封面
市场调查报告书
商品编码
1910620

光调变器:市场占有率分析、产业趋势与统计、成长预测(2026-2031)

Optical Modulators - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2026 - 2031)

出版日期: | 出版商: Mordor Intelligence | 英文 158 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

预计光调变器市场将从 2025 年的 66.7 亿美元成长到 2026 年的 78.3 亿美元,到 2031 年将达到 174.5 亿美元,2026 年至 2031 年的复合年增长率为 17.41%。

光调製器市场-IMG1

这种成长轨迹反映了800G和1.6T光纤通讯、超大规模资料中心部署以及早期量子运算网路等领域对频宽,所有这些都依赖于速度日益加快的光电元件。供应商正在优先考虑相位稳定性和低驱动电压设计,以满足共封装光学元件的热设计要求。同时,薄膜铌酸锂和硅光电领域的材料创新正在改变成本结构。随着交换器ASIC供应商对能够达到100Gbps及以上速率的光引擎的需求,整合式调变器晶片正从利基市场走向主流市场。同时,新兴经济体的政策制定者继续为5G回程传输和光纤到府(FTTH)分配频宽和补贴,从而支援50-100Gbps范围内的大规模部署。

全球光调变器市场趋势与洞察

加大对光纤通讯基础设施的投资

随着云端服务供应商追求更低的每位元成本,创纪录的人工智慧丛集建设将推动800G收发器出货量在2024年突破2,000万台。从400G到800G的过渡,以及早期1.6T技术演示(例如Ciena使用224G SerDes进行的1.6T连贯光演示),都将要求调变器在不超出功耗预算的情况下实现100Gbaud符号速率。线性可插拔光学模组市场预计将从2024年的50亿美元翻一番,到2026年超过100亿美元,这将加速对紧凑型、低Vπ架构的近期需求。共封装光学模组的热设计裕度正在缩小,这使得整合供应商可以透过在同一基板共同优化驱动IC和调製器波导管来获得优势。随着 51T 和 102T 光纤交换 ASIC蓝图的逐步完善,光引擎的搭载率将会加快,进一步增强对近期复合年增长率的正面驱动作用。

加速在新兴国家部署 5G 和 FTTH 技术

印度推出5G服务后,每月光纤安装量激增至101,550公里,是5G推出前的六倍。这显示「基地台光纤覆盖率达到70%」等政策目标能够直接转换为对光元件的实际需求。由于每个小型基地台至少需要一条25G或50G光纤去程传输链路,因此预计成本和温度优化的调变器订单量将大幅成长。中国云端营运商已打造出一个价值20-30亿美元的国内收发器市场(预计到2024年),这进一步强化了区域采购週期,并带动了调製器製造工厂的发展。能够在各种环境条件下对其设备进行认证的供应商,在公共电信竞标中获得了优先供应商地位,从而提升了其中期增长前景。

超过 100 Gbaud 后,设计复杂性和温度控管限制将会增加。

将符号速率提升至 100 Gb/s 以上会增加热负载,并对微波和光讯号之间的速度匹配构成挑战。麻省理工学院林肯实验室的电感调谐电极能够在保持 50 欧姆电阻的同时实现超过 100 GHz 的频宽,但将这些创新整合到可量产的模组中仍然面临挑战。特殊的基板和液态金属导热通孔会增加组件成本并延长认证週期,从而限制近期供应多样性并减缓复合年增长率。

细分市场分析

相位调製器作为连贯检测的基础技术,预计到2025年将占据光调变器市场37.65%的份额。然而,整合式调变器晶片将以18.05%的最高复合年增长率成长,因为共封装光学元件采用单一基板设计,从而降低了功耗和延迟。随着Tower Semiconductor等晶圆代工厂对400Gbit/通道单元进行认证,整合晶片相关的光调变器市场规模正在不断扩大。

成熟的振幅和偏振装置将继续用于直接检测和感测应用。类比调製器将在无线光纤传输(ROF) 这一细分领域保持其地位,在该领域,线性度比速度更为重要。晶圆级测试的普及正在降低平均售价 (ASP),这吸引了掌握光子电子协同设计技术的新进者。

