise needs for contextual intelligence
    • 6.2.5 OTHER SOLUTIONS
  • 6.3 SERVICES
    • 6.3.1 STREAMLINING ACADEMIC AND ADMINISTRATIVE OPERATIONS VIA INTEGRATED DIGITAL SYSTEMS
    • 6.3.2 MANAGED SERVICES
      • 6.3.2.1 Simplifying RAG Operations and Enhancing Scalability
    • 6.3.3 PROFESSIONAL SERVICES
      • 6.3.3.1 Driving Tailored Implementation and Performance Optimization
      • 6.3.3.2 Support and Maintenance
      • 6.3.3.3 Consulting and Customization
      • 6.3.3.4 Training and Development

7 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE

  • 7.1 INTRODUCTION
    • 7.1.1 TYPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS
  • 7.2 FOUNDATIONAL AND ENHANCED RAG
    • 7.2.1 FOUNDATIONAL AND ENHANCED RAG BUILDING BLOCK FOR ADVANCED AI SYSTEMS
  • 7.3 AGENTIC AND ADAPTIVE RAG
    • 7.3.1 ENABLING DYNAMIC AND AUTONOMOUS INTELLIGENCE
  • 7.4 KNOWLEDGE-STRUCTURED AND MEMORY-BASED RAG
    • 7.4.1 KNOWLEDGE-STRUCTURED & MEMORY-BASED RAG ENHANCING CONTEXTUAL REASONING AND LONG-TERM RECALL
  • 7.5 PRIVACY-PRESERVING AND DISTRIBUTED RAG
    • 7.5.1 PRIVACY-PRESERVING & DISTRIBUTED RAG SECURING KNOWLEDGE RETRIEVAL IN ERA OF DATA COMPLIANCE
  • 7.6 OTHER TYPES

8 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION

  • 8.1 INTRODUCTION
    • 8.1.1 APPLICATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS
  • 8.2 ENTERPRISE SEARCH
    • 8.2.1 ENTERPRISE SEARCH FUELED BY EXPONENTIAL GROWTH OF INTERNAL DATA
  • 8.3 DOMAIN-SPECIFIC DATA SYNTHESIS
    • 8.3.1 GROWING COMPLEXITY OF DOMAIN DATA DRIVES ADOPTION
  • 8.4 CONTENT SUMMARIZATION AND GENERATION
    • 8.4.1 AUTOMATE NARRATIVE CREATION TO BOOST KNOWLEDGE THROUGHPUT
  • 8.5 PERSONALIZED RECOMMENDATIONS AND INSIGHTS
    • 8.5.1 FOCUS ON USER-CENTRIC EXPERIENCES DRIVES ITS GROWTH
  • 8.6 CODE AND DEVELOPER PRODUCTIVITY
    • 8.6.1 AI-DRIVEN DEVELOPMENT TOOLS FUEL ADOPTION
  • 8.7 OTHER APPLICATIONS

9 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE

  • 9.1 INTRODUCTION
    • 9.1.1 DEPLOYMENT TYPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS
  • 9.2 ON-PREMISES
    • 9.2.1 LOCALIZED AI-DRIVEN RETRIEVAL AND REASONING TO INCREASE AS REGULATORY SCRUTINY AROUND DATA USAGE INTENSIFIES
  • 9.3 CLOUD
    • 9.3.1 ACCELERATING SCALABILITY AND REAL-TIME INTELLIGENCE

