封面
市场调查报告书
商品编码
1687701

石油和天然气领域的人工智慧—市场占有率分析、产业趋势与统计、成长预测(2025-2030 年)

AI In Oil And Gas - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 130 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

预计 2025 年石油和天然气市场人工智慧规模为 35.4 亿美元,预计到 2030 年将达到 64 亿美元,在市场估计和预测期(2025-2030 年)内复合年增长率为 12.61%。

石油和天然气市场的人工智慧-IMG1

石油和天然气产业正在经历人工智慧在储存分析和钻井优化、安全监控和排放等各个领域的应用激增。这波人工智慧浪潮将重塑探勘、生产和环境永续性,推动市场成长。

人工智慧,尤其是预测性维护形式的人工智慧,正在重塑石油和天然气产业的资产管理。预计这一趋势将透过提高可靠性和降低营运风险成为市场成长的主要驱动力。

2023 年 10 月,领先的企业 AI 软体公司 C3 AI 宣布与壳牌合作,将其预测性维护软体整合到 C3 AI 可靠性应用程式中。这项策略性伙伴关係关係凸显了石油和天然气产业对人工智慧平台的日益采用,支持了市场扩张。

人工智慧技术有望提高石油和天然气行业的业务效率,使公司能够识别模式、自动化决策并分析来自感测器和机器的大量资料集。人工智慧预测性维护解决方案可以预防设备故障,使公司能够规划维护、最大限度地减少停机时间并优化资产利用率。

该市场主要受石油和天然气行业降低生产成本的需求所驱动。面对波动的油价,企业纷纷转向人工智慧来简化业务、提高效率并降低成本。

人工智慧的应用正在加速,尤其是在石油和天然气行业,因为公司利用其能力从资料中获得更深入的见解。透过优化业务,这些公司不仅降低了成本,还提高了生产力。

俄罗斯入侵乌克兰后,向欧洲的管道天然气供应减少了 800 亿立方米,从而面临能源危机。导致中下游油气公司经营活动受到干扰,市场成长陷入停滞。

欧盟 (EU) 透过可再生能源实现能源独立的措施对传统的石油和天然气产业构成了挑战。这种转变间接限制了该地区石油和天然气产业人工智慧解决方案的应用范围,影响了市场成长。

全球石油和天然气产业已经经历了市场动态,在新冠疫情期间更是遭遇了严重挫折。随后全球各地的停工和经济活动萎缩导致石油需求大幅下降,引发国际原油价格暴跌。结果,石油业的生产和探勘活动受到阻碍,影响了人工智慧技术的采用。

石油和天然气领域的人工智慧市场趋势

上游业务部门预计将实现强劲成长

  • 石油和天然气产业的上游部分包括从地质勘测和土地收购到陆上和海上钻井的探勘活动。现阶段的一个关键挑战是地质学家和探勘团队寻找新的石油蕴藏量和渗漏点。
  • 人工智慧在石油和天然气领域,尤其是探勘的整合正在获得越来越大的关注。先进的人工智慧演算法可以处理大量资料集,例如地震探勘、地质构造、测井曲线和卫星影像。这使得能够精确识别陆地和海上的潜在储存。
  • 知名公司埃克森美孚在石油探勘中运用人工智慧就反映了这一趋势。该公司正在部署人工智慧模型来分析即时地震资料和历史钻井记录,以提高其检测海洋环境中天然石油矿藏的能力。
  • 世界领先的石油和燃气公司越来越多地利用人工智慧来提高其勘探活动的效率。透过利用人工智慧工具将记录数位化并自动化地质资料分析,这些公司可以快速识别管道腐蚀和设备磨损增加等问题。
  • 例如,华为开发了专门针对石油和天然气探勘的云端。透过利用人工智慧和巨量资料,该公司正在为客户重新分析 10 份历史探勘资料,释放新的价值并彻底改变地震资料收集方式。
  • 云端基础的分析的进步和数位孪生的兴起正在重塑石油和天然气行业的预测性维护。特别是,英国石油、埃克森美孚和壳牌等行业巨头使用预测性维护来评估设备状况并预测维护需求。
  • OPEC 2024年4月的资料显示,原油需求呈现持续成长的轨迹,反映出石油和天然气产业不断增长的生产需求。
  • 随着石油和天然气产业越来越注重环保实践,它越来越多地使用人工智慧来早期发现危险。透过分析航空摄影、卫星影像和遥感探测资料,公司可以快速识别漏油和管道洩漏,从而限制环境破坏并遏制污染物的扩散。总的来说,这些因素支持市场成长预测。

