封面
市场调查报告书
商品编码
1137956

量子级联激光器市场 - COVID-19 的增长、趋势、影响和预测(2022-2027 年)

Quantum Cascade Lasers Market - Growth, Trends, and Forecasts (2022 - 2027)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

预计量子级联激光器市场在预测期间(2022-2027 年)的复合年增长率为 7.2%。

量子级联激光器是一种半导体激光器,其发射峰位于中红外区域(4 到 10 欧姆)。这些设备是分子气体分析和吸收光谱等中红外应用的理想光源。

主要亮点

  • 量子级联激光 (QCL) 技术在中长波红外中运行,利用现有的红外相机技术和新应用提供新的倾斜,主要在精密传感、光谱学、医疗、军事和国防领域。其宽广的调谐范围和快速的响应速度使微型痕量元素检测器和气体分析仪能够更快、更准确地取代更慢和更大的 FTIR、质谱仪和光热显微光谱系统。
  • 在军事/国防和医疗保健领域越来越多地采用气体检测和化学检测应用正在显着推动这个市场。增加军事和国防部门的支出意味着精度和准确性对于他们的活动至关重要,以实现卓越的流程效率。
  • 在检测大气中的化学物质和粒子并支持更好地管理污染和温室气体的量子级联激光器领域正在进行大量研究。2021 年 10 月,欧盟委员会启动了一个项目。QCLs 是 Qombs 项目的一部分,旨在为大气多组分化学分析、粒子 (PM10) 检测和距离测量构建紧凑型激光雷达系统。
  • QuaLIDAD 旨在使用以下两种方法之一:来自空气中颗粒的反向散射光,或反射/散射光检测/使用后向反射器的障碍物检测。该原型将在 4-5m 的窗口中运行,该窗口吸水率低,能够测量各种基本温室/有毒气体(CO2、CO、N2O 等)。伪随机噪声 (PRN) 技术用于操作激光雷达,这涉及使用指定的数字模式快速调製连续波源。
  • 2021 年 6 月,Telecom Paris (a member of the Institute Polytechnique de Paris), mirSense, the Technical University of Darmstadt和the University of California Los Angeles recently的研究人员最近开发了一种量子级联激光器,可发射中红外光,以实现更安全的自由空间光通信。宣布了一个新的系统使用研究小组开发了一种将混沌同步与 QCL 技术的中红外波长融合在一起的方案。几十年来,混沌同步的特性一直在半导体激光器的背景下进行研究。
  • 大流行的爆发给世界各地的大中小型工业带来了经济混乱。此外,各国政府为遏制病毒传播而实施的封锁已经打击了世界各地的工业,扰乱了供应炼和製造运营,因为製造业的大部分工作都涉及在工厂工作。
  • 量子级联激光器的巨大成本正在抑制市场增长。采用这项技术需要大量的前期投资。

主要市场趋势

军事/国防预计将占据较大的市场份额

  • 在过去几年中,对飞机平台产品的需求有所增加。这包括减小尺寸、重量、功耗和成本,并扩展到便携式和电池供电的手持产品。量子级联激光器 (QCL) 技术在中长波红外中运行,并利用现有的红外相机技术提供新的倾斜。
  • 除了适用于飞机平台外,QCL 产品还非常适合运营商对小型、轻便指针和信标功能的需求。对这种高功率、重量轻、电池供电的设备进行的现场测试证实了它在各种空中和地面应用中的有效性。
  • 在华盛顿特区举行的美国陆军协会年会和博览会上,CIRCM 使用激光将导弹使用的导引头与末端的红外寻的装置耦合在一起。海军和陆军将防御视为直升机的有希望的替代品,直升机特别容易受到热寻的导弹的攻击。
  • 此外,市场见证了各种合作伙伴关係,以开发创新的解决方案。例如,2022 年 8 月,威胁检测和安全技术公司 Smiths Detection 与 Block MEMS 合作开发了接近化学试剂检测器 (PCAD),用于非接触式检测各种表面上的固体和液体威胁。Block MEMS的量子级联激光器(QCL)将作为系统的核心技术。
  • 同样在 2021 年 4 月,美国陆军授予Northop Grumman一份价值 10 亿美元的全速生产合同,用于基于激光的通用红外对抗 (CIRCM) 系统。CIRCM 系统采用开放式架构构建,因此可以与现有硬件一起使用。紧凑的指针/跟踪器和先进的量子级联激光器 (QCL) 技术还提高了可靠性和可扩展性。这样的发展增加了军事领域对量子级联激光器的需求。
  • 根据North Atlantic Treaty Organization的数据,美国估计每人军费开支约为 2,187 美元。