由于铌酸锂具有优异的电光係数和温度稳定性,其市占率维持在43.55%。然而,随着CMOS晶圆厂实现大规模生产并降低成本,硅光子光电正以18.25%的复合年增长率快速成长。受硅光电驱动的光调变器市场正在扩张,因为大型云端服务买家需要从单一供应商获得端到端的光子积体电路。磷化铟在整合雷射至关重要的领域保持着一定的市场份额,而电光聚合物则在100 GHz以上的微波光电占据一席之地,儘管可靠性方面仍存在挑战。

区域分析

截至2025年,亚太地区占了38.35%的光调变器市场份额,主要得益于中国垂直整合的收发器生态系统以及印度大力推进基地台光纤化。该地区深厚的製造业基础使得物料清单(BOM)成本保持在较低水平,从而能够快速部署到5G和光纤到户(FTTH)网路中。政府补贴计划和在地采购政策进一步巩固了该地区的製造业基础。北美市场虽然已经成熟,但其创新主导的需求正在成长,超大规模营运商和国防主要企业正在采用尖端的薄膜铌酸锂(LiNbO3)和硅光电来支援人工智慧架构和量子研究。在欧洲,都会区网路持续稳定升级,而汽车光达和工业感测技术正在为模拟调製器和偏振调製器开闢新的市场。与新兴经济体以销售主导成长不同,这些成熟地区的光调变器市场规模成长主要由技术更新所驱动。

其他福利:

  • Excel格式的市场预测(ME)表
  • 分析师支持(3个月)

目录

第一章 引言

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章 市场情势

  • 市场概览
  • 市场驱动因素
    • 加大对光纤通讯基础设施的投资
    • 超大规模资料中心扩展和 800G/1.6T光纤通讯蓝图
    • 加速在新兴国家部署 5G 和 FTTH 技术
    • 城域/长途连结向 400G 以上连贯光纤通讯传输的过渡
    • 绝缘体上铌酸锂(LNOI)调製器的商业化
    • 量子光电和低温互连需求
  • 市场限制
    • 高于 100 Gbaud 时,设计复杂性和温度控管限制会增加。
    • InP/LiNbO3晶片和极化製程的高昂组件成本
    • 高速光电领域技术纯熟劳工短缺
    • 上游锂矿供应链的集中风险
  • 产业供应链分析
  • 监管环境
  • 宏观经济因素的影响
  • 技术展望
  • 波特五力分析
    • 供应商的议价能力
    • 消费者议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争对手之间的竞争

第五章 市场规模与成长预测

  • 依产品类型
    • 幅度调製器
    • 偏振调製器
    • 相位调製器
    • 类比调製器
    • 整合(SiPh/InP/LNOI)调製器晶片
  • 透过 Material Platform
    • 铌酸锂(LiNbO3)
    • 磷化铟(InP)
    • 硅光电(SiPh)
    • 电光聚合物
    • 其他的
  • 按数据速率等级
    • 25 Gbps 或更低
    • 25~50 Gbps
    • 50~100 Gbps
    • 超过 100 Gbps
  • 透过使用
    • 光纤通讯
      • 资料中心互连
      • 5G去程传输/回程传输
      • 海底电缆
      • 城市/长途路线
    • 光纤感测器
      • 工业和结构健康
      • 石油和天然气监测
    • 太空与国防
    • 测试和测量设备
    • 关于量子计算和低温技术的链接
  • 按地区
    • 北美洲
      • 美国
      • 加拿大
      • 墨西哥
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 义大利
      • 西班牙
      • 俄罗斯
      • 其他欧洲地区
    • 亚太地区
      • 中国
      • 日本
      • 印度
      • 韩国
      • 东南亚
      • 亚太其他地区
    • 中东和非洲
      • 中东
        • 沙乌地阿拉伯
        • 阿拉伯聯合大公国
        • 土耳其
        • 其他中东地区
      • 非洲
        • 南非
        • 奈及利亚
        • 其他非洲地区

