封面
市场调查报告书
商品编码
1844723

高温隔热材料:市场份额分析、行业趋势、统计数据和成长预测(2025-2030 年)

High-temperature Insulation Materials - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

预计高温隔热材料市场规模在 2025 年将达到 92.4 亿美元,到 2030 年预计将达到 116.5 亿美元,预测期内(2025-2030 年)的复合年增长率为 4.75%。

高温绝缘材料-市场-IMG1

目前的市场规模反映了能源密集型产业追求营运效率和排放带来的稳定需求成长。严格的建筑节能法规、亚太地区石化和金属产能的快速扩张以及绿色氢电解槽的不断增加构成了需求的支柱。製造商继续优先考虑符合更严格职业暴露限值的不易燃、生物降解性更低的替代品。同时,垂直整合策略和区域产能扩张正在帮助主要供应商免受原材料价格波动和物流瓶颈的影响。儘管氧化铝、二氧化硅和氧化锆的价格仍然波动,但降低燃料使用和维护成本的经济回报正在推动其应用范围的扩大。

全球高温隔热材料市场趋势与洞察

节能工业炉需求激增

根据2024年《国际节能规范》,工业炉製造商面临更严格的能源效率规定,降低了允许的热损失,并严格控制了空气洩漏率。业者正在指定使用陶瓷纤维毯和微孔板,这些材料能够承受1000°C的高温,且不会影响燃油经济性。与传统炉衬相比,其典型节能效果接近30%,儘管资本成本较高,仍能提供高投资报酬率。将智慧温度控管系统与先进的隔热材料结合,可以实现预测性维护并优化能耗,这使得高温隔热成为工业4.0转型策略的关键组成部分。

加强建筑能源法规对高温隔热隔热的要求

国际节能规范 (IECC) 2024 年的修订也提高了商业建筑的外壳要求,促使人们更加关注连续隔热和热感桥缓解措施。欧盟的「Fit-for-55」指令要求在工业设施中采用互补的耐热和防火解决方案,该指令越来越青睐兼具热性能和防火安全性的材料,从而推动了对矿棉和陶瓷纤维系统等不燃材料的需求。建筑业主面临着不断上涨的能源成本和碳定价机制,这使得高性能隔热材料在建筑的整个生命週期中具有经济吸引力。能源效率要求和防火安全要求的整合为能够同时满足两项监管要求的高温隔热材料创造了一个最佳平衡点。

合成玻璃纤维的职业暴露限值

美国职业安全与健康管理局 (OSHA) 规定耐火陶瓷纤维的允许暴露限值为每立方公分 0.2 根。英国健康与安全执行局 (COSHH) 将致癌性陶瓷纤维归类为二类致癌物,要求根据 COSHH 法规采取严格的控制措施。欧洲立法越来越倾向于生物降解性较低的替代品,儘管碱土硅酸盐纤维成本较高且耐高温性略有下降,但它们的市场份额仍在不断扩大。生物可溶性纤维的监管趋势限制了传统陶瓷纤维的应用,同时也为创新製造商创造了机会。合规成本和责任问题正促使工业用户转向替代材料,即使存在性能方面的权衡。长期趋势表明,持续的监管压力将重塑竞争格局,并有利于拥有强大的生物可溶性较低纤维产品组合的公司。

細項分析

陶瓷纤维凭藉其1,260°C的使用极限、低密度以及适用于毯子、模组和板材等特性,将在2024年占据市场收入的56.19%。这种领先地位在钢铁、非铁金属和石化等资产密集产业中根深蒂固,这些产业的停机成本高于材料价格。随着亚太地区新设施的运作,陶瓷纤维高温隔热市场规模预计将以稳定的个位数成长。

其他材料类型,例如气凝胶复合材料和微孔板,是成长最快的类别,复合年增长率为 6.18%。重量敏感的终端用途看重气凝胶的电导率(0.020 W/m*K 或更低),并结合纤维增强材料以提高操作强度。监管主导下向低生物持久性化学品的转变正在加速碱土硅酸盐棉的普及,尤其是在欧洲。多晶棉适用于 1,500°C 以上的特殊应用,而真空成型可适应现场喷补和捣打成本较高的复杂形状。高温隔热产业持续改进烧结添加剂和纤维直径,以平衡喷补含量、强度和抗热震性。