北美有望占据主要市场份额

  • 量子级联激光器正在将其应用扩展到爆炸物探测,并积极渗透到军事和国防市场。美国军事和国防部门的巨额支出表明,借助量子级联激光器可以实现的执行功能的精度和质量是主要关注点。
  • 根据美国国防部 2021 年预算,在 2021 年预算中批准了国防战略 (NDS),该战略在重新确定资源优先级和调动支出以准备潜在的未来高端战争方面进行决策。2021年总统预算要求为7054亿美元,其中203亿美元用于导弹对抗和防御,其中11亿美元用于宙斯盾弹道导弹防御系统,9.16亿美元用于末端高空区域防御(THAAD)弹道导弹防御系统。预计这将推动市场增长。
  • 这些激光器最重要的应用之一是气体检测和测量。基于可调 QCL 的系统可用于测量多种气体。目标狭窄的系统甚至可以检测和测量万亿分之一范围内的气体浓度。随着製造商和科学家获得经验,预计此类激光器的市场将显着增长。
  • 气体和蒸汽具有化学吸收“指纹”,其特征比它们的化学结构具有无可比拟的特征。通过将量子级联激光照射到烟囱上,可以匹配激光的波长以匹配烟囱上方空气中“指纹”的波长。基于此指纹,可以确定特定污染物已排放的可能性。QC 激光器通常用作化学传感和光谱学的辐射源。
  • QC 激光器的典型商业应用包括痕量气体分析和污染监测。随着美国政府对污染的严格监管,量子级联激光器可以作为重要的光源来促进检测。QC 激光器已在食品和饮料行业得到应用。
  • 美国食品和饮料行业在过去几年中经历了显着增长。该行业一直关注产品的新鲜度和安全性。Emerson's Rosemount CT4215 包装洩漏检测系统非常适合现有的生产流程,每分钟可检测多达 200 个包装。量子级联激光器可用于评估每一个离开生产线的产品,便于检测来自不当包装的微量气体,并立即消除有缺陷的产品。

竞争格局

量子级联激光器市场竞争激烈,由几个主要参与者组成。目前,就市场份额而言,没有主要参与者在市场上占据主导地位。製造商参与差异化製造流程以获得竞争优势。

  • 2021 年 12 月 - 浦那国防先进技术实验室宣布,政府已设立两个实验室,先进激光实验室和高功率 CO2 激光设施,将专注于光学、激光、量子和表面工程。未来主义的、战略性的跨学科集。高级激光实验室由六个研究设施组成,包括量子级联激光器的表征。
  • 2021 年 10 月 - 作为 Qombs 项目 Aim 的一部分,欧盟委员会启动了量子级联激光器 (QCL) 项目,以构建一个紧凑型激光雷达系统,用于空气中的多成分化学分析、颗粒物 (PM10) 检测和测距。QuaLIDAD 旨在使用以下两种方法之一:来自空气中颗粒的反向散射光,或反射/散射光检测/使用后向反射器的障碍物检测。该原型将在 4-5m 的窗口中运行,该窗口吸水率低,能够测量各种基本温室/有毒气体(CO2、CO、N2O 等)。伪随机噪声 (PRN) 技术用于 LIDAR 操作,其中涉及使用指定的数字模式快速调製连续波源。