北美占最大市场占有率

  • 北美是人工智慧的重要基地,尤其是其蓬勃发展的石油和天然气产业。该地区的经济实力,加上油田营业单位广泛采用人工智慧、大量顶级人工智慧供应商以及公共和私营部门的大量共同投资,正在推动石油和天然气对人工智慧的需求。随着石油和天然气产量和投资的增加,市场潜力预计将进一步扩大。
  • 美国凭藉其庞大的石油和天然气产业以及人工智慧整合的显着成长,预计将引领北美石油和天然气人工智慧市场。根据美国能源资讯署的资料,美国已连续六年成为全球原油产量第一大国。 2023年,美国将创历史新高,平均每天生产1,290万桶原油,超过2019年的1,230万桶。充足的供应降低了能源成本,鼓励了私人投资,进一步增强了美国的经济状况。
  • 人工智慧在石油和天然气价值链中的作用是巨大的,尤其是在以动态能源生产为特征的行业中。人工智慧重新构想了公司业务,从油藏评估到调整钻井策略,再到评估油井风险。考虑到北美先进的基础设施,预计它将引领全球市场。此外,新兴企业对人工智慧的投资激增可能在不久的将来促进市场成长。
  • 人工智慧在石油和天然气探勘中的引入从根本上改变了企业发现和开采碳氢化合物资源的方式,开创了精准和高效的新时代。因此,随着对石油探勘活动的投资增加,人工智慧在该行业的应用也在增加。
  • 埃克森美孚、西方石油等美国大公司正在拥抱这股人工智慧浪潮。他们已投入数十亿美元用于多元化石油探勘业务,并透过大规模併购来巩固其地位。
  • 2024 年 3 月,Corva LLC 开发的先进人工智慧程式掌控了远端 Nabors Industries钻机。利用卫星通讯,该人工智慧可以做出瞬间决策,有可能将钻井速度提高至少 30%,并减少人工操作员 5,000 条命令的需求。这项技术的主要目标是降低成本并最大限度地提高石油开采量。随着人工智慧应用的如此大胆飞跃,特别是在石油探勘,美国公司准备重塑市场格局。

石油天然气产业人工智慧概述

石油和天然气领域的人工智慧市场较为分散,既有全球巨头,也有许多小型企业。知名公司包括 IBM Corporation、Fugenx Technologies、C3.AI Inc.、Microsoft Corporation 和 Intel Corporation。这些公司越来越多地建立策略联盟和收购来加强产品系列併确保竞争优势。

2023年1月,专注于AI应用软体的公司C3 AI推出了C3 Generative AI产品套件,并以C3 Generative AI for Enterprise Search首次亮相。该套件拥有先进的变压器模型,可简化跨不同价值链的整合。 C3 生成式人工智慧的采用将推动包括石油和天然气在内的各行各业的转型。

2023 年 8 月 Winterskjärl Dyer 是一家领先的欧洲天然气和石油公司,专注于石油和天然气以及碳管理,该公司与 IBM Consulting 合作建立了 AI 能力中心 (CoC)。该战略联盟以微软为共用技术合作伙伴,旨在推动提高能源生产的人工智慧应用。

其他福利

  • Excel 格式的市场预测 (ME) 表
  • 3个月的分析师支持

目录

第一章 引言

  • 研究假设和市场定义
  • 研究范围

第二章调查方法

第三章执行摘要

第四章 市场洞察

  • 市场概览
  • 产业吸引力-波特五力分析
    • 新进入者的威胁
    • 买家/消费者的议价能力
    • 供应商的议价能力
    • 替代品的威胁
    • 竞争对手之间的竞争强度
  • 评估影响市场的宏观经济因素
  • 技术简介 - 按下应用
    • 品管
    • 生产计画
    • 预测性维护
    • 其他应用

第五章市场动态

  • 市场驱动因素
    • 越来越重视轻鬆处理巨量资料
    • 降低生产成本的趋势日益增强
  • 市场限制
    • 初期实施成本高
    • 石油和天然气行业熟练专业人员短缺
  • 关键使用案例

第六章市场区隔

  • 按操作
    • 上游
    • 中游
    • 下游
  • 按类型
    • 平台
    • 按服务
  • 按地区
    • 北美洲
    • 欧洲
    • 亚洲
    • 澳洲和纽西兰
    • 拉丁美洲
    • 中东和非洲

第七章竞争格局

  • 公司简介
    • IBM Corporation
    • FuGenX Technologies
    • C3.AI Inc.
    • Microsoft Corporation
    • Intel Corporation
    • ABB Ltd
    • Honeywell International Inc.
    • Huawei Technologies Co. Ltd
    • NVIDIA Corporation
    • Infosys Limited
    • oPRO.ai Inc.