区域分析

预计到2024年,亚太地区将占据47.51%的市场份额,复合年增长率为5.66%。中国持续的钢铁、铝和化工产能扩张将维持大宗需求,而印度国家基础设施管道和氢能计画的扩张将推动长期成长。东南亚国家也在增加其石化和可再生能源资产,这些资产需要耐火材料衬里。政策制定者正在加强能源效率标准的执行,并将采购转向低导热係数纤维模组和气凝胶。

北美按以金额为准排名第二。联邦清洁能源信用额度和州级碳排放维修使得炼油厂、液化天然气 (LNG) 终端和纸浆厂的保温改造具有经济吸引力。该地区半导体和电池製造业正在回流,推动超洁净保温板和纤维增强气凝胶的消费成长。工业安全性的提高也加速了碱土硅酸盐棉的采用。

欧洲仍然以技术为中心,利用严格的环境法规和碳边界调整来支持生物降解性较低的材料。欧盟绿色新政的投资正在推动现有工业资产的维修,采用多层内衬,既能隔热又能防火。聚光型太阳光电和热能储存领域的创新先导计画正在采用先进陶瓷,拓宽其应用范围。

其他福利:

  • Excel 格式的市场预测 (ME) 表
  • 3个月的分析师支持

目录

第一章 引言

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章 市场状况

  • 市场概况
  • 市场驱动因素
    • 节能工业炉需求激增
    • 更严格的建筑能源法规要求高温隔热
    • 亚洲石化和金属产业产能快速扩张
    • 采用绿色氢电解槽需要高温内衬
    • 对轻质、耐用隔热材料的需求不断增长
  • 市场限制
    • 合成玻璃纤维的职业暴露限值
    • 氧化铝和二氧化硅价格波动对转炉利润造成压力
    • 高纯度氧化锆前驱体供应链风险
  • 价值链分析
  • 五力分析
    • 新进入者的威胁
    • 供应商的议价能力
    • 买方的议价能力
    • 替代品的威胁
    • 产业竞争

第五章市场规模及成长预测

  • 依材料类型
    • 玻璃纤维
    • 陶瓷纤维
    • 矿棉
      • 碱土金属硅酸盐 (AES)
      • 硅酸铝棉(ASW)或耐火陶瓷纤维(RCF)
      • 多晶羊毛或纤维(PCW)
      • 长纤维
    • 真空成型隔热产品
    • 聚氨酯泡棉
    • 聚苯乙烯
    • 隔热耐火砖(IFB)
    • 其他材料类型(例如气凝胶毯、微孔板)
  • 按用途
    • 隔热材料
    • 工业设备
    • 其他用途(建筑、消防等)
  • 按最终用途行业
    • 石化
    • 工业的
    • 发电
    • 运输
    • 电气和电子
    • 建造
    • 其他最终用途产业(例如金属加工)
  • 按地区
    • 亚太地区
      • 中国
      • 日本
      • 印度
      • 韩国
      • 东南亚国协
      • 其他亚太地区
    • 北美洲
      • 美国
      • 加拿大
      • 墨西哥
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 义大利
      • 西班牙
      • 俄罗斯
      • 北欧国家
      • 其他欧洲国家
    • 南美洲
      • 巴西
      • 阿根廷
      • 南美洲其他地区
    • 中东和非洲
      • 沙乌地阿拉伯
      • 南非
      • 其他中东和非洲地区

第六章 竞争态势

  • 市场集中度
  • 策略倡议
  • 市占率(%)/排名分析
  • 公司简介
    • 3M
    • Alkegen
    • Almatis
    • Aspen Aerogels, Inc.
    • BNZ Materials,Inc.
    • Cabot Corporation
    • Carlisle Companies Inc.
    • Dyson Technical Ceramics
    • Etex Group
    • ISOLITE
    • Knauf Insulation
    • Luyang Energy-saving Materials Co., Ltd.
    • ME Schupp Industriekeramik Gmbh
    • Morgan Advanced Materials
    • NUTEC Incorporated
    • Pacor Inc.
    • Pyrotek
    • Rath-Group
    • ROCKWOOL A/S
    • Saint-Gobain

第七章 市场机会与未来展望

简介目录
Product Code: 61274

The High-temperature Insulation Materials Market size is estimated at USD 9.24 Billion in 2025, and is expected to reach USD 11.65 Billion by 2030, at a CAGR of 4.75% during the forecast period (2025-2030).

