封面
市场调查报告书
商品编码
1849889

财务分析:市场占有率分析、产业趋势、统计数据、成长预测(2025-2030 年)

Financial Analytics - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

2025年金融分析市值为124.9亿美元,预计2030年将成长至212.7亿美元。

金融分析-市场-IMG1

快速的云端原生核心转型、即时风险管控和人工智慧驱动的决策系统正在推动银行、保险和企业财务团队采用云端原生技术。北美金融机构持续优化成熟的数据资产,而亚太地区的银行则正从旧有系统迁移到能够提供奈秒交易洞察的云端平台。儘管风险规避型一级银行仍主要采用本地部署,但随着资讯长将资本支出与计量收费的营运模式结合,加速的云端迁移正在重塑供应商策略。虽然日益严格的网路安全需求、数百万美元的资料外洩事件以及资料科学家短缺等因素阻碍了云端迁移的步伐,但对嵌入式人工智慧的重点投资正在降低总体拥有成本,并向中小企业开放金融分析市场。

全球金融分析市场趋势与洞察

云端优先核心银行现代化的爆炸性发展

从单体架构迁移到云端原生架构的金融机构,在第一年就实现了 45% 的营运效率提升和高达 40% 的成本节约。这种转型减少了以往用于维护的预算,并支援将资料即时串流到分析引擎的微服务。北美的一级银行正在向混合云架构转型,而印度和印尼的中型银行则直接迁移到公有云核心。能够随日内交易量弹性扩展的容器化分析模组,如今已成为各大厂商蓝图的核心。监管机构也认可弹性扩展的优势,因为云端网格能够实现快速灾难復原和近乎零停机时间。这一发展势头显着扩大了金融分析市场的潜在需求。

整合到财务套件中的人工智慧/机器学习功能可降低整体拥有成本

将人工智慧引擎嵌入财务、贷款和投资组合工具中,无需建立独立的数据科学架构。部署人工智慧嵌入式平台的金融机构平均每年可节省 190 万美元,这得益于自动化对帐、超精准的现金流预测以及更少的误报。最新的套件包含预先配置的预测模型,可从 ERP 和 CRM 系统中提取数据,从而缩短缺乏分析人才的区域银行的引进週期。诸如人工智慧引导的营运成本优化等应用可将预测误差降低 50%,从而释放流动性,用于再投资创收产品。最终,整体拥有成本降低,加速了金融分析市场向成本敏感型细分市场的渗透。

网路攻击责任日益增加

银行每次资料外洩事件平均损失高达 608 万美元,比跨行业平均高出近 25%。攻击潜伏期通常超过五个月,导致凭证和客户记录被大规模窃取。 2024 年,美国一家大型健康保险公司遭受勒索软体攻击,每次洩漏事件的赔偿金额高达 2,200 万美元。董事会目前正将资金从分析升级转向安全性增强,减缓了更新週期。网路保险费也以两位数的速度成长,进一步加剧了 IT 预算的压力。因此,供应商必须在其分析平台中整合零信任控制,以消除买家的疑虑,并维持金融分析市场的成长。

细分市场分析

到2024年,本地部署的金融分析将占据61.2%的市场份额,凸显了该产业在资料驻留和延迟管理方面采取的谨慎态度。然而,公有云和私有云端的采用率正以13.2%的复合年增长率成长,随着监管机构正式确立共用框架,预计两者之间的差距将会缩小。金融机构正在考虑分阶段过渡,从预算沙箱等非核心应用过渡到即时风险引擎。随着供应商建构主权云端区域以满足国家合规要求,云端平台在金融分析市场的份额预计将显着增长。银行也采用容器编配,根据成本和延迟在本地和云端节点之间迁移工作负载。此外,多重云端连接工具和可携式许可正在帮助缓解这些限制,并促进更广泛的云端采用。

随着工作负载的变化,营运模式也随之改变。站点可靠性工程师取代了硬体团队,而按需付费模式则使 IT 支出与交易量挂钩。规模较小的金融机构开始使用计量收费模式,存取先前仅限于全球性银行的机器学习库。云端平台整合了威胁分析功能,可以监控租户间的网路流量,从而增强网路弹性。此外,可扩展的运算能力使得无需大量固定投资即可进行投资组合风险的蒙特卡罗模拟。因此,对于依赖大型主机的传统机构而言,敏捷性的压力日益增大,这加速了预算向云端基础的金融分析市场解决方案的重新分配。