第八章投资分析

第九章:市场的未来

简介目录
Product Code: 64253

The AI In Oil And Gas Market size is estimated at USD 3.54 billion in 2025, and is expected to reach USD 6.40 billion by 2030, at a CAGR of 12.61% during the forecast period (2025-2030).

AI In Oil And Gas - Market - IMG1

The oil and gas industry is witnessing a surge in AI applications, spanning reservoir analysis and drilling optimization to safety monitoring and emissions reduction. This AI wave is set to reshape exploration, production, and environmental sustainability, propelling market growth.

Artificial intelligence, particularly in the form of predictive maintenance, is reshaping asset management in the oil and gas industry. This trend is poised to be a key driver of market growth by bolstering reliability and mitigating operational risks.

In October 2023, C3 AI, a leading Enterprise AI software firm, announced a collaboration with Shell, integrating predictive maintenance software into the C3 AI reliability application. This strategic partnership underscored the increased adoption of AI platforms in the oil and gas industry, underpinning market expansion.

AI technologies promise heightened operational efficiency in oil and gas, enabling companies to identify patterns, automate decisions, and analyze vast datasets from sensors and machinery. Equipped with AI, predictive maintenance solutions can preempt equipment breakdowns, allowing businesses to plan maintenance, minimize downtime, and optimize asset utilization.

The market is primarily driven by the oil and gas industry's need to lower production costs. Faced with volatile oil prices, companies are turning to AI to streamline operations, enhance efficiency, and cut costs.

As AI adoption accelerates, especially in the oil and gas industry, companies are leveraging its capabilities to extract deeper insights from their data. By optimizing their operations, these firms are not only cutting costs but also boosting productivity.

Russia faced an energy crisis following the 80 billion cubic meters (BCM) cut in pipeline gas supplies to Europe after its Ukraine invasion. This, in turn, hampered the operations of midstream and downstream players in the oil and gas industry, stalling market growth.

The European Union's push for energy self-sufficiency through renewable sources poses a challenge to the traditional oil and gas industry. This shift indirectly curtails the scope for AI solutions in the region's oil and gas industry, impacting market growth.

The global oil and gas industry, already navigating market dynamics, faced a severe setback during the COVID-19 pandemic. The ensuing global shutdown and reduced economic activities led to a significant drop in oil demand, plummeting international crude oil prices. Consequently, production and exploration activities in the industry were hampered, affecting the adoption of AI technologies.

AI In Oil And Gas Market Trends

The Upstream Operations Segment is Expected to Witness Significant Growth

  • Upstream operations in the oil and gas industry encompass exploration activities, from geological surveys and land acquisition to onshore and offshore drilling. A key challenge in this phase is the search for new oil reserves and seeps by geologists and exploration teams.
  • The integration of AI in oil and gas, particularly in exploration, is gaining traction. Advanced AI algorithms can process vast datasets, including seismic surveys, geological formations, well logs, and satellite imagery. This enables precise identification of potential oil reservoirs, both on land and in the ocean.
  • ExxonMobil, a prominent player, exemplifies this trend by harnessing AI for oil exploration. By deploying AI models, the company can analyze real-time seismic data and historical drilling records, enhancing its ability to detect natural oil seeps in oceanic settings.
  • Major global oil and gas corporations are increasingly turning to AI to bolster the efficiency of their exploration endeavors. By leveraging AI tools to digitize records and automate geological data analysis, these companies can swiftly identify issues like pipeline corrosion or heightened equipment wear.
  • Huawei, for instance, developed a specialized cloud for oil and gas exploration. By harnessing AI and Big Data, the company reanalyzed a massive 10 PB of historical exploration data for a customer, extracting new value and revolutionizing seismic data collection.
  • Advancements in cloud-based analytics and the rise of digital twins are reshaping predictive maintenance in the oil and gas industry. Notably, industry giants like BP, ExxonMobil, and Shell are utilizing predictive maintenance to assess equipment conditions and anticipate maintenance needs.
  • As per OPEC's April 2024 data, the demand for crude oil is on a consistent growth trajectory, reflecting the escalating production needs in the oil and gas industry, which bodes well for the market's future.
  • With a heightened focus on environmentally friendly practices, the oil and gas industry is increasingly turning to AI for early hazard detection. By analyzing aerial photos, satellite imagery, and remote sensing data, companies can swiftly identify oil spills and pipeline leaks, curbing environmental damage and limiting pollutant spread. These factors collectively underpin the market's projected growth.