High-temperature Insulation Materials - Market - IMG1

The current market size reflects steady demand growth as energy-intensive industries pursue operational efficiency and lower emissions. Tight building-energy codes, rapid petrochemical and metals capacity additions in Asia-Pacific, and expanding green hydrogen electrolyser installations form the backbone of demand. Manufacturers continue to prioritize non-combustible and low-biopersistent alternatives that satisfy stricter occupational exposure limits. At the same time, vertical integration strategies and regional capacity expansions are helping large suppliers shield themselves from raw-material price swings and logistics bottlenecks. While alumina, silica, and zirconia pricing remains volatile, the economic payback from lower fuel use and maintenance costs keeps adoption on an upward trajectory.

Global High-temperature Insulation Materials Market Trends and Insights

Surging Demand for Energy-Efficient Industrial Furnaces

Industrial furnace builders face stricter energy-performance rules under the 2024 International Energy Conservation Code, which lowered allowable heat loss and tightened air-leakage rates. Operators specify ceramic fibre blankets and microporous panels that endure 1,000°C service without compromising fuel economy. Typical energy savings approach 30% over legacy linings, improving payback despite higher capital cost. Integrating smart thermal management systems with advanced insulation materials enables predictive maintenance and optimized energy consumption, positioning high-temperature insulation as a critical component in Industry 4.0 transformation strategies. .

Tightening Building-Energy Codes Requiring High-Temperature Insulation

The same 2024 International Energy Conservation Code (IECC) revision also sharpened commercial building shell requirements, magnifying interest in continuous insulation and thermal-bridge mitigation. European Union Fit-for-55 directives demand complementary heat- and fire-resistant solutions in industrial facilities, increasingly favoring materials that combine thermal performance with fire safety, driving demand for non-combustible options like mineral wool and ceramic fiber systems. Building owners face escalating energy costs and carbon pricing mechanisms that make high-performance insulation economically attractive over building lifecycles. The convergence of energy efficiency mandates and fire safety requirements creates a sweet spot for high-temperature insulation materials that can address both regulatory imperatives simultaneously.

Occupational Exposure Limits on Synthetic Vitreous Fibres

Regulatory authorities worldwide are tightening occupational exposure limits for synthetic vitreous fibers, with OSHA maintaining permissible exposure limits of 0.2 fibers per cubic centimeter for refractory ceramic fibers . The Health and Safety Executive in the UK has classified refractory ceramic fiber as a category 2 carcinogen, necessitating stringent control measures under COSHH regulations that increase handling costs and limit application flexibility. European legislation increasingly favors low-biopersistent alternatives, driving market share gains for alkaline earth silicate fibers despite their higher costs and slightly reduced temperature capabilities. The regulatory trend toward biosoluble fibers creates opportunities for innovative manufacturers while constraining traditional ceramic fiber applications. Compliance costs and liability concerns are pushing industrial users toward alternative materials, even when performance trade-offs exist. The long-term trajectory suggests continued regulatory pressure that will reshape the competitive landscape in favor of companies with strong low-biopersistent fiber portfolios.

Other drivers and restraints analyzed in the detailed report include:

  1. Rapid Capacity Build-Out in Asian Petro-Chem and Metal Sectors
  2. Green-Hydrogen Electrolyser Adoption Needs High-Temperature Lining
  3. Volatile Alumina and Silica Prices Squeeze Converter Margins

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Ceramic fibre held 56.19% of 2024 revenue owing to its 1,260°C service limit, low density, and adaptability into blankets, modules, and boards. This leadership is anchored in asset-heavy industries, such as steel, non-ferrous metals, and petrochemicals, where downtime costs dwarf material prices. The high-temperature insulation materials market size for ceramic fibre is expected to post steady single-digit growth as new capacities in Asia-Pacific come on stream.