其他福利

  • Excel 格式的市场预测 (ME) 表
  • 3 个月的分析师支持

目录

第 1 章 简介

  • 研究假设和市场定义
  • 调查范围

第二章研究方法论

第三章执行摘要

第四章市场洞察

  • 市场概况
  • 行业吸引力——波特五力分析
    • 供应商的议价能力
    • 买方议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争对手之间的竞争
  • 评估 COVID-19 的市场影响

第五章市场动态

  • 市场驱动力
    • 医疗实践中对精确度的需求不断增长
    • 军事和国防领域对气体检测和化学物质检测应用的需求增加
  • 市场挑战
    • 初始相关成本高

第六章市场细分

  • 按类型
    • 法布里珀罗激光器
    • 分布式反馈激光器
    • 外腔激光器
    • 扩展调音装置
  • 通过行动
    • 连续波
    • 脉衝波
  • 按终端用户行业
    • 工业的
    • 医疗保健
    • 军事/国防
    • 通讯领域
    • 饮食
    • 其他终端用户行业
  • 区域信息
    • 北美
      • 美国
      • 加拿大
    • 欧洲
      • 英国
      • 德国
      • 法国
      • 欧洲其他地区
    • 亚太地区
      • 中国
      • 日本
      • 韩国
      • 印度
      • 亚太其他地区
    • 拉丁美洲
      • 墨西哥
      • 拉丁美洲其他地区
    • 中东和非洲

第 7 章 竞争格局

  • 公司简介
    • Emerson Electric Co.
    • Thorlabs Inc.
    • Adtech Optics Inc.
    • Hamamatsu Photonics KK
    • Mirsense SAS
    • Wavelength Electronics Inc.
    • Nanoplus Nanosystems and Technologies GmbH

第八章投资分析

第九章 市场潜力

简介目录
Product Code: 66402

The Quantum Cascade Lasers Market is expected to register a CAGR of 7.2% during the forecast period (2022 - 2027). Quantum cascade lasers are semiconductor lasers that offer peak emission in the mid-IR range (4 μm to 10 μm). These devices are a great light source for mid-IR applications, such as molecular gas analysis and absorption spectroscopy.

Key Highlights

  • Quantum cascade laser (QCL) technology works across the mid-wave and long-wave infrared to provide new inclinations that leverage existing thermal imaging camera technology and are finding new applications primarily across the precision sensing, spectroscopy, medical, military, and defense sectors. Their wide tuning range and fast response time allow quicker and more accurate compact trace element detectors and gas analyzers to replace slower and larger FTIR, mass spectroscopy, and photothermal micro-spectroscopy systems.
  • The increased adoption of gas sensing and chemical detection applications in the military and defense and the healthcare sector is driving this market significantly. The increasing expenditures on the military and defense departments signify the importance of precision and accuracy in their activities to achieve excellent efficiencies in their processes.
  • A significant number of researches are being conducted in the field of quantum cascade laser to detect the chemicals and particles in the air, supporting better management of pollution and greenhouse gases. In October 2021, the Europe Commission started a project. QCLs is a project that aims to build a compact LIDAR system for air multi-component chemical analysis, particle (PM10) detection, and range finding as part of the Qombs Project.
  • QuaLIDAD intends to use one of two approaches: backscattered light from air particulate or reflected/scattered light detection by a retroreflector/obstacle detection. The prototype will operate in the 4-5 m window, where water absorption is low, and various essential greenhouse/toxic gases (CO2, CO, N2O, etc.) may be measured. The Pseudo Random Noise (PRN) technique is used to operate the LIDAR, which will involve quick modulation of a continuous-wave source with a specified digital pattern.
  • In June 2021, researchers from Telecom Paris (a member of the Institute Polytechnique de Paris), mirSense, the Technical University of Darmstadt, and the University of California Los Angeles recently unveiled a new system based on a quantum cascade laser emitting mid-infrared light for more secure free-space optical communication. The researchers' method blends chaotic synchronization with QCL technology's mid-infrared wavelength. For decades, the property of chaos synchronization has been studied in the context of semiconductor lasers.
  • The pandemic outbreak has created economic turmoil for small, medium, and large-scale industries worldwide. Adding to it, country-wise lockdown inflicted by the governments across the world (to minimize the spread of the virus) has further resulted in industries taking a hit and disrupting the supply chain and manufacturing operations across the globe, as a large part of manufacturing includes work on the factory floor.
  • The enormous cost of the quantum cascade lasers is restraining the market growth. A significant upfront investment is required to adopt this technology.

