全球数位孪生市场:按技术/孪生类型,网络到物理解决方案,用例,行业/应用分列 (2023-2028)
市场调查报告书
商品编码
1237178

全球数位孪生市场:按技术/孪生类型,网络到物理解决方案,用例,行业/应用分列 (2023-2028)

Digital Twins Market by Technology, Twinning Type, Cyber-to-Physical Solutions, Use Cases and Applications in Industry Verticals 2023 - 2028

出版日期: | 出版商: Mind Commerce | 英文 154 Pages | 商品交期: 最快1-2个工作天内

价格

概览

  • 最近的一项调查发现,47% 的企业 IT 决策者不知道数位孪生。
  • 到 2028 年,智慧城市数位孪生解决方案市场预计将达到 52 亿美元。
  • 到 2028 年,超过 94% 的物联网平台将具备某种形式的数位孪生功能,使数位孪生成为物联网应用支持的标准功能/特性。
  • 超过 96% 的供应商认识到需要将平台与工业 IIoT API 和数位孪生功能集成。
  • 各行各业超过 42% 的高管了解数位孪生的好处,其中 59% 的高管计划到 2028 年将其纳入其运营中。
  • 典型的数位孪生解决方案包括资产孪生,组件孪生,系统孪生,流程孪生和工作流孪生。

本报告分析了全球数位孪生市场的最新情况和未来前景,概述了数位孪生及其与相关技术的关係,评估了产品和服务的生态系统(包括应用开发和运营),传播和利用每个行业的状况,主要公司的举措状况,未来市场规模趋势(2023-2028 年)的展望,以及按地区和国家分列的详细趋势。

内容

第 1 章执行摘要

第二章介绍

  • 概览
    • 了解数位孪生
    • 认知数位孪生
    • 数位主线
    • 传感器与模拟的融合
    • 物联网 API
    • 软件模块和元素
    • 数位孪生的类型
    • 数位孪生业务流程
    • 数位孪生的作用和重要性
  • 相关技术及其对数位孪生的影响
    • 工业互联网与工业 4.0
    • 配对技术
    • 网络到物理系统
    • AR(增强现实),VR(虚拟现实),XR(混合现实)
    • 人工智能 (AI) 和机器学习 (ML)
    • 增材製造 (AM) 和 3D 打印
  • 潜在用途和结果分析
    • MRO(维护,修理,大修)工作
    • 消费者资产的数位化身
    • 性能/服务监控
    • 检查和维修
    • 预测性维护
    • 产品设计和开发
    • 复合材料组装和製造
    • 潜在的业务成果
  • 数位孪生服务生态系统
    • 工业物联网 (IIoT)
    • 消费者物联网
    • 行业趋势
    • DTaaS(数位孪生即服务)

第3章数位孪生公司评估

  • ABB
  • Allerin Tech Pvt.
  • 牵牛星工程公司
  • 亚马逊网络服务
  • ANSYS
  • 奥科泰克股份公司
  • 欧特克公司
  • Bentley 系统公司
  • CADFEM 有限公司
  • 思科系统
  • 城顶
  • 科斯莫科技
  • 达索系统
  • 数位孪生联盟
  • 数位孪生技术
  • 挪威船级社
  • DXC 技术
  • Eclipse 基金会
  • 爱默生
  • 出现
  • 快流科技
  • FEINGUSS BLANK GmbH
  • 福斯
  • 前向网络
  • 通用电气
  • 谷歌
  • 日立有限公司
  • 霍尼韦尔
  • 惠普
  • IBM
  • 工业互联网联盟
  • 智能
  • 因维卡拉
  • 知识分子
  • 赛跑者电子
  • 微软
  • 美国国家仪器公司
  • 导航系统
  • 甲骨文
  • PETRA 数据科学
  • 物理网络
  • Pratiti 技术
  • Prodea 系统公司
  • PTC
  • QiO 技术
  • 罗伯特博世
  • SAP
  • 施耐德
  • 参议院
  • 西门子
  • Sight Machine Inc.
  • Simplifa 有限公司
  • Softweb Solutions Inc.
  • Sogeti 集团
  • 游泳人工智能
  • Synavision
  • 希森美康公司
  • TIBCO 软件
  • 东芝公司
  • 大熊座狮子座
  • Virtalis 有限公司
  • 可视化
  • 维普罗有限公司
  • 氙气堆
  • 热情实验室