10 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER

  • 10.1 INTRODUCTION
    • 10.1.1 END USER: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET DRIVERS
  • 10.2 HEALTHCARE AND LIFE SCIENCES
    • 10.2.1 ENHANCING CLINICAL INTELLIGENCE AND PATIENT OUTCOMES
  • 10.3 RETAIL & E-COMMERCE
    • 10.3.1 DRIVING PERSONALIZED AND CONTEXTUAL SHOPPING EXPERIENCES
  • 10.4 FINANCIAL SERVICES
    • 10.4.1 FINANCIAL SERVICES REINFORCING COMPLIANCE AND KNOWLEDGE AUTOMATION
  • 10.5 TELECOMMUNICATIONS
    • 10.5.1 POWERING INTELLIGENT NETWORK AND SERVICE AUTOMATION
  • 10.6 EDUCATION
    • 10.6.1 ADVANCING ADAPTIVE AND KNOWLEDGE-RICH LEARNING
  • 10.7 MEDIA & ENTERTAINMENT
    • 10.7.1 ACCELERATING CREATIVE AND CONTEXTUAL CONTENT GENERATION
  • 10.8 OTHER END USERS

11 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION

  • 11.1 INTRODUCTION
  • 11.2 NORTH AMERICA
    • 11.2.1 NORTH AMERICA: MACROECONOMIC OUTLOOK
    • 11.2.2 US
      • 11.2.2.1 Supportive regulatory environment and ecosystem-led commercialization of RAG
    • 11.2.3 CANADA
      • 11.2.3.1 Leveraging RAG technologies to enhance transparency and sectoral innovation
  • 11.3 EUROPE
    • 11.3.1 EUROPE: MACROECONOMIC OUTLOOK
    • 11.3.2 UK
      • 11.3.2.1 Driving enterprise adoption of RAG under strong regulatory frameworks
    • 11.3.3 GERMANY
      • 11.3.3.1 Industrial applications and compliance-driven RAG adoption
    • 11.3.4 FRANCE
      • 11.3.4.1 Strengthening multilingual RAG solutions through public-private collaboration
    • 11.3.5 ITALY
      • 11.3.5.1 Adoption of RAG to modernize knowledge-intensive industries
    • 11.3.6 REST OF EUROPE
  • 11.4 ASIA PACIFIC
    • 11.4.1 ASIA PACIFIC: MACROECONOMIC OUTLOOK
    • 11.4.2 CHINA
      • 11.4.2.1 Domestic Vector & Knowledge-enhanced Models Power Large-scale RAG
    • 11.4.3 INDIA
      • 11.4.3.1 Public Pilots and SI Packages Convert RAG Trials into Production
    • 11.4.4 JAPAN
      • 11.4.4.1 SI-led, Language-aware RAG for Manufacturing and Service Sectors
    • 11.4.5 AUSTRALIA & NEW ZEALAND
      • 11.4.5.1 Government Pilots Driving Trusted RAG Use Cases
    • 11.4.6 SOUTH KOREA
      • 11.4.6.1 Telcos and Domestic Clouds Anchoring Sovereign RAG
    • 11.4.7 REST OF ASIA PACIFIC
  • 11.5 MIDDLE EAST & AFRICA
    • 11.5.1 MIDDLE EAST & AFRICA: MACROECONOMIC OUTLOOK
    • 11.5.2 UNITED ARAB EMIRATES
      • 11.5.2.1 National AI Programs Anchoring RAG Commercialization
    • 11.5.3 KINGDOM OF SAUDI ARABIA
      • 11.5.3.1 Vision 2030 Investments Scaling Knowledge-centric AI
    • 11.5.4 SOUTH AFRICA
      • 11.5.4.1 Academic and Startup Ecosystem Piloting RAG
    • 11.5.5 REST OF MIDDLE EAST & AFRICA
  • 11.6 LATIN AMERICA
    • 11.6.1 LATIN AMERICA: MACROECONOMIC OUTLOOK
    • 11.6.2 BRAZIL
      • 11.6.2.1 Legislative Pilots Driving Public-Sector RAG
    • 11.6.3 MEXICO
      • 11.6.3.1 SI adaptation of Spanish-language RAG for enterprise support
    • 11.6.4 REST OF LATIN AMERICA