收入分析和彙报套件在2024年的市场展望中占据主导地位,预计将占据33.6%的收入份额,因为财务团队需要整合式仪錶板来加快结算週期。多营业单位公司需要单一版本的统一帐簿来应对复杂的国际财务报告准则(IFRS)和美国通用会计准则(GAAP)。这些模组可以自动完成货币转换和公司间交易抵销,从而减少70%的手动会计分录。供应商利用人工智慧技术来侦测集团结算期间的异常​​差异,并提出纠正措施建议,从而缩短报告週期。随着监管机构收紧气候和税务透明度方面的取证要求,与合併相关的财务分析市场规模预计将显着扩大。

资料库管理和规划工具构成了分析引擎的基础,而风险和合规模块则整合了情境建模和监管分类。 ESG评分分析和量子赋能的衍生性商品平台占据了新的「其他解决方案」细分市场。随着企业寻求端到端的财务转型,供应商正在将帐户核对和资讯揭露管理等相关功能捆绑到更大的平台中。融合趋势正在推动併购,供应商竞相提供全端式解决方案,加剧了金融分析市场的竞争。

金融分析市场报告按部署类型(本地部署、云端部署)、解决方案类型(资料库管理和规划、分析和彙报、其他)、应用程式(风险管理、预算和预测、其他)、分析类型(说明分析、其他)、组织规模(大型企业、中小企业)、最终用户行业(市场细分、金融服务和保险、医疗保健、其他)和地区进行细分。

区域分析

北美地区在2024年将以38.7%的收入份额领跑,这得益于资本雄厚的银行对人工智慧核心、云端弹性以及整合合规工作平台的早期投资。美国监管机构已就模型风险管理提供了明确的指导,允许金融机构在明确的监管框架内进行试验。加拿大银行率先推出了开放银行API,可将丰富的交易资料流传输至第三方分析层。纽约和多伦多的资本市场公司正在部署低延迟网格,以微秒速度完成衍生性商品定价。超大规模云端区域的存在减少了资料主权方面的摩擦,从而维持了该全部区域在金融分析市场的主导地位。

亚太地区预计到2030年将以12.5%的复合年增长率成长,这主要得益于积极的数位化、扶持政策以及中阶对金融服务日益增长的需求。中国兆丰银行正在云端预算上投入数十亿美元,印度公共银行则加入帐户聚合网络,从而获取用于信用评分的新资料集。日本金融巨头正在探索量子运算联盟,以缓解利率波动。东南亚金融科技公司正在为无银行帐户人群提供银行帐户管道,并将即时分析工作负载推向边缘。预计到2028年,该地区人工智慧支出将达到1,100亿美元,延续长期成长动能。

欧洲凭藉其先进的ESG报告标准和成熟的批发市场,正在产生巨大的影响。法国银行正在将碳计量纳入其信贷模型,德国保险公司正在实施将气候变迁风险纳入考量的精算引擎。欧盟资料法正在加强隐私合规性,并鼓励采用诸如安全飞地等保护隐私的分析技术。同时,随着欧洲央行考虑采用后量子密码技术来保护支付系统,量子安全准备工作也不断加强。儘管南美洲、中东和非洲目前的市场份额较小,但随着行动支付、数位身分和开放银行等措施的日益成熟,这些地区的市场份额预计将实现两位数成长。

其他福利:

  • Excel格式的市场预测(ME)表
  • 3个月的分析师支持

目录

第一章 引言

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章 市场情势

  • 市场概览
  • 市场驱动因素
    • 云端优先核心银行现代化浪潮
    • 财务套件中嵌入的人工智慧/机器学习技术可降低整体拥有成本
    • 监管机构要求即时报告风险和资本。
    • 中小企业对数据主导财务规划和分析的需求激增
    • ESG评分挂钩债券发行分析
    • 用于 VAR 的量子蒙特卡罗引擎
  • 市场限制
    • 网路安全漏洞责任增加
    • 缺乏先进的分析能力
    • 不断上涨的云端出口费用和供应商锁定
    • 演算法偏差合规性调查
  • 价值链分析
  • 监管环境
  • 技术展望
  • 波特五力分析
    • 新进入者的威胁
    • 买方的议价能力
    • 供应商的议价能力
    • 替代品的威胁
    • 竞争对手之间的竞争
  • 评估宏观经济趋势对市场的影响