第 4 章数位孪生市场分析与预测(2023-2028)

  • 全球数位孪生市场 (2023-2028)
  • 全球数位孪生市场:按孪生类型 (2023-2028)
  • 全球数位孪生市场:按应用分类 (2023-2028)
  • 全球数位孪生市场:按行业分类 (2023-2028)
    • 按类型划分的製造数位孪生市场 (2023-2028)
    • 智慧城市的数位孪生市场:按类型分类 (2023-2028)
    • 按类型划分的汽车数位孪生市场(2023 年至 2028 年)
    • 按类型划分的医疗数位孪生市场(2023 年至 2028 年)
    • 交通数位孪生市场:按类型分类 (2023-2028)
  • 数位孪生市场:按地区划分 (2023-2028)
    • 北美数位孪生市场(2023 年至 2028 年)
    • 南美洲的数位孪生市场 (2023-2028)
    • 欧洲数位孪生市场 (2023-2028)
    • 亚太地区数位孪生市场 (2023-2028)
    • 中东和非洲的数位孪生市场(2023 年至 2028 年)

第 5 章结论和建议

Overview:

This report evaluates digital twinning technology, solutions, use cases, and leading company efforts in terms of R&D and early deployments. The report assesses the digital twin product and service ecosystem including application development and operations. This includes consideration of use cases by industry vertical.

The report also analyzes technologies supporting and benefiting from digital twinning. The report also provides detailed forecasts covering digital twinning solutions in many market segments and use cases including manufacturing simulations, predictive analytics, and more from 2023 to 2028 with global, regional, and major country forecasts.

Select Report Findings:

  • We found 47% of IT decision makers have never heard of digital twins
  • Digital twin supported solutions in smart cities will reach $5.2 billion by 2028
  • Over 94% of all IoT Platforms will contain some form of digital twinning capability by 2028
  • Digital twinning will become standard feature/functionality for IoT Application Enablement by 2028
  • Leading digital twin solutions involve Asset Twinning, Component Twinning, System Twinning, Process and Workflow Twinning
  • Over 96% of vendors recognize the need for IIoT APIs and platform integration with digital twinning functionality for industrial verticals
  • Over 42% of executives across a broad spectrum of industry verticals understand the benefits of digital twinning and 59% of them plan to incorporate within their operations by 2028

A digital twin is a virtual object representation of a real-world item in which the virtual is mapped to physical things in the real world such as equipment, robots, or virtually any connected business asset. This mapping in the digital world is facilitated by IoT platforms and software that is leveraged to create a digital representation of the physical asset.

The digital twin of a physical asset can provide data about its status such as its physical state and disposition. Conversely, a digital object may be used to manipulate and control a real-world asset by way of teleoperation. The publisher of this report sees this form of cyber-physical connectivity, signaling, and control as a key capability to realize the vision for Industry 4.0 to fully digitize production, servitization, and the `as a service` model for products.

There are many potential use cases for digital twinning including monitoring, simulation, and remote control of physical assets with virtual objects. Solutions focus on Part, Product, Process, and System twinning. Leading digital twin solutions involve Asset Twinning, Component Twinning, System Twinning, Process and Workflow Twinning. We see digital twinning playing a key role in many related IoT operations processes including IoT application development, testing, and control.

The implementation of digital twins will also enable distributed remote control of assets, which will place an increasingly heavy burden on IoT Identity management, authentication, and authorization. IoT authentication market solutions are also important in support of the "things" involved in IoT, which vary from devices used to detect, actuate, signal, engage, and more. This will become particularly important with respect to digital twin solution integration.

As reflected by the Digital Twin Consortium, we see some of the key industries to lead cyber-to-physical integration and solutions include aerospace, healthcare, manufacturing, military, natural resources, and public safety sectors. In terms of integrating digital twin technology and solutions with telecommunications and enterprise infrastructure, we see a need for careful planning from a systems integration, testing, and implementation perspective. This will be especially important in the case of mission-critical applications.