12 COMPETITIVE LANDSCAPE

  • 12.1 INTRODUCTION
  • 12.2 KEY PLAYER STRATEGIES/RIGHT TO WIN, 2022-2025
  • 12.3 REVENUE ANALYSIS, 2024
  • 12.4 MARKET SHARE ANALYSIS, 2024
  • 12.5 BRAND/PRODUCT COMPARISON
  • 12.6 COMPANY VALUATION AND FINANCIAL METRICS
  • 12.7 COMPANY EVALUATION MATRIX: KEY PLAYERS, 2024
    • 12.7.1 STARS
    • 12.7.2 EMERGING LEADERS
    • 12.7.3 PERVASIVE PLAYERS
    • 12.7.4 PARTICIPANTS
    • 12.7.5 COMPANY FOOTPRINT: KEY PLAYERS, 2024
      • 12.7.5.1 Company footprint
      • 12.7.5.2 Region footprint
      • 12.7.5.3 Deployment type footprint
      • 12.7.5.4 End user footprint
  • 12.8 COMPANY EVALUATION MATRIX: STARTUPS/SMES, 2024
    • 12.8.1 PROGRESSIVE COMPANIES
    • 12.8.2 RESPONSIVE COMPANIES
    • 12.8.3 DYNAMIC COMPANIES
    • 12.8.4 STARTING BLOCKS
    • 12.8.5 COMPETITIVE BENCHMARKING: STARTUPS/SMES, 2024
      • 12.8.5.1 Detailed list of key startups/SMEs
      • 12.8.5.2 Competitive benchmarking of key startups/SMEs
  • 12.9 COMPETITIVE SCENARIO
    • 12.9.1 PRODUCT LAUNCHES
    • 12.9.2 DEALS

13 COMPANY PROFILES

  • 13.1 INTRODUCTION
  • 13.2 KEY PLAYERS
    • 13.2.1 MICROSOFT
      • 13.2.1.1 Business overview
      • 13.2.1.2 Products/Solutions/Services offered
      • 13.2.1.3 Recent developments
        • 13.2.1.3.1 Product launches
        • 13.2.1.3.2 Deals
      • 13.2.1.4 MnM view
        • 13.2.1.4.1 Key strengths
        • 13.2.1.4.2 Strategic choices
        • 13.2.1.4.3 Weaknesses and competitive threats
    • 13.2.2 AWS
      • 13.2.2.1 Business overview
      • 13.2.2.2 Products/Solutions/Services offered
      • 13.2.2.3 Recent developments
        • 13.2.2.3.1 Deals
      • 13.2.2.4 MnM view
        • 13.2.2.4.1 Key strengths
        • 13.2.2.4.2 Strategic choices
        • 13.2.2.4.3 Weaknesses and competitive threats
    • 13.2.3 GOOGLE
      • 13.2.3.1 Business overview
      • 13.2.3.2 Products/Solutions/Services offered
      • 13.2.3.3 Recent developments
        • 13.2.3.3.1 Deals
      • 13.2.3.4 MnM view
        • 13.2.3.4.1 Key strengths
        • 13.2.3.4.2 Strategic choices
        • 13.2.3.4.3 Weaknesses and competitive threats
    • 13.2.4 ANTHROPIC
      • 13.2.4.1 Business overview
      • 13.2.4.2 Products/Solutions/Services offered
      • 13.2.4.3 Recent developments
        • 13.2.4.3.1 Deals
    • 13.2.5 IBM
      • 13.2.5.1 Business overview
      • 13.2.5.2 Products/Solutions/Services offered
      • 13.2.5.3 Recent developments
        • 13.2.5.3.1 Deals
    • 13.2.6 NVIDIA
      • 13.2.6.1 Business overview
      • 13.2.6.2 Products/Solutions/Services offered
      • 13.2.6.3 Recent developments
        • 13.2.6.3.1 Deals
    • 13.2.7 COHERE
      • 13.2.7.1 Business overview
      • 13.2.7.2 Products/Solutions/Services offered
      • 13.2.7.3 Recent developments
        • 13.2.7.3.1 Deals
    • 13.2.8 PINECONE
      • 13.2.8.1 Business overview
      • 13.2.8.2 Products/Solutions/Services offered
      • 13.2.8.3 Recent developments
        • 13.2.8.3.1 Deals
    • 13.2.9 ELASTIC
      • 13.2.9.1 Business overview
      • 13.2.9.2 Products/Solutions/Services offered
      • 13.2.9.3 Recent developments
        • 13.2.9.3.1 Deals
    • 13.2.10 MONGODB
      • 13.2.10.1 Business overview
      • 13.2.10.2 Products/Solutions/Services offered
      • 13.2.10.3 Recent developments
        • 13.2.10.3.1 Product launches
        • 13.2.10.3.2 Deals
  • 13.3 OTHER PLAYERS
    • 13.3.1 PROGRESS SOFTWARE
    • 13.3.2 RAGIE.AI
    • 13.3.3 CLARIFAI
    • 13.3.4 VECTARA
    • 13.3.5 WEAVIATE
    • 13.3.6 CHATBEES
    • 13.3.7 ZILLIZ
    • 13.3.8 QDRANT