第六章 竞争情势

  • 市场集中度
  • 策略趋势
  • 市占率分析
  • 公司简介
    • Lumentum Holdings Inc.
    • Fujitsu Optical Components Ltd.
    • Thorlabs Inc.
    • Hamamatsu Photonics KK
    • Lightwave Logic Inc.
    • Gooch and Housego PLC
    • APE Angewandte Physik and Elektronik GmbH
    • AA Opto-Electronic SAS
    • Conoptics Inc.
    • L3Harris Technologies Inc.
    • AMS Technologies AG
    • Sumitomo Electric Device Innovations USA Inc.
    • iXblue Photonics(Exail)
    • Ciena Corporation
    • Civicom Photonics
    • HyperLight Corp.
    • Keysight Technologies Inc.
    • ThinkPhotonics Ltd.
    • Optilab LLC
    • Mellanox Technologies(NVIDIA Photonics)

第七章 市场机会与未来展望

简介目录
Product Code: 67025

The optical modulators market is expected to grow from USD 6.67 billion in 2025 to USD 7.83 billion in 2026 and is forecast to reach USD 17.45 billion by 2031 at 17.41% CAGR over 2026-2031.

Optical Modulators - Market - IMG1

This trajectory reflects accelerating bandwidth demand from 800 G and 1.6 T optics, hyperscale data-center rollouts, and early quantum-computing networks that all rely on ever-faster electro-optic components. Vendors are prioritizing phase-stable, low-drive-voltage designs to meet thermal budgets inside co-packaged optics, while material innovation in thin-film lithium niobate and silicon photonics is reshaping cost structures. Integrated modulator chips are moving from niche to mainstream as switch ASIC vendors mandate optical engines optimized for 100 Gbaud and above. Meanwhile, policymakers in emerging economies keep allocating spectrum and subsidies for 5G backhaul and fiber-to-the-home, sustaining large-volume deployments in the 50-100 Gbps class.

Global Optical Modulators Market Trends and Insights

Rising investments in optical-fiber communication infrastructure

Record AI cluster build-outs lifted 800 G transceiver shipments past 20 million units in 2024 as cloud providers chased lower cost-per-bit metrics. The pivot from 400 G to 800 G, and early 1.6 T proof-points such as Ciena's 1.6 T coherent-lite demo using 224 G SerDes, compel modulators to hit 100 Gbaud symbol rates without breaking power budgets. Linear pluggable optics are doubling from USD 5 billion in 2024 to more than USD 10 billion by 2026, amplifying short-term demand for compact, low-Vπ architectures. Thermal design margins tighten inside co-packaged optics, rewarding integrated suppliers that can co-optimize driver ICs and modulator waveguides on the same substrate. As switch ASIC roadmaps lock in 51 T and 102 T fabrics, optical-engine attach rates accelerate, reinforcing the driver's positive impact on near-term CAGR.

Accelerated 5G and FTTH rollout in emerging economies

India's monthly fiber deployment spiked to 101,550 km after 5G launch, six times the pre-5G run-rate, underlining how policy targets such as 70% tower fiberization translate into real optical component pull-through. Each small cell needs at least one 25 G or 50 G optical fronthaul link, so modulators tuned for cost and temperature resilience see large-volume orders. Chinese cloud operators generated a USD 2-3 billion domestic transceiver market in 2024, reinforcing regional procurement cycles that ripple through modulator fabs. Vendors able to qualify devices under wide environmental ranges win preferred-supplier status in public-telecom tenders, elevating medium-term growth prospects.

Design complexity and thermal-management limits above 100 Gbaud

Pushing symbol rates past 100 Gbaud inflates thermal load and challenges velocity matching between microwave and optical signals. MIT Lincoln Laboratory's inductance-tuned electrodes stretch bandwidth beyond 100 GHz while holding 50-ohm impedance, but packaging such innovations into manufacturable modules remains difficult. Exotic substrates and liquid-metal thermal vias raise BOM and lengthen qualification cycles, limiting short-term supply diversity and depressing CAGR.

Other drivers and restraints analyzed in the detailed report include:

  1. Move to coherent optics >= 400 G on metro/long-haul links
  2. Commercialization of lithium-niobate-on-insulator (LNOI) modulators
  3. High BOM cost of InP/LiNbO3 wafers and poling processes

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Phase modulators owned 37.65% of the optical modulators market share in 2025 as they remain fundamental for coherent detection. Integrated modulator chips, however, will post the strongest 18.05% CAGR because co-packaged optics depends on single-substrate designs that trim power and latency. The optical modulators market size tied to integrated chips expands as foundries like Tower Semiconductor qualify 400 G-per-lane units.