Companies in Report:

  • ABB
  • Allerin Tech Pvt. Ltd.
  • Altair Engineering, Inc.
  • Amazon Web Services
  • ANSYS
  • Aucotec AG
  • Autodesk Inc.
  • Bentley Systems, Incorporated
  • CADFEM GmbH
  • Cisco Systems
  • Cityzenith
  • Cosmo Tech
  • Dassault Systems
  • Digital Twin Consortium
  • Digital Twin Technologies
  • DNV GL
  • DXC Technology
  • Eclipse Foundation
  • Emerson
  • Emesent
  • Faststream Technologies
  • FEINGUSS BLANK GmbH
  • Flowserve
  • Forward Networks
  • General Electric
  • Google
  • Hitachi Ltd.
  • Honeywell
  • HP
  • IBM
  • Industrial Internet Consortium
  • Intellias
  • Invicara
  • KBMax
  • Lanner Electronics
  • Microsoft
  • National Instruments
  • NavVis
  • Oracle
  • PETRA Data Science
  • Physical Web
  • Pratiti Technologies
  • Prodea System Inc.,
  • PTC
  • QiO Technologies
  • Robert Bosch
  • SAP
  • Schneider
  • SenSat
  • Siemens
  • Sight Machine Inc.
  • Simplifa GmbH
  • Softweb Solutions Inc.
  • Sogeti Group
  • SWIM.AI
  • Synavision
  • Sysmex Corporation
  • TIBCO Software
  • Toshiba Corporation
  • UrsaLeo
  • Virtalis Limited
  • Visualiz
  • Wipro Limited
  • XenonStack
  • Zest Labs

Table of Contents

1.0. Executive Summary

2.0. Introduction

  • 2.1. Overview
    • 2.1.1. Understanding Digital Twinning
    • 2.1.2. Cognitive Digital Twining
    • 2.1.3. Digital Thread
    • 2.1.4. Convergence of Sensors and Simulations
    • 2.1.5. IoT APIs
    • 2.1.6. Software Modules and Elements
    • 2.1.7. Types of Digital Twinning
    • 2.1.8. Digital Twinning Work Processes
    • 2.1.9. Role and Importance of Digital Twinning
  • 2.2. Related Technologies and Impact on Digital Twinning
    • 2.2.1. Industrial Internet and Industry 4.0
    • 2.2.2. Pairing Technology
    • 2.2.3. Cyber-to-Physical Systems
    • 2.2.4. AR, VR, and Mixed Reality
    • 2.2.5. Artificial Intelligence and Machine Learning
    • 2.2.6. Additive Manufacturing and 3D Printing
  • 2.3. Potential Application and Outcome Analysis
    • 2.3.1. Maintenance, Repair and Overhaul Operation
    • 2.3.2. Digital Avatar of Consumer Assets
    • 2.3.3. Performance/Service Monitoring
    • 2.3.4. Inspection and Repairs
    • 2.3.5. Predictive Maintenance
    • 2.3.6. Product Design & Development
    • 2.3.7. Composite Assembling/Manufacturing
    • 2.3.8. Potential Business Outcomes
  • 2.4. Digital Twinning Service Ecosystem
    • 2.4.1. Industrial IoT
    • 2.4.2. Consumer IoT
    • 2.4.3. Industry Development
    • 2.4.4. Digital Twinning as a Service