14 ADJACENT/RELATED MARKETS

  • 14.1 INTRODUCTION
  • 14.2 GENERATIVE AI MARKET
    • 14.2.1 MARKET DEFINITION
    • 14.2.2 MARKET OVERVIEW
    • 14.2.3 GENERATIVE AI MARKET, BY OFFERING
    • 14.2.4 GENERATIVE AI MARKET, BY DATA MODALITY
    • 14.2.5 GENERATIVE AI MARKET, BY APPLICATION
    • 14.2.6 GENERATIVE AI MARKET, BY END USER
    • 14.2.7 GENERATIVE AI MARKET, BY REGION
  • 14.3 LARGE LANGUAGE MODEL (LLM) MARKET
    • 14.3.1 MARKET DEFINITION
    • 14.3.2 MARKET OVERVIEW
    • 14.3.3 LARGE LANGUAGE MODEL (LLM) MARKET, BY OFFERING
    • 14.3.4 LARGE LANGUAGE MODEL (LLM) MARKET, BY ARCHITECTURE
    • 14.3.5 LARGE LANGUAGE MODEL (LLM) MARKET, BY MODALITY
    • 14.3.6 LARGE LANGUAGE MODEL (LLM) MARKET, BY MODEL SIZE
    • 14.3.7 LARGE LANGUAGE MODEL (LLM) MARKET, BY APPLICATION
    • 14.3.8 LARGE LANGUAGE MODEL (LLM) MARKET, BY END USER
    • 14.3.9 LARGE LANGUAGE MODEL (LLM) MARKET, BY REGION

15 APPENDIX

  • 15.1 DISCUSSION GUIDE
  • 15.2 KNOWLEDGESTORE: MARKETSANDMARKETS' SUBSCRIPTION PORTAL
  • 15.3 CUSTOMIZATION OPTIONS
  • 15.4 RELATED REPORTS
  • 15.5 AUTHOR DETAILS