Established amplitude and polarization devices continue serving direct-detection and sensing. Analog modulators keep niche radio-over-fiber footholds where linearity trumps speed. The shift toward wafer-level test drives ASP reduction, inviting new entrants that master photonic-electronic co-design.

Lithium niobate held a 43.55% share thanks to its superior electro-optic coefficient and temperature stability. Yet silicon photonics is accelerating at 18.25% CAGR because CMOS fabs unlock high-volume, low-cost runs. The optical modulators market size attributable to silicon photonics rises as large cloud buyers demand single-supplier photonic ICs end-to-end. Indium phosphide retains a foothold where integrated lasers are mandatory, while electro-optic polymers address >100 GHz microwave photonics, though reliability hurdles persist.

The Optical Modulators Market Report is Segmented by Product Type (Amplitude Modulators, Polarization Modulators, and More), Material Platform (Lithium Niobate, Indium Phosphide, and More), Data-Rate Class (Less Than or Equal To 25 Gbps, 25 - 50 Gbps, and More), Application (Optical Communication, Fiber-Optic Sensors, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

Asia-Pacific accounted for 38.35% of the optical modulators market share in 2025, fueled by China's vertically integrated transceiver ecosystem and India's sprint to fiberize towers. Regional manufacturing depth keeps BOM low, allowing rapid deployment across 5G and FTTH footprints. Government subsidy programs and local sourcing mandates further anchor production. North America shows mature but innovation-led demand, with hyperscale operators and defense primes adopting cutting-edge thin-film LiNbO3 and silicon photonics to support AI fabrics and quantum research. Europe maintains steady upgrades in metro networks while automotive LiDAR and industrial sensing open adjacencies for analog and polarization modulators. The optical modulators market size in these mature regions grows via technology refresh, contrasting with volume-driven expansion in emerging economies.

  1. Lumentum Holdings Inc.
  2. Fujitsu Optical Components Ltd.
  3. Thorlabs Inc.
  4. Hamamatsu Photonics K.K.
  5. Lightwave Logic Inc.
  6. Gooch and Housego PLC
  7. APE Angewandte Physik and Elektronik GmbH
  8. AA Opto-Electronic SAS
  9. Conoptics Inc.
  10. L3Harris Technologies Inc.
  11. AMS Technologies AG
  12. Sumitomo Electric Device Innovations USA Inc.
  13. iXblue Photonics (Exail)
  14. Ciena Corporation
  15. Civicom Photonics
  16. HyperLight Corp.
  17. Keysight Technologies Inc.
  18. ThinkPhotonics Ltd.
  19. Optilab LLC
  20. Mellanox Technologies (NVIDIA Photonics)

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Rising investments in optical-fiber communication infrastructure
    • 4.2.2 Hyperscale datacenter expansion and 800 G/1.6 T optics road-map
    • 4.2.3 Accelerated 5 G and FTTH rollout in emerging economies
    • 4.2.4 Move to coherent optics greater than or equal to?400 G on metro/long-haul links
    • 4.2.5 Commercialisation of lithium-niobate-on-insulator (LNOI) modulators
    • 4.2.6 Quantum photonics and cryogenic interconnect demand
  • 4.3 Market Restraints
    • 4.3.1 Design complexity and thermal-management limits above 100 Gbaud
    • 4.3.2 High BOM cost of InP/LiNbO? wafers and poling processes
    • 4.3.3 Skilled-labour shortage in high-speed photonics packaging
    • 4.3.4 Upstream lithium-ore supply-chain concentration risk
  • 4.4 Industry Supply-Chain Analysis
  • 4.5 Regulatory Landscape
  • 4.6 Impact of Macroeconomic Factors
  • 4.7 Technological Outlook
  • 4.8 Porter's Five Forces Analysis
    • 4.8.1 Bargaining Power of Suppliers
    • 4.8.2 Bargaining Power of Consumers
    • 4.8.3 Threat of New Entrants
    • 4.8.4 Threat of Substitutes
    • 4.8.5 Intensity of Competitive Rivalry