第五章 市场规模与成长预测

  • 透过部署模式
    • 本地部署
  • 按解决方案类型
    • 资料库管理与规划
    • 分析与报告
    • 金融一体化
    • 风险与合规
    • 其他解决方案
  • 透过使用
    • 风险管理
    • 预算和预测
    • 收益管理
    • 诈欺侦测
    • 现金流量和财务分析
    • 合规与报告
    • 财富与投资组合分析
  • 按分析类型
    • 说明分析
    • 诊断分析
    • 预测分析
    • 指示性分析
  • 按公司规模
    • 大公司
    • 小型企业
  • 按最终用户行业划分
    • BFSI
    • 卫生保健
    • 製造业
    • 政府
    • 资讯科技和通讯
    • 零售与电子商务
    • 其他的
  • 按地区
    • 北美洲
      • 美国
      • 加拿大
      • 墨西哥
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 义大利
      • 西班牙
      • 俄罗斯
      • 其他欧洲地区
    • 亚太地区
      • 中国
      • 日本
      • 印度
      • 韩国
      • ASEAN
      • 澳洲和纽西兰
      • 亚太其他地区
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲
    • 中东和非洲
      • 中东
      • 沙乌地阿拉伯
      • 阿拉伯聯合大公国
      • 土耳其
      • 其他中东地区
      • 非洲
      • 南非
      • 奈及利亚
      • 其他非洲地区

第六章 竞争情势

  • 市场集中度
  • 策略趋势
  • 市占率分析
  • 公司简介
    • FICO
    • Hitachi Vantara
    • SAS Institute
    • IBM Corporation
    • Microsoft Corporation
    • Oracle Corporation
    • SAP SE
    • Teradata Corporation
    • Salesforce(Tableau)
    • Qlik Tech
    • TIBCO Software
    • Alteryx
    • ThoughtSpot
    • Domo
    • MicroStrategy
    • Sisense
    • Anaplan
    • Workday Adaptive Planning
    • Moody's Analytics
    • SandP Global Market Intelligence
    • BlackLine
    • Infor
    • Wolters Kluwer
    • Datarails

第七章 市场机会与未来展望

简介目录
Product Code: 48296

The financial analytics market is currently valued at USD 12.49 billion in 2025 and is forecast to rise to USD 21.27 billion by 2030, reflecting an 11.2% CAGR during the period.

Financial Analytics - Market - IMG1

Rapid cloud-native core conversions, real-time risk mandates, and AI-enabled decision systems are pushing adoption across banking, insurance, and corporate finance teams. North American institutions continue to optimize mature data estates, while Asia-Pacific banks leap from legacy systems to cloud stacks that deliver nanosecond transaction insights. On-premise deployments remain prevalent among risk-averse tier-1 banks, yet accelerating cloud migrations are reshaping vendor strategies as CIOs align capital outlays with operational pay-as-you-go models. Intensifying cyber resiliency requirements, multimillion-dollar breach exposures, and a shortage of data scientists are restraining the pace, but heavy investment in embedded AI is lowering the total cost of ownership and opening the financial analytics market to small and midsize enterprises.

Global Financial Analytics Market Trends and Insights

Explosion in Cloud-First Core-Banking Modernizations

Financial institutions that migrate from monolithic cores to cloud-native architectures record 45% jumps in operational efficiency and up to 40% cost savings within the first year. The shift frees budgets historically consumed by maintenance and enables microservices that stream data into analytics engines in real time. North American tier-1 banks are executing hybrid moves, while mid-tier lenders in India and Indonesia leap directly to public cloud cores. Vendor roadmaps now center on containerized analytics modules that scale elastically with intraday transaction volumes. Regulators acknowledge the resilience benefit because cloud grids allow faster disaster recovery and near-zero downtime. This momentum greatly enlarges addressable demand in the financial analytics market.

AI/ML Embedded in Finance Suites Lowers TCO

Embedding AI engines inside treasury, lending, and portfolio tools removes the need for separate data science stacks. Institutions deploying AI-infused platforms save an average of USD 1.9 million annually through automated reconciliations, hyper-accurate cash forecasts, and fewer false-positive alerts. Modern suites come pre-configured with predictive models that pull data from ERP and CRM pipes, shrinking implementation cycles for regional banks lacking deep analytics talent. Applications such as AI-guided working capital optimization reduce forecast errors by 50%, unlocking liquidity that can be redeployed into revenue-generating products. The resulting lower total cost of ownership accelerates penetration of the financial analytics market into cost-sensitive segments.