List of Tables

  • TABLE 1 USD EXCHANGE RATES, 2020-2024
  • TABLE 2 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: ECOSYSTEM
  • TABLE 3 IMPACT OF PORTER'S FORCES ON RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • TABLE 4 INDICATIVE PRICING ANALYSIS OF KEY RETRIEVAL-AUGMENTED GENERATION (RAG), BY SOLUTION, 2024
  • TABLE 5 INFLUENCE OF STAKEHOLDERS ON BUYING PROCESS FOR KEY END USERS (%)
  • TABLE 6 KEY BUYING CRITERIA FOR TOP THREE END USERS
  • TABLE 7 NORTH AMERICA: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • TABLE 8 EUROPE: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • TABLE 9 ASIA PACIFIC: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • TABLE 10 MIDDLE EAST & AFRICA: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • TABLE 11 LATIN AMERICA: REGULATORY BODIES, GOVERNMENT AGENCIES, AND OTHER ORGANIZATIONS
  • TABLE 12 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: KEY CONFERENCES & EVENTS, 2025-2026
  • TABLE 13 US ADJUSTED RECIPROCAL TARIFF RATES
  • TABLE 14 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 15 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 16 SOLUTION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 17 RAG-ENABLED PLATFORMS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 18 DATA MANAGEMENT AND INDEXING LAYER: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 19 RETRIEVAL AND SEARCH MODELS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 20 OTHER SOLUTIONS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 21 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 22 SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 23 MANAGED SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 24 PROFESSIONAL SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 25 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 26 SUPPORT AND MAINTENANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 27 CONSULTING AND CUSTOMIZATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 28 TRAINING AND DEVELOPMENT: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 29 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 30 FOUNDATIONAL AND ENHANCED RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 31 AGENTIC AND ADAPTIVE RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 32 KNOWLEDGE-STRUCTURE AND MEMORY-BASED RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 33 PRIVACY-PRESERVING AND DISTRIBUTED RAG: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 34 OTHER TYPES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 35 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 36 ENTERPRISE SEARCH: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 37 DOMAIN-SPECIFIC DATA SYNTHESIS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 38 CONTENT SUMMARIZATION AND GENERATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 39 PERSONALIZED RECOMMENDATIONS AND INSIGHTS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 40 CODE AND DEVELOPER PRODUCTIVITY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 41 OTHER APPLICATIONS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 42 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 43 ON-PREMISES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 44 CLOUD: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 45 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 46 HEALTHCARE & LIFE SCIENCES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 47 RETAIL & E-COMMERCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 48 FINANCIAL SERVICES: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 49 TELECOMMUNICATIONS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 50 EDUCATION: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 51 MEDIA & ENTERTAINMENT: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 52 OTHER END USERS: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 53 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 54 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY 0FFERING, 2024-2030 (USD MILLION)
  • TABLE 55 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 56 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 57 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 58 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 59 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 60 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 61 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 62 NORTH AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 63 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 64 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 65 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 66 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 67 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 68 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 69 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 70 US: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 71 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 72 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 73 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 74 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 75 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 76 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 77 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 78 CANADA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 79 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 80 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 81 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 82 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 83 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 84 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 85 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 86 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 87 EUROPE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 88 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 89 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 90 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 91 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 92 