Key Market Trends

Military & Defense is Expected to Have a Major Market Share

  • Demand for aircraft platform product requirements has increased over the past years. This includes reduced size, weight, power consumption, and cost that extends to portable and battery-powered handheld products. Quantum Cascade Laser(QCL) technology operates throughout mid- and long-wave infrared to provide new inclinations that leverage existing thermal imaging camera technology.
  • In addition to their appropriateness for aircraft platforms, QCL products are a natural fit to match operator demands for small, lightweight pointer and beacon capabilities. Field-testing of high-power, lightweight, battery-operated devices have displayed their efficacy across a range of air and ground applications.
  • At the Association of the United States Army Annual Meeting & Exposition in Washington, D.C., CIRCM used a laser to combine the seekers used by missiles that possess infrared homing devices in their tips. The Navy and Army see defenses as the prospective replacement technology for their helicopters, which are especially vulnerable to heat-seeking missiles.
  • Further, the market is witnessing various partnerships to develop innovative solutions. For instance, in Aug 2022, Smiths Detection, a threat detection and security technology company, partnered with Block MEMS to create a proximate chemical agent detector (PCAD) for noncontact detection of solid and liquid threats on various surfaces. Block MEMS' quantum cascade lasers (QCLs) will be the core technology in the system.
  • Also, in April 2021, The U.S. Army awarded Northop Grumman a contract for full-rate production of the laser-based Common Infrared Countermeasure (CIRCM) system for USD 1 billion. The CIRCM system is built on open architecture to work with existing hardware. It uses a compact pointer/tracker and advanced Quantum Cascade Laser (QCL) technology for greater reliability and scalability. Such developments boost the demand for Quantum Cascade Lasers in the military sector.
  • According to North Atlantic Treaty Organization, it is estimated that the United States spent around 2,187 US dollars per capita on the military.

North America is Expected to Have a Major Market Share

  • With the increased applications of quantum cascade lasers in detecting explosives, it is aggressively penetrating the military and defense market space. The massive expenditure on the Military and defense sector in the United States points toward the fact that the main focus is on precision and quality of functions performed, which can be achieved with the help of quantum cascade lasers.
  • According to the United States Department of Defense 2021, The National Defense Strategy (NDS), which guides the Department's decision-making in reprioritizing resources and moving expenditures to prepare for a potential future high-end war, is supported in the FY 2021 budget. The President's budget request for FY 2021 is USD 705.4 billion, with USD 20.3 billion for Missile Defeat and Defense, including USD 1.1 billion for the AEGIS Ballistic Missile Defense System and USD 1.1 billion for the Terminal High Altitude Area Defense (THAAD) Ballistic Missile Defense System USD 916 million. This is expected to propel market growth.
  • One of the most important applications of these lasers is in gas sensing equipment and measurement. Systems based on tunable QCL can be used to measure multiple gas species. The narrowly targeted systems can even detect and measure the gas concentrations in the parts-per-trillion range. The market for these lasers is expected to grow significantly as manufacturers and scientists gain more experience.
  • Gases and vapors possess characteristic chemical absorption "fingerprints" incomparable to their respective chemical structures. If a quantum-cascade laser is directed above a smokestack, the laser's wavelength can be harmonized to match a "fingerprint" wavelength in the air overhead the smokestack. Based on the fingerprint, the possibility of a specific pollutant's emissions can be determined. The QC laser is popularly used as a radiation source for chemical sensing and spectroscopy.
  • Typical commercial applications of QC lasers include trace gas analysis and pollution monitoring. With increasing government regulations in the United States regarding pollution, quantum cascade lasers can act as a prominent source that can facilitate detection. QC lasers are finding applications in the Food and Beverage industry.
  • The food and beverage industry in the United States has noticed significant growth in the past years. This industry has continuously focussed on the freshness and safety of its products. Emerson's Rosemount CT4215 Packaging Leak Detection System fits perfectly into existing production processes and can measure up to 200 packs per minute. It makes use of a quantum cascade laser to assess every item leaving a production line and facilitates the detection of trace gases from inadequate packaging, and instantly rejects faulty products.