3.0. Digital Twins Company Assessment

  • 3.1. ABB
  • 3.2. Allerin Tech Pvt. Ltd.
  • 3.3. Altair Engineering, Inc.
  • 3.4. Amazon Web Services
  • 3.5. ANSYS
  • 3.6. Aucotec AG
  • 3.7. Autodesk Inc.
  • 3.8. Bentley Systems, Incorporated
  • 3.9. CADFEM GmbH
  • 3.10. Cisco Systems
  • 3.11. Cityzenith
  • 3.12. Cosmo Tech
  • 3.13. Dassault Systems
  • 3.14. Digital Twin Consortium
  • 3.15. Digital Twin Technologies
  • 3.16. DNV GL
  • 3.17. DXC Technology
  • 3.18. Eclipse Foundation
  • 3.19. Emerson
  • 3.20. Emesent
  • 3.21. Faststream Technologies
  • 3.22. FEINGUSS BLANK GmbH
  • 3.23. Flowserve
  • 3.24. Forward Networks
  • 3.25. General Electric
  • 3.26. Google
  • 3.27. Hitachi Ltd.
  • 3.28. Honeywell
  • 3.29. HP
  • 3.30. IBM
  • 3.31. Industrial Internet Consortium
  • 3.32. Intellias
  • 3.33. Invicara
  • 3.34. KBMax
  • 3.35. Lanner Electronics
  • 3.36. Microsoft
  • 3.37. National Instruments
  • 3.38. NavVis
  • 3.39. Oracle
  • 3.40. PETRA Data Science
  • 3.41. Physical Web
  • 3.42. Pratiti Technologies
  • 3.43. Prodea System Inc.
  • 3.44. PTC
  • 3.45. QiO Technologies
  • 3.46. Robert Bosch
  • 3.47. SAP
  • 3.48. Schneider
  • 3.49. SenSat
  • 3.50. Siemens
  • 3.51. Sight Machine Inc.
  • 3.52. Simplifa GmbH
  • 3.53. Softweb Solutions Inc.
  • 3.54. Sogeti Group
  • 3.55. SWIM.AI
  • 3.56. Synavision
  • 3.57. Sysmex Corporation
  • 3.58. TIBCO Software
  • 3.59. Toshiba Corporation
  • 3.60. UrsaLeo
  • 3.61. Virtalis Limited
  • 3.62. Visualiz
  • 3.63. Wipro Limited
  • 3.64. XenonStack
  • 3.65. Zest Labs

4.0. Digital Twins Market Analysis and Forecasts 2023 to 2028

  • 4.1. Global Digital Twins 2023-2028
  • 4.2. Digital Twins Market by Type of Twinning 2023-2028
  • 4.3. Digital Twins Applications 2023-2028
  • 4.4. Digital Twins by Industry 2023-2028
    • 4.4.1. Digital Twins in Manufacturing by Type 2023-2028
    • 4.4.2. Digital Twins in Smart City by Type 2023-2028
    • 4.4.3. Digital Twins in Automotive by Type 2023-2028
    • 4.4.4. Digital Twins in Healthcare by Type 2023-2028
    • 4.4.5. Digital Twins in Transport by Type 2023-2028
  • 4.5. Digital Twins by Region 2023-2028
    • 4.5.1. North America Digital Twins 2023-2028
    • 4.5.2. South America Digital Twins 2023-2028
    • 4.5.3. Europe Digital Twins 2023-2028
    • 4.5.4. APAC Digital Twins 2023-2028
    • 4.5.5. MEA Digital Twins 2023-2028