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 93 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 94 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 95 UK: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 96 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 97 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 98 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 99 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 100 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 101 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 102 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 103 GERMANY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 104 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 105 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 106 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 107 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 108 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 109 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 110 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 111 FRANCE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 112 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 113 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 114 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 115 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 116 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 117 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 118 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 119 ITALY: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 120 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY 0FFERING, 2024-2030 (USD MILLION)
  • TABLE 121 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 122 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 123 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 124 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 125 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 126 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 127 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 128 ASIA PACIFIC: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 129 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 130 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 131 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 132 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 133 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 134 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 135 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 136 CHINA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 137 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 138 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 139 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 140 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 141 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 142 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 143 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 144 INDIA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 145 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 146 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 147 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 148 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 149 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 150 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 151 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 152 JAPAN: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 153 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 154 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 155 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 156 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 157 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 158 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 159 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 160 AUSTRALIA AND NEW ZEALAND: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 161 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 162 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 163 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 164 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 165 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 166 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 167 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 168 SOUTH KOREA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 169 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 170 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 171 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 172 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 173 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 174 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 175 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 176 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 177 MIDDLE EAST & AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 178 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 179 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 180 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 181 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 182 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 183 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 184 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 185 UAE: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 186 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 187 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 188 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 189 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 190 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 191 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 192 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 193 KSA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 194 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 195 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 196 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 