Other material types, such as aerogel composites and microporous panels, are the fastest-growing group at 6.18% CAGR. Weight-sensitive end uses value aerogels' sub-0.020 W/m*K (Watt per metre Kelvin) conductivity combined with fiber reinforcement that boosts handling strength. Regulatory-driven migration to low-biopersistent chemistries accelerates alkaline earth silicate wool uptake, especially in Europe. Polycrystalline wool supports specialized duties above 1,500°C, while vacuum-formed shapes address complex geometries that would require costly on-site gunning or ramming. The high-temperature insulation materials industry continues to refine sintering additives and fiber diameters to balance shot content, strength, and thermal shock resistance.

The High-Temperature Insulation Materials Market Report Segments the Industry Into Material Type (Fiberglass, Ceramic Fibre, Mineral Wool, Polyurethane Foam, and More), Application (Insulation, Industrial Eqipment, and Other Applications), End-User Industry (Petrochemicals, Construction, Transportation, and More), and Geography (Asia-Pacific, North America, and More). The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

Asia-Pacific had a 47.51% market share in 2024 and is projected to advance at a 5.66% CAGR. China's ongoing capacity additions in steel, aluminum, and chemicals sustain bulk demand, while India's National Infrastructure Pipeline and expanding hydrogen plans reinforce long-term growth. Southeast Asian nations add petrochemical and renewables assets that likewise require refractory linings. Policymakers increasingly enforce energy-efficiency norms, shifting purchasing toward low-conductivity fibre modules and aerogels.

North America ranks second by value. Federal clean energy credits and state-level carbon caps make retrofit insulation economically attractive in refineries, liquidated natural gas (LNG) terminals, and pulp mills. The region's reshoring of semiconductor and battery manufacturing raises consumption of ultra-clean insulation boards and fiber-reinforced aerogels. Robust industrial safety enforcement also accelerates adoption of alkaline earth silicate wool.

Europe remains technology-focused, leveraging its stringent environmental rules and carbon-border adjustments to champion low-biopersistent materials. European Union (EU) Green Deal investments spur renovation of existing industrial assets with multilayer linings that marry insulation and fire-containment. Innovative pilot projects in concentrated solar power and thermal energy storage adopt advanced ceramics, broadening application footprints.

  1. 3M
  2. Alkegen
  3. Almatis
  4. Aspen Aerogels, Inc.
  5. BNZ Materials,Inc.
  6. Cabot Corporation
  7. Carlisle Companies Inc.
  8. Dyson Technical Ceramics
  9. Etex Group
  10. ISOLITE
  11. Knauf Insulation
  12. Luyang Energy-saving Materials Co., Ltd.
  13. M.E. Schupp Industriekeramik Gmbh
  14. Morgan Advanced Materials
  15. NUTEC Incorporated
  16. Pacor Inc.
  17. Pyrotek
  18. Rath-Group
  19. ROCKWOOL A/S
  20. Saint-Gobain

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 Introduction

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 Research Methodology

3 Executive Summary

4 Market Landscape

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Surging Demand for Energy-Efficient Industrial Furnaces
    • 4.2.2 Tightening Building-Energy Codes Requiring High-Temperature Insulation
    • 4.2.3 Rapid Capacity Build-Out in Asian Petro-Chem and Metal Sectors
    • 4.2.4 Green-Hydrogen Electrolyser Adoption needs High Temperature Lining
    • 4.2.5 Growing Lightweight, Durable Insulation Material Demand
  • 4.3 Market Restraints
    • 4.3.1 Occupational Exposure Limits on Synthetic Vitreous Fibres
    • 4.3.2 Volatile Alumina and Silica Prices Squeeze Converter Margins
    • 4.3.3 Supply-Chain Risk for High-Purity Zirconia Precursors
  • 4.4 Value Chain Analysis
  • 4.5 Porter's Five Forces
    • 4.5.1 Threat of New Entrants
    • 4.5.2 Bargaining Power of Suppliers
    • 4.5.3 Bargaining Power of Buyers
    • 4.5.4 Threat of Substitutes
    • 4.5.5 Industry Rivalry