5.0. Conclusions and Recommendations

Figures

  • Figure 1: Digital Twinning Model
  • Figure 2: Building Blocks of Cognitive Digital Twinning
  • Figure 3: Digital Thread Model in Digital Manufacturing Transformation Processes
  • Figure 4: Example of Types of Digital Twinning
  • Figure 5: Industrial Internet Building Block and Digital Twinning
  • Figure 6: Additive Manufacturing Path and Goals
  • Figure 7: Digital Thread for Additive Manufacturing in AM Process
  • Figure 8: Data Fusion for MRO Operation
  • Figure 9: Composite Manufacturing Model
  • Figure 10: Digital Twinning Application and Outcomes
  • Figure 11: Global Digital Twins 2023 - 2028
  • Figure 12: Digital Twins Types 2023 - 2028
  • Figure 13: Digital Twins Applications 2023 - 2028
  • Figure 14: Digital Twins by Industry 2023 - 2028
  • Figure 15: Digital Twins in Manufacturing by Type 2023 - 2028
  • Figure 16: Digital Twins in Manufacturing by Application 2023 - 2028
  • Figure 17: Digital Twins in Smart City by Type 2023 - 2028
  • Figure 18: Digital Twins in Smart City by Application 2023 - 2028
  • Figure 19: Digital Twins in Automotive by Type 2023 - 2028
  • Figure 20: Digital Twins in Automotive by Application 2023 - 2028
  • Figure 21: Digital Twins in Healthcare by Type 2023 - 2028
  • Figure 22: Digital Twins in Healthcare by Application 2023 - 2028
  • Figure 23: Digital Twins in Transport by Type 2023 - 2028
  • Figure 24: Digital Twins in Transport by Application 2023 - 2028
  • Figure 25: Digital Twins by Region 2023 - 2028
  • Figure 26: North America Digital Twins by Country 2023 - 2028
  • Figure 27: North America Digital Twins by Industry 2023 - 2028
  • Figure 28: United States Digital Twins 2023 - 2028
  • Figure 29: Canada Digital Twins 2023 - 2028
  • Figure 30: Mexico Digital Twins 2023 - 2028
  • Figure 31: South America Digital Twins by Country 2023 - 2028
  • Figure 32: South America Digital Twins by Industry 2023 - 2028
  • Figure 33: Argentina Digital Twins 2023 - 2028
  • Figure 34: Brazil Digital Twins 2023 - 2028
  • Figure 35: Chile Digital Twins 2023 - 2028
  • Figure 36: Europe Digital Twins by Country 2023 - 2028
  • Figure 37: Europe Digital Twins by Industry 2023 - 2028
  • Figure 28: U.K. Digital Twins 2023 - 2028
  • Figure 39: Germany Digital Twins 2023 - 2028
  • Figure 40: France Digital Twins 2023 - 2028
  • Figure 41: Spain Digital Twins 2023 - 2028
  • Figure 42: Italy Digital Twins 2023 - 2028
  • Figure 43: Poland Digital Twins 2023 - 2028
  • Figure 44: Russia Digital Twins 2023 - 2028
  • Figure 45: APAC Digital Twins by Country 2023 - 2028
  • Figure 46: APAC Digital Twins by Industry 2023 - 2028
  • Figure 47: China Digital Twins 2023 - 2028
  • Figure 48: Japan Digital Twins 2023 - 2028
  • Figure 49: South Korea Digital Twins 2023 - 2028
  • Figure 50: Australia Digital Twins 2023 - 2028
  • Figure 51: India Digital Twins 2023 - 2028
  • Figure 52: MEA Digital Twins by Country 2023 - 2028
  • Figure 53: MEA Digital Twins by Industry 2023 - 2028
  • Figure 54: Qatar Digital Twins 2023 - 2028
  • Figure 55: Kuwait Digital Twins 2023 - 2028
  • Figure 56: Saudi Arabia Digital Twins 2023 - 2028
  • Figure 57: South Africa Digital Twins 2023 - 2028

Tables

  • Table 1: Global Digital Twins 2023 - 2028
  • Table 2: Digital Twins Market by Type of Twinning 2023 - 2028
  • Table 3: Digital Twins Applications 2023 - 2028
  • Table 4: Digital Twins by Industry 2023 - 2028
  • Table 5: Digital Twins in Manufacturing by Type 2023 - 2028
  • Table 6: Digital Twins in Manufacturing by Application 2023 - 2028
  • Table 7: Digital Twins in Smart City by Type 2023 - 2028
  • Table 8: Digital Twins in Smart City by Application 2023 - 2028
  • Table 9: Digital Twins in Automotive by Type 2023 - 2028
  • Table 10: Digital Twins in Automotive by Application 2023 - 2028
  • Table 11: Digital Twins in Healthcare by Type 2023 - 2028
  • Table 12: Digital Twins in Healthcare by Application 2023 - 2028
  • Table 13: Digital Twins in Transport by Type 2023 - 2028
  • Table 14: Digital Twins in Transport by Application 2023 - 2028
  • Table 15: Digital Twins by Region 2023 - 2028
  • Table 16: North America Digital Twins by Country 2023 - 2028
  • Table 17: North America Digital Twins by Industry 2023 - 2028
  • Table 18: South America Digital Twins by Country 2023 - 2028
  • Table 19: South America Digital Twins by Industry 2023 - 2028
  • Table 20: Europe Digital Twins by Country 2023 - 2028
  • Table 21: Europe Digital Twins by Industry 2023 - 2028
  • Table 22: APAC Digital Twins by Country 2023 - 2028
  • Table 23: APAC Digital Twins by Industry 2023 - 2028
  • Table 24: MEA Digital Twins by Country 2023 - 2028
  • Table 25: MEA Digital Twins by Industry 2023 - 2028