197 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 198 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 199 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 200 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 201 SOUTH AFRICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 202 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 203 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 204 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 205 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 206 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 207 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 208 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 209 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 210 LATIN AMERICA: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 211 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 212 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 213 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 214 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 215 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 216 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 217 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 218 BRAZIL: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 219 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 220 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SOLUTION, 2024-2030 (USD MILLION)
  • TABLE 221 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY SERVICE, 2024-2030 (USD MILLION)
  • TABLE 222 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY PROFESSIONAL SERVICE, 2024-2030 (USD MILLION)
  • TABLE 223 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY TYPE, 2024-2030 (USD MILLION)
  • TABLE 224 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 225 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY DEPLOYMENT TYPE, 2024-2030 (USD MILLION)
  • TABLE 226 MEXICO: RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 227 OVERVIEW OF STRATEGIES ADOPTED BY KEY RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET PLAYERS, 2022-2025
  • TABLE 228 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DEGREE OF COMPETITION
  • TABLE 229 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: REGION FOOTPRINT
  • TABLE 230 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DEPLOYMENT TYPE FOOTPRINT
  • TABLE 231 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: END USER FOOTPRINT
  • TABLE 232 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: LIST OF KEY STARTUPS/SMES
  • TABLE 233 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPETITIVE BENCHMARKING OF KEY STARTUPS/SMES
  • TABLE 234 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: PRODUCT LAUNCHES, JANUARY 2022-APRIL 2025
  • TABLE 235 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DEALS, JANUARY 2022-APRIL 2025
  • TABLE 236 MICROSOFT: COMPANY OVERVIEW
  • TABLE 237 MICROSOFT: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 238 MICROSOFT: PRODUCT LAUNCHES
  • TABLE 239 MICROSOFT: DEALS
  • TABLE 240 AWS: COMPANY OVERVIEW
  • TABLE 241 AWS: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 242 AWS: DEALS
  • TABLE 243 GOOGLE: COMPANY OVERVIEW
  • TABLE 244 GOOGLE: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 245 GOOGLE: DEALS
  • TABLE 246 ANTHROPIC: COMPANY OVERVIEW
  • TABLE 247 ANTHROPIC: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 248 ANTHROPIC: DEALS
  • TABLE 249 IBM: COMPANY OVERVIEW
  • TABLE 250 IBM: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 251 IBM: DEALS
  • TABLE 252 NVIDIA: COMPANY OVERVIEW
  • TABLE 253 NVIDIA: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 254 NVIDIA: DEALS
  • TABLE 255 COHERE: COMPANY OVERVIEW
  • TABLE 256 COHERE: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 257 COHERE: DEALS
  • TABLE 258 PINECONE: COMPANY OVERVIEW
  • TABLE 259 PINECONE: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 260 PINECONE: DEALS
  • TABLE 261 ELASTIC: COMPANY OVERVIEW
  • TABLE 262 ELASTIC: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 263 ELASTIC: DEALS
  • TABLE 264 MONGODB: COMPANY OVERVIEW
  • TABLE 265 MONGODB: PRODUCTS/SOLUTIONS/SERVICES OFFERED
  • TABLE 266 MONGODB: PRODUCT LAUNCHES
  • TABLE 267 MONGODB: DEALS
  • TABLE 268 GENERATIVE AI MARKET, BY OFFERING, 2020-2024 (USD MILLION)
  • TABLE 269 GENERATIVE AI MARKET, BY OFFERING, 2025-2032 (USD MILLION)
  • TABLE 270 GENERATIVE AI MARKET, BY DATA MODALITY, 2020-2024 (USD MILLION)
  • TABLE 271 GENERATIVE AI MARKET, BY DATA MODALITY, 2025-2032 (USD MILLION)
  • TABLE 272 GENERATIVE AI MARKET, BY APPLICATION, 2020-2024 (USD MILLION)
  • TABLE 273 GENERATIVE AI MARKET, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 274 GENERATIVE AI MARKET, BY END USER, 2020-2024 (USD MILLION)
  • TABLE 275 GENERATIVE AI MARKET, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 276 GENERATIVE AI MARKET, BY REGION, 2020-2024 (USD MILLION)
  • TABLE 277 GENERATIVE AI MARKET, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 278 LARGE LANGUAGE MODEL MARKET, BY OFFERING, 2020-2023 (USD MILLION)
  • TABLE 279 LARGE LANGUAGE MODEL MARKET, BY OFFERING, 2024-2030 (USD MILLION)
  • TABLE 280 LARGE LANGUAGE MODEL MARKET, BY ARCHITECTURE, 2020-2023 (USD MILLION)
  • TABLE 281 LARGE LANGUAGE MODEL MARKET, BY ARCHITECTURE, 2024-2030 (USD MILLION)
  • TABLE 282 LARGE LANGUAGE MODEL MARKET, BY MODALITY, 2020-2023 (USD MILLION)
  • TABLE 283 LARGE LANGUAGE MODEL MARKET, BY MODALITY, 2024-2030 (USD MILLION)
  • TABLE 284 LARGE LANGUAGE MODEL MARKET, BY MODEL SIZE, 2020-2023 (USD MILLION)
  • TABLE 285 LARGE LANGUAGE MODEL MARKET, BY MODEL SIZE, 2024-2030 (USD MILLION)
  • TABLE 286 LARGE LANGUAGE MODEL MARKET, BY APPLICATION, 2020-2023 (USD MILLION)
  • TABLE 287 LARGE LANGUAGE MODEL MARKET, BY APPLICATION, 2024-2030 (USD MILLION)
  • TABLE 288 LARGE LANGUAGE MODEL MARKET, BY END USER, 2020-2023 (USD MILLION)
  • TABLE 289 LARGE LANGUAGE MODEL MARKET, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 290 LARGE LANGUAGE MODEL MARKET, BY REGION, 2020-2023 (USD MILLION)
  • TABLE 291 LARGE LANGUAGE MODEL MARKET, BY REGION, 2024-2030 (USD MILLION)

