![]() |
市场调查报告书
商品编码
1836697
陶瓷基复合材料:市场份额分析、行业趋势、统计数据和成长预测(2025-2030)Ceramic Matrix Composites - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030) |
※ 本网页内容可能与最新版本有所差异。详细情况请与我们联繫。
预计到 2025 年全球陶瓷基复合材料市场规模将达到 68.1 亿美元,到 2030 年将达到 104.5 亿美元,复合年增长率为 8.95%。
这一市场扩张取决于该材料能否将金属的韧性与陶瓷的耐热性相结合,有助于提升航太发动机、高超音速系统和工业燃气涡轮机的性能。轻量化推进系统的投资、燃油燃烧标准的收紧、可变燃料涡轮机的采用以及对更持久耐高温部件的追求,正在塑造当前的需求前景。自动化纤维铺放和反应熔体渗透技术的成本驱动型进步正在缩短生产週期,并缩小与镍基高温合金的成本差距。从化学加工商到核融合能源开发商,越来越多的终端用户正在指定使用陶瓷基复合材料 (CMC),这反映出多元化的机会组合,有助于支撑其长期成长韧性。
国防机构现在将热性能作为主要的设计过滤器。美国高超音速弹药计画要求材料在2000 度C以上仍能保持结构稳定,而这个阈值将大多数高温合金排除在外。洛克希德马丁公司的一系列测试凸显了陶瓷基复合材料(CMC)在电子设备加强和气动外壳防护方面的重要性。优质国防承包商愿意接受的生存能力加速了CMC的早期认证,从而创造了一条惠及其他行业的学习曲线。碳纤维增强碳化硅复合材料在多次高温循环后已展现出可重复使用的性能,这一优势改变了生命週期成本方程式。
电动车和自动驾驶汽车专案正在积极追求减重目标,因为每减轻一公斤重量,就能提升续航里程和燃气涡轮机铺放,该工艺可将数小时的积层法转化为几分钟的循环。
由于高温纤维拉伸和较长的浸润步骤,CMC零件的价格仍然比同类金属零件高出三到五倍。 SCANCUT计划透过创新的铣削路径将加工时间缩短了70%,类似的自动化突破正在缩小差距。随着CMC使用寿命的延长,整体拥有成本有所改善,但对于价格敏感的电力和汽车用户来说,初始购买价格仍然是一个障碍。通用电气公司斥资2亿美元在阿拉巴马州建造的工厂旨在平衡航太领域的成本。
报告中分析的其他驱动因素和限制因素
2024年,SiC/SiC复合材料占据了陶瓷基复合材料市场份额的55.19%,预计到2030年将以11.05%的复合年增长率成长。细间距纤维的整合使强度达到2GPa以上,正在扩大其结构应用范围。随着新型喷射引擎核心零件对罩壳、燃烧室衬套和喷嘴延伸件的合格越来越高,SiC/SiC应用的陶瓷基复合材料市场规模预计将大幅成长。碳/碳系统在可控制氧化的火箭喷嘴领域仍占有一席之地,而氧化物/氧化物系统在工业热交换器领域正日益受到青睐,因为在工业热交换器中,固有的氧化稳定性比峰值温度更为重要。
製程改进包括奈米工程界面,可减轻热循环过程中的纤维损伤。三菱化学集团的碳纤维基C/SiC可耐受1500°C的高温,展现了混合化学如何拓展太空船应用的温度上限。将SiC浆料沉淀到织物预製件上,可实现传统积层法无法实现的复杂冷却通道。这些创新技术维持了SiC/SiC系列的领先地位,并吸引了涡轮机主厂商的投资。
凭藉其密集的航太和国防生态系统,预计北美将在2024年占据陶瓷基复合材料市场收益的37.96%。该地区拥有垂直整合的供应链,涵盖碳化硅纤维拉挤、零件积层法、机械加工和引擎组装。先进复合材料製造创新研究所等政府倡议正在津贴试验生产线并支持区域产能。劳斯莱斯和通用电气已签订多年期订单,以平滑需求週期并为进一步的工厂扩张提供理由。
随着中国和日本加大战略材料项目的力度,到2030年,亚太地区将迎来最快的复合年增长率,达到10.84%。各国政府计画实现高性能纤维的供应独立,并将2035年定为里程碑目标。汽车电气化也将刺激该地区对轻量化、耐热部件的需求。劳动力成本下降和积极的补贴使出口价格具有竞争力,使该地区成为全球陶瓷基复合材料市场的重要消费国和供应国。
欧洲透过支援可再生电网的涡轮机维修以及劳斯莱斯UltraFan等新型飞机引擎的演示,保持了稳定的市场份额。欧盟研究网络汇集公共和私人资金,用于成熟适用于工业炉的氧化物材料,从而拓宽了其应用范围。严格的排放法规为陶瓷基复合材料(CMC)等增效材料创造了有利的政策环境,从而增强了欧洲的需求。
The global ceramic matrix composites market is valued at USD 6.81 billion in 2025 and is forecast to reach USD 10.45 billion by 2030, registering an 8.95% CAGR through the period.