5 MARKET SIZE AND GROWTH FORECASTS (VALUE)

  • 5.1 By Product Type
    • 5.1.1 Amplitude Modulators
    • 5.1.2 Polarization Modulators
    • 5.1.3 Phase Modulators
    • 5.1.4 Analog Modulators
    • 5.1.5 Integrated (SiPh/InP/LNOI) Modulator Chips
  • 5.2 By Material Platform
    • 5.2.1 Lithium Niobate (LiNbO3)
    • 5.2.2 Indium Phosphide (InP)
    • 5.2.3 Silicon Photonics (SiPh)
    • 5.2.4 Electro-optic Polymer
    • 5.2.5 Others
  • 5.3 By Data-Rate Class
    • 5.3.1 Less than or Equal to 25 Gbps
    • 5.3.2 25 - 50 Gbps
    • 5.3.3 50 - 100 Gbps
    • 5.3.4 Greater than 100 Gbps
  • 5.4 By Application
    • 5.4.1 Optical Communication
      • 5.4.1.1 Datacentre Interconnect
      • 5.4.1.2 5 G Fronthaul / Backhaul
      • 5.4.1.3 Sub-sea Cables
      • 5.4.1.4 Metro / Long-haul
    • 5.4.2 Fiber-optic Sensors
      • 5.4.2.1 Industrial and Structural Health
      • 5.4.2.2 Oil and Gas Monitoring
    • 5.4.3 Space and Defence
    • 5.4.4 Test and Measurement Equipment
    • 5.4.5 Quantum Computing and Cryogenic Links
  • 5.5 By Geography
    • 5.5.1 North America
      • 5.5.1.1 United States
      • 5.5.1.2 Canada
      • 5.5.1.3 Mexico
    • 5.5.2 South America
      • 5.5.2.1 Brazil
      • 5.5.2.2 Argentina
      • 5.5.2.3 Rest of South America
    • 5.5.3 Europe
      • 5.5.3.1 Germany
      • 5.5.3.2 United Kingdom
      • 5.5.3.3 France
      • 5.5.3.4 Italy
      • 5.5.3.5 Spain
      • 5.5.3.6 Russia
      • 5.5.3.7 Rest of Europe
    • 5.5.4 Asia-Pacific
      • 5.5.4.1 China
      • 5.5.4.2 Japan
      • 5.5.4.3 India
      • 5.5.4.4 South Korea
      • 5.5.4.5 South-East Asia
      • 5.5.4.6 Rest of Asia-Pacific
    • 5.5.5 Middle East and Africa
      • 5.5.5.1 Middle East
        • 5.5.5.1.1 Saudi Arabia
        • 5.5.5.1.2 United Arab Emirates
        • 5.5.5.1.3 Turkey
        • 5.5.5.1.4 Rest of Middle East
      • 5.5.5.2 Africa
        • 5.5.5.2.1 South Africa
        • 5.5.5.2.2 Nigeria
        • 5.5.5.2.3 Rest of Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Strategic Moves
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles (includes Global-level Overview, Market-level Overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share, Products and Services, Recent Developments)
    • 6.4.1 Lumentum Holdings Inc.
    • 6.4.2 Fujitsu Optical Components Ltd.
    • 6.4.3 Thorlabs Inc.
    • 6.4.4 Hamamatsu Photonics K.K.
    • 6.4.5 Lightwave Logic Inc.
    • 6.4.6 Gooch and Housego PLC
    • 6.4.7 APE Angewandte Physik and Elektronik GmbH
    • 6.4.8 AA Opto-Electronic SAS
    • 6.4.9 Conoptics Inc.
    • 6.4.10 L3Harris Technologies Inc.
    • 6.4.11 AMS Technologies AG
    • 6.4.12 Sumitomo Electric Device Innovations USA Inc.
    • 6.4.13 iXblue Photonics (Exail)
    • 6.4.14 Ciena Corporation
    • 6.4.15 Civicom Photonics
    • 6.4.16 HyperLight Corp.
    • 6.4.17 Keysight Technologies Inc.
    • 6.4.18 ThinkPhotonics Ltd.
    • 6.4.19 Optilab LLC
    • 6.4.20 Mellanox Technologies (NVIDIA Photonics)

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-space and Unmet-need Assessment