List of Figures

  • FIGURE 1 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: RESEARCH DESIGN
  • FIGURE 2 BREAKDOWN OF PRIMARY INTERVIEWS, BY COMPANY TYPE, DESIGNATION, AND REGION
  • FIGURE 3 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: TOP-DOWN AND BOTTOM-UP APPROACHES
  • FIGURE 4 MARKET SIZE ESTIMATION METHODOLOGY-APPROACH 1 (SUPPLY SIDE): REVENUE OF VENDORS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • FIGURE 5 MARKET SIZE ESTIMATION METHODOLOGY-APPROACH 2 (DEMAND SIDE): RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • FIGURE 6 MARKET SIZE ESTIMATION METHODOLOGY: DEMAND-SIDE ANALYSIS
  • FIGURE 7 MARKET SIZE ESTIMATION USING BOTTOM-UP APPROACH
  • FIGURE 8 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DATA TRIANGULATION
  • FIGURE 9 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2024-2030 (USD MILLION)
  • FIGURE 10 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: REGIONAL AND COUNTRY-WISE SHARE, 2025
  • FIGURE 11 RAPID DIGITAL TRANSFORMATION AND GROWING ENTERPRISE AI ADOPTION TO DRIVE MARKET
  • FIGURE 12 SOLUTIONS SEGMENT TO HOLD LARGER MARKET SHARE IN 2025
  • FIGURE 13 RAG-ENABLED PLATFORMS SEGMENT TO HOLD LARGEST MARKET SHARE IN 2025
  • FIGURE 14 FOUNDATIONAL & ENHANCED RAG SEGMENT TO HOLD LARGEST MARKET SHARE IN 2025
  • FIGURE 15 ENTERPRISE SEARCH SEGMENT TO HOLD LARGEST MARKET SHARE IN 2025
  • FIGURE 16 CLOUD SEGMENT TO HOLD LARGER MARKET SHARE IN 2025
  • FIGURE 17 HEALTHCARE & LIFE SCIENCES SEGMENT TO LEAD MARKET IN 2025
  • FIGURE 18 HEALTHCARE & LIFE SCIENCES SEGMENT AND US TO ACCOUNT FOR SIGNIFICANT MARKET SHARES IN 2025
  • FIGURE 19 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DRIVERS, RESTRAINTS, OPPORTUNITIES, AND CHALLENGES
  • FIGURE 20 BRIEF HISTORY OF RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • FIGURE 21 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: SUPPLY CHAIN ANALYSIS
  • FIGURE 22 KEY PLAYERS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET ECOSYSTEM
  • FIGURE 23 PORTER'S FIVE FORCES ANALYSIS
  • FIGURE 24 MAJOR PATENTS FOR RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • FIGURE 25 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: DISRUPTIONS IMPACTING BUYERS/CLIENTS
  • FIGURE 26 AVERAGE SELLING PRICE OF KEY PLAYERS, USD PER MONTH, 2024
  • FIGURE 27 INFLUENCE OF STAKEHOLDERS ON BUYING PROCESS FOR KEY END USERS
  • FIGURE 28 KEY BUYING CRITERIA FOR TOP THREE END USERS
  • FIGURE 29 TOOLS, FRAMEWORKS, AND TECHNIQUES USED IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET
  • FIGURE 30 INVESTMENT AND FUNDING SCENARIO
  • FIGURE 31 USE CASES OF GENERATIVE AI IN RETRIEVAL-AUGMENTED GENERATION (RAG)
  • FIGURE 32 SERVICES SEGMENT TO GROW AT HIGHER CAGR DURING FORECAST PERIOD
  • FIGURE 33 DATA MANAGEMENT & INDEXING LAYER SEGMENT TO GROW AT HIGHEST CAGR DURING FORECAST PERIOD
  • FIGURE 34 MANAGED SERVICES SEGMENT TO GROW AT HIGHER CAGR DURING FORECAST PERIOD
  • FIGURE 35 TRAINING AND DEVELOPMENT TO GROW AT HIGHEST CAGR DURING FORECAST PERIOD
  • FIGURE 36 FOUNDATIONAL & ENHANCED RAG SEGMENT TO HOLD THE LARGEST MARKET SHARE DURING FORECAST PERIOD
  • FIGURE 37 ENTERPRISE SEARCH SEGMENT TO HOLD THE LARGEST MARKET SHARE DURING FORECAST PERIOD
  • FIGURE 38 CLOUD SEGMENT TO GROW AT HIGHER CAGR DURING FORECAST PERIOD
  • FIGURE 39 HEALTHCARE & LIFE SCIENCES SEGMENT TO HOLD LARGEST MARKET SHARE DURING FORECAST PERIOD
  • FIGURE 40 NORTH AMERICA: MARKET SNAPSHOT
  • FIGURE 41 ASIA PACIFIC: MARKET SNAPSHOT
  • FIGURE 42 REVENUE ANALYSIS OF KEY PLAYERS IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2022 TO 2024 (USD BILLION)
  • FIGURE 43 SHARES OF LEADING COMPANIES IN RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET, 2024
  • FIGURE 44 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: BRAND/PRODUCT COMPARISON
  • FIGURE 45 COMPANY VALUATION OF KEY VENDORS, 2025
  • FIGURE 46 FINANCIAL METRICS OF KEY VENDORS, 2025
  • FIGURE 47 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPANY EVALUATION MATRIX (KEY PLAYERS), 2024
  • FIGURE 48 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPANY FOOTPRINT
  • FIGURE 49 RETRIEVAL-AUGMENTED GENERATION (RAG) MARKET: COMPANY EVALUATION MATRIX (STARTUPS/SMES), 2024
  • FIGURE 50 MICROSOFT: COMPANY SNAPSHOT
  • FIGURE 51 AWS: COMPANY SNAPSHOT
  • FIGURE 52 GOOGLE: COMPANY SNAPSHOT
  • FIGURE 53 IBM: COMPANY SNAPSHOT
  • FIGURE 54 NVIDIA: COMPANY SNAPSHOT
  • FIGURE 55 ELASTIC: COMPANY SNAPSHOT
  • FIGURE 56 MONGODB: COMPANY SNAPSHOT