Expansion rests on the material's ability to combine the toughness of metals with the heat resistance of ceramics, a balance that unlocks performance gains for aerospace engines, hypersonic systems, and industrial gas turbines. Investment in lightweight propulsion, stricter fuel-burning standards, adoption of variable-fuel turbines, and the search for longer-life high-temperature parts shape the current demand outlook. Cost-down progress in automated fiber placement and reactive melt infiltration is compressing cycle times and closing the cost gap with nickel super-alloys, while government grants for advanced-materials plants are de-risking capacity additions. A wider set of end users-from chemical processors to fusion-energy developers-now specify CMCs, reflecting a more diversified opportunity mix that supports long-term growth resilience.
Defense agencies now treat thermal capability as a primary design filter. Hypersonic munitions programs in the United States require materials that remain structurally stable above 2,000 °C, a threshold that eliminates most super-alloys. Lockheed Martin's test series highlights the need for CMCs in electronics ruggedization and aero-shell protection. The premium prices defense contractors accept for survivability accelerate early CMC qualification, generating learning curves that benefit other sectors. Carbon-fiber reinforced silicon carbide composites have demonstrated reusable performance after multiple high-heat cycles, an advantage that shifts life-cycle cost equations.
Electric and autonomous vehicle programs pursue aggressive mass-reduction targets because every kilogram saved improves driving range and cooling efficiency. Ceramic matrix composites weigh up to 65% less than nickel-based alloys yet retain functional strength at exhaust temperatures. Demonstration ceramic gas turbines in Japan reached thermal efficiencies above 40% while cutting component weight by double-digit percentages. Automotive production volumes push suppliers toward near-net-shape processes such as automated fiber placement that convert hours-long layups into minute-level cycles.
CMC parts still cost 3-5 times more than comparable metallic parts due to high-temperature fiber draw and lengthy infiltration steps. The SCANCUT project cut machining time by 70% through novel milling paths, and similar automation breakthroughs are narrowing the gap. Total cost of ownership improves as CMC lifetimes lengthen, but initial acquisition price remains a hurdle for price-sensitive power and automotive users. GE's USD 200 million Alabama facility targets cost parity at scale geaerospace.
Other drivers and restraints analyzed in the detailed report include:
For complete list of drivers and restraints, kindly check the Table Of Contents.
SiC/SiC composites held 55.19% ceramic matrix composites market share in 2024 and are projected to grow at an 11.05% CAGR to 2030. Integration of finer pitch fibers delivering strengths above 2 GPa has expanded their structural envelope. The ceramic matrix composites market size for SiC/SiC applications is forecast to rise sharply as new jet engine cores qualify shrouds, combustor liners, and nozzle extensions. Carbon/carbon systems maintain niches in rocket nozzles where oxidation can be controlled, and oxide/oxide grades gain traction in industrial heat exchangers that value inherent oxidation stability over peak temperature.
Process advances include nano-engineered interphases that mitigate fiber damage during thermal cycling. Mitsubishi Chemical Group's carbon-fiber-based C/SiC, qualified for 1,500 °C exposure, shows how hybrid chemistries extend temperature ceilings for space vehicles. The additive deposition of SiC slurry onto woven preforms makes complex cooling passages not feasible with legacy layups. Such innovations maintain the lead of the SiC/SiC family and attract investment from turbine primes.
The Ceramic Matrix Composites Market Report Segments the Industry by Product Type (C/C, C/SiC, Oxide/Oxide, and More), End-User Industry (Automotive, Aerospace, Defense, and More), and Geography (Asia-Pacific, North America, Europe, South America, and Middle East and Africa). The Market Forecasts are Provided in Terms of Value (USD).
Due to dense aerospace and defense ecosystems, North America commanded 37.96% of the ceramic matrix composites market revenue in 2024. The region houses vertically integrated supply chains that span SiC fiber draw, component layup, machining, and engine assembly. Government initiatives like the Institute for Advanced Composites Manufacturing Innovation funnel grants toward pilot lines, underpinning local capacity. Rolls-Royce and GE place multi-year orders that smooth demand cycles and justify further plant expansions.
Asia-Pacific delivers the fastest 10.84% CAGR through 2030 as China and Japan escalate strategic materials programs. National plans seek supply independence for high-performance fibers, with milestone targets set for 2035. Automotive electrification also stimulates regional demand for lightweight, thermally resilient parts. Lower labor costs and proactive subsidies enable competitive export pricing, positioning the region as a significant consumer and global ceramic matrix composites market supplier.
Europe maintains a steady share through turbine retrofits that support renewable-heavy grids and through new aircraft engine demonstrators such as Rolls-Royce UltraFan. EU research networks pool public and private funds to mature oxide-oxide grades suitable for industrial furnaces, widening application scope. Strict emission regulations create a positive policy environment for efficiency-raising materials like CMCs, reinforcing European demand.