Escalating Cyber-Breach Liabilities

Banks average USD 6.08 million in loss per breach, nearly 25% above cross-sector norms. Attack dwell time often exceeds five months, amplifying theft of credentials and customer records. The 2024 ransomware strike on a leading U.S. health insurer showed how a single breach can trigger USD 22 million in payouts. Boards now divert capital from analytics upgrades to security hardening, slowing refresh cycles. Cyber insurance premiums also rise by double digits, squeezing IT budgets further. Vendors must therefore embed zero-trust controls inside analytics platforms to assuage buyer concerns and sustain growth in the financial analytics market.

Other drivers and restraints analyzed in the detailed report include:

  1. Regulatory Push for Real-Time Risk and Capital Reporting
  2. Surge in Data-Driven Financial Planning and Analysis Across SMBs
  3. Shortage of Advanced Analytics Talent

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

On-premise setups retained 61.2% of the financial analytics market share in 2024, underscoring the sector's cautious stance on data residency and latency control. However, public and private cloud deployments are advancing at 13.2% CAGR and will narrow the gap as regulators formalize shared-responsibility frameworks. Institutions weigh staged migrations beginning with non-core applications, such as budgeting sandboxes, before moving real-time risk engines. The financial analytics market size attributed to cloud platforms is forecast to climb markedly as vendors build sovereign cloud regions to satisfy local compliance. Banks also adopt container orchestration that allows workloads to swing between on-premise and cloud nodes based on cost or latency. Although data-egress fees and vendor lock-in fears linger, multicloud connectivity tools and portable licensing help alleviate these restraints and propel broader cloud adoption.

Once workloads shift, operating models change. Site-reliability engineers replace hardware teams, and consumption pricing aligns IT spend with transaction volumes. Smaller lenders exploit the pay-as-you-go model to access machine-learning libraries previously limited to global banks. Cloud platforms integrate threat analytics that monitor network traffic across tenants, strengthening cyber resilience. Scalable compute further enables Monte Carlo simulations for portfolio risk without large fixed investments. The resulting agility places added pressure on incumbents still anchored to mainframes, encouraging an accelerated reallocation of budgets toward cloud-based financial analytics market solutions.

Analysis and reporting suites led the 2024 landscape with 33.6% revenue share as finance teams demanded unified dashboards for faster close cycles. Financial consolidation suites exhibit 12.7% CAGR because multi-entity corporations require single-version-of-truth ledgers to meet complex IFRS and GAAP obligations. These modules automate currency translation and intercompany eliminations, reducing manual journal entries by 70%. Vendors embed AI that flags anomalous variances during group close and recommends corrective actions, shaving days off reporting timelines. The financial analytics market size associated with consolidation is projected to expand significantly as regulators intensify disclosure demands for climate and tax transparency.

Database management and planning tools form the substrate on which analytical engines run, while risk and compliance modules integrate scenario modeling with regulatory taxonomy. ESG-score analytics and quantum-ready derivatives platforms occupy the emerging "other solutions" niche. As corporations seek end-to-end financial transformation, vendors bundle adjacent capabilities such as account reconciliation and disclosure management into larger platforms. The convergence trend fuels mergers and acquisitions as providers race to offer full-stack coverage, amplifying competition within the financial analytics market.

The Financial Analytics Market Report is Segmented by Deployment Mode (On-Premise and Cloud), Solution Type (Database Management and Planning, Analysis and Reporting, and More), Application (Risk Management, Budgeting and Forecasting, and More), Analytics Type (Descriptive Analytics, and More), Organization Size (Large Enterprises and Small and Medium Enterprises), End-User Industry (BFSI, Healthcare, and More), and Geography.

Geography Analysis

North America led with 38.7% revenue share in 2024 as well-capitalized banks invested early in AI cores, cloud resilience, and integrated compliance workbenches. U.S. regulators provide clear guidance on model risk management, allowing institutions to experiment within well-defined guardrails. Canadian banks pioneer open-banking APIs that stream enriched transaction data into third-party analytics layers. Capital markets firms in New York and Toronto deploy low-latency grids that price derivatives in microseconds. The presence of hyperscale cloud regions reduces data-sovereignty friction, sustaining dominance of the financial analytics market across the region.