North America Holds the Largest Market Share

  • North America is a pivotal hub for AI, particularly in terms of its robust oil and gas industry. The region's economic prowess, coupled with widespread AI adoption among oilfield entities, a rich landscape of top AI suppliers, and substantial joint investments from both public and private sectors, propels the demand for AI in oil and gas. With oil and gas production and investments increasing, the market's potential is expected to expand further.
  • The United States is poised to lead North America's AI in oil and gas market, owing to its expansive oil and gas industry and a notable uptick in AI integration. According to data from the US EIA, the United States outpaced all other nations in crude oil production for six consecutive years. In 2023, the United States hit a record high, producing an average of 12.9 million barrels of crude oil daily, surpassing the previous record of 12.3 million set in 2019. This abundant supply lowered energy costs and catalyzed private investments, further bolstering the nation's economic landscape.
  • The role of AI in the oil and gas value chain is profound, especially in an industry marked by dynamic energy production. Ai has reshaped companies' operations, ranging from reservoir valuation to tailoring drilling strategies and assessing well risks. Given North America's advanced infrastructure, it is expected to lead the global market. Moreover, the surge in AI investments among start-ups is set to amplify market growth in the near future.
  • The infusion of AI in oil and gas exploration has ushered in a new era of precision and efficiency, fundamentally altering how companies locate and extract hydrocarbon resources. Consequently, as investments in oil exploration activities rise, the utilization of AI in the industry also increases.
  • Major US players like ExxonMobil and Occidental Petroleum are making use of this AI wave. They are channeling billions into diverse oil exploration ventures and consolidating their positions through substantial mergers and acquisitions.
  • In March 2024, an advanced AI program developed by Corva LLC took the reins at a remote Nabors Industries Ltd rig. Leveraging satellite communication, this AI made split-second decisions, enhancing drilling speed by at least 30% and potentially reducing human operator commands by 5,000. The primary aim behind this technology is to cut costs and maximize oil extraction. With such bold strides in AI adoption, especially in oil exploration, US companies are poised to reshape the market landscape.

AI In Oil And Gas Industry Overview

The AI in oil and gas market is fragmented, featuring a mix of global giants and numerous small and medium-sized enterprises. Noteworthy players include IBM Corporation, Fugenx Technologies, C3.AI Inc., Microsoft Corporation, and Intel Corporation. These companies are increasingly turning to strategic collaborations and acquisitions to bolster their product portfolios and secure a competitive edge.

January 2023: C3 AI, specializing in AI application software, unveiled its C3 Generative AI Product Suite, debuting with the C3 Generative AI for Enterprise Search. This suite boasts advanced transformer models, streamlining integration across diverse value chains. The introduction of C3 Generative AI is poised to boost transformative efforts in various industries, including oil and gas.

August 2023: Wintershall Dea, a leading European player in natural gas and oil, pivoting toward a focus on gas and carbon management, joined hands with IBM Consulting to establish an AI Center of Competence (CoC). This strategic alliance, with Microsoft as a shared technology partner, is geared toward driving forward AI applications that elevate energy production.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Threat of New Entrants
    • 4.2.2 Bargaining Power of Buyers/Consumers
    • 4.2.3 Bargaining Power of Suppliers
    • 4.2.4 Threat of Substitute Products
    • 4.2.5 Intensity of Competitive Rivalry
  • 4.3 Assessment of Macroeconomic Factors on the Market
  • 4.4 Technology Snapshot - By Application
    • 4.4.1 Quality Control
    • 4.4.2 Production Planning
    • 4.4.3 Predictive Maintenance
    • 4.4.4 Other Applications

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Increasing Focus to Easily Process Big Data
    • 5.1.2 Rising Trend to Reduce Production Cost
  • 5.2 Market Restraints
    • 5.2.1 Initial High Cost of Adoption
    • 5.2.2 Lack of Skilled Professionals in the Oil and Gas Industry
  • 5.3 Key Use Cases

6 MARKET SEGMENTATION

  • 6.1 By Operation
    • 6.1.1 Upstream
    • 6.1.2 Midstream
    • 6.1.3 Downstream
  • 6.2 By Type
    • 6.2.1 Platform
    • 6.2.2 Services
  • 6.3 By Geography
    • 6.3.1 North America
    • 6.3.2 Europe
    • 6.3.3 Asia
    • 6.3.4 Australia and New Zealand
    • 6.3.5 Latin America
    • 6.3.6 Middle East and Africa

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 IBM Corporation
    • 7.1.2 FuGenX Technologies
    • 7.1.3 C3.AI Inc.
    • 7.1.4 Microsoft Corporation
    • 7.1.5 Intel Corporation
    • 7.1.6 ABB Ltd
    • 7.1.7 Honeywell International Inc.
    • 7.1.8 Huawei Technologies Co. Ltd
    • 7.1.9 NVIDIA Corporation
    • 7.1.10 Infosys Limited
    • 7.1.11 oPRO.ai Inc.

8 INVESTMENT ANALYSIS

9 FUTURE OF THE MARKET