Competitive Landscape

The Quantum Cascade Lasers Market is competitive and consists of several major players. None of the major players currently dominate the market in terms of market share. The manufacturers are getting involved in differentiated manufacturing processes to gain a competitive advantage.

  • December 2021 - A Pune-based Defense Institute of Advanced Technology announced that the Government has set up two laboratories, Advanced Laser Laboratory and High Power CO2 Laser Facility, which will be one of the futuristic and strategic interdisciplinary set up for optics, laser, Quantum, and surface engineering. The Advanced Laser Laboratory comprises six research facilities, including Quantum Cascade Laser characterization.
  • October 2021 - The Europe Commission started a Quantum Cascade Lasers (QCL) project, which aims to build a compact LIDAR system for air multi-component chemical analysis, particle (PM10) detection, and range finding as part of the Qombs Project. QuaLIDAD intends to use one of two approaches: backscattered light from air particulate or reflected/scattered light detection by a retroreflector/obstacle detection. The prototype will operate in the 4-5 m window, where water absorption is low, and various essential greenhouse/toxic gases (CO2, CO, N2O, etc.) may be measured. The Pseudo Random Noise (PRN) technique is used to operate the LIDAR, which will involve quick modulation of a continuous-wave source with a specified digital pattern.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porters Five Forces Analysis
    • 4.2.1 Bargaining Power of Suppliers
    • 4.2.2 Bargaining Power of Buyers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Threat of Substitutes
    • 4.2.5 Intensity of Competitive Rivalry
  • 4.3 Assessment of Impact of COVID-19 on the Market

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Growing Need For Precision in the Medical Activities
    • 5.1.2 Increased Demand of Gas Sensing and Chemical Detection Applications in the Military and Defense
  • 5.2 Market Challenges
    • 5.2.1 High Up-front Associated Costs

6 MARKET SEGMENTATION

  • 6.1 By Type
    • 6.1.1 Fabry-Perot Lasers
    • 6.1.2 Distributed Feedback Lasers
    • 6.1.3 External Cavity Lasers
    • 6.1.4 Extended Tuning Devices
  • 6.2 By Operation
    • 6.2.1 Continous Wave
    • 6.2.2 Pulsed Wave
  • 6.3 By End-user Industry
    • 6.3.1 Industrial
    • 6.3.2 Medical
    • 6.3.3 Military and Defense
    • 6.3.4 Telecommunication
    • 6.3.5 Food and Beverage
    • 6.3.6 Other End-user Industries
  • 6.4 By Geography
    • 6.4.1 North America
      • 6.4.1.1 United States
      • 6.4.1.2 Canada
    • 6.4.2 Europe
      • 6.4.2.1 United Kingdom
      • 6.4.2.2 Germany
      • 6.4.2.3 France
      • 6.4.2.4 Rest of Europe
    • 6.4.3 Asia Pacific
      • 6.4.3.1 China
      • 6.4.3.2 Japan
      • 6.4.3.3 South Korea
      • 6.4.3.4 India
      • 6.4.3.5 Rest of Asia Pacific
    • 6.4.4 Latin America
      • 6.4.4.1 Mexico
      • 6.4.4.2 Rest of Latin America
    • 6.4.5 Middle East and Africa

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 Emerson Electric Co.
    • 7.1.2 Thorlabs Inc.
    • 7.1.3 Adtech Optics Inc.
    • 7.1.4 Hamamatsu Photonics KK
    • 7.1.5 Mirsense SAS
    • 7.1.6 Wavelength Electronics Inc.
    • 7.1.7 Nanoplus Nanosystems and Technologies GmbH

8 INVESTMENT ANALYSIS

9 FUTURE OF THE MARKET