5 Market Size and Growth Forecasts (Value)

  • 5.1 By Material Type
    • 5.1.1 Fiberglass
    • 5.1.2 Ceramic Fibre
    • 5.1.3 Mineral Wool
      • 5.1.3.1 Alkaline Earth Silicate (AES)
      • 5.1.3.2 Aluminum Silicate Wool (ASW) or Refractory Ceramic Fibre (RCF)
      • 5.1.3.3 Polycrystalline Wool or Fibre (PCW)
      • 5.1.3.4 Long Fibre
    • 5.1.4 Vacuum-Formed Insulating Products
    • 5.1.5 Polyurethane Foam
    • 5.1.6 Polystyrene
    • 5.1.7 Insulating Fire-Bricks (IFB)
    • 5.1.8 Other Material Types (Aerogel Blankets, Microporous Panels, etc.)
  • 5.2 By Application
    • 5.2.1 Insulation
    • 5.2.2 Industrial Eqipment
    • 5.2.3 Other Applications (Building and Fire-Protection, etc.)
  • 5.3 By End-use Industry
    • 5.3.1 Petrochemicals
    • 5.3.2 Industrial
    • 5.3.3 Power Generation
    • 5.3.4 Transportation
    • 5.3.5 Electrical and Electronics
    • 5.3.6 Construction
    • 5.3.7 Other End-use Industries (Metal Processing, etc.)
  • 5.4 By Geography
    • 5.4.1 Asia-Pacific
      • 5.4.1.1 China
      • 5.4.1.2 Japan
      • 5.4.1.3 India
      • 5.4.1.4 South Korea
      • 5.4.1.5 ASEAN Countries
      • 5.4.1.6 Rest of Asia-Pacific
    • 5.4.2 North America
      • 5.4.2.1 United States
      • 5.4.2.2 Canada
      • 5.4.2.3 Mexico
    • 5.4.3 Europe
      • 5.4.3.1 Germany
      • 5.4.3.2 United Kingdom
      • 5.4.3.3 France
      • 5.4.3.4 Italy
      • 5.4.3.5 Spain
      • 5.4.3.6 Russia
      • 5.4.3.7 NORDIC Countries
      • 5.4.3.8 Rest of Europe
    • 5.4.4 South America
      • 5.4.4.1 Brazil
      • 5.4.4.2 Argentina
      • 5.4.4.3 Rest of South America
    • 5.4.5 Middle East and Africa
      • 5.4.5.1 Saudi Arabia
      • 5.4.5.2 South Africa
      • 5.4.5.3 Rest of Middle East and Africa

6 Competitive Landscape

  • 6.1 Market Concentration
  • 6.2 Strategic Moves
  • 6.3 Market Share (%)/Ranking Analysis
  • 6.4 Company Profiles (includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products and Services, and Recent Developments)
    • 6.4.1 3M
    • 6.4.2 Alkegen
    • 6.4.3 Almatis
    • 6.4.4 Aspen Aerogels, Inc.
    • 6.4.5 BNZ Materials,Inc.
    • 6.4.6 Cabot Corporation
    • 6.4.7 Carlisle Companies Inc.
    • 6.4.8 Dyson Technical Ceramics
    • 6.4.9 Etex Group
    • 6.4.10 ISOLITE
    • 6.4.11 Knauf Insulation
    • 6.4.12 Luyang Energy-saving Materials Co., Ltd.
    • 6.4.13 M.E. Schupp Industriekeramik Gmbh
    • 6.4.14 Morgan Advanced Materials
    • 6.4.15 NUTEC Incorporated
    • 6.4.16 Pacor Inc.
    • 6.4.17 Pyrotek
    • 6.4.18 Rath-Group
    • 6.4.19 ROCKWOOL A/S
    • 6.4.20 Saint-Gobain

7 Market Opportunities and Future Outlook

  • 7.1 White-space and Unmet-need Assessment
  • 7.2 Lightweight Refractory Cements for Concentrated-Solar Receivers