Asia-Pacific is expected to post a 12.5% CAGR through 2030 on the back of aggressive digitization, supportive policy, and expanding middle-class demand for financial services. China's megabanks commit multi-billion-dollar cloud budgets, while India's public-sector banks join account-aggregator networks that unleash new data sets for credit scoring. Japan's financial giants explore quantum computing consortiums to mitigate interest-rate volatility. Southeast Asian fintechs unlock credit access for the unbanked, pushing real-time analytics workloads to the edge. Regional AI spend is forecast to hit USD 110 billion by 2028, reinforcing long-term momentum.

Europe maintains a sizeable footprint with advanced ESG reporting norms and sophisticated wholesale markets. French banks integrate carbon accounting into credit models, while German insurers deploy actuarial engines that factor climate risk. The EU Data Act elevates privacy compliance, prompting wider adoption of privacy-preserving analytics such as secure enclaves. Meanwhile, quantum readiness gains traction after the European Central Bank explored post-quantum cryptography to safeguard payment rails. South America, and Middle East, and Africa contribute smaller shares today but register double-digit growth as mobile money, digital ID, and open banking initiatives mature.

  1. FICO
  2. Hitachi Vantara
  3. SAS Institute
  4. IBM Corporation
  5. Microsoft Corporation
  6. Oracle Corporation
  7. SAP SE
  8. Teradata Corporation
  9. Salesforce (Tableau)
  10. Qlik Tech
  11. TIBCO Software
  12. Alteryx
  13. ThoughtSpot
  14. Domo
  15. MicroStrategy
  16. Sisense
  17. Anaplan
  18. Workday Adaptive Planning
  19. Moody's Analytics
  20. SandP Global Market Intelligence
  21. BlackLine
  22. Infor
  23. Wolters Kluwer
  24. Datarails

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Explosion in cloud-first core-banking modernisations
    • 4.2.2 AI/ML embedded in finance suites lowers TCO
    • 4.2.3 Regulatory push for real-time risk and capital reporting
    • 4.2.4 Surge in data-driven financial planning and analysis across SMBs
    • 4.2.5 ESG-score-linked debt issuance analytics
    • 4.2.6 Quantum-ready Monte-Carlo engines for VAR
  • 4.3 Market Restraints
    • 4.3.1 Escalating cyber-breach liabilities
    • 4.3.2 Shortage of advanced analytics talent
    • 4.3.3 Rising cloud egress fees and vendor lock-in
    • 4.3.4 Algorithmic bias compliance investigations
  • 4.4 Value Chain Analysis
  • 4.5 Regulatory Landscape
  • 4.6 Technological Outlook
  • 4.7 Porter's Five Forces Analysis
    • 4.7.1 Threat of New Entrants
    • 4.7.2 Bargaining Power of Buyers
    • 4.7.3 Bargaining Power of Suppliers
    • 4.7.4 Threat of Substitutes
    • 4.7.5 Intensity of Competitive Rivalry
  • 4.8 Assessment of the Impact of Macroeconomic Trends on the Market

5 MARKET SIZE AND GROWTH FORECASTS (VALUE)

  • 5.1 By Deployment Mode
    • 5.1.1 On-premise
    • 5.1.2 Cloud
  • 5.2 By Solution Type
    • 5.2.1 Database Management and Planning
    • 5.2.2 Analysis and Reporting
    • 5.2.3 Financial Consolidation
    • 5.2.4 Risk and Compliance
    • 5.2.5 Other Solutions
  • 5.3 By Application
    • 5.3.1 Risk Management
    • 5.3.2 Budgeting and Forecasting
    • 5.3.3 Revenue Management
    • 5.3.4 Fraud Detection
    • 5.3.5 Cash-flow and Treasury Analytics
    • 5.3.6 Compliance and Reporting
    • 5.3.7 Wealth and Portfolio Analytics
  • 5.4 By Analytics Type
    • 5.4.1 Descriptive Analytics
    • 5.4.2 Diagnostic Analytics
    • 5.4.3 Predictive Analytics
    • 5.4.4 Prescriptive Analytics
  • 5.5 By Organisation Size
    • 5.5.1 Large Enterprises
    • 5.5.2 Small and Medium Enterprises
  • 5.6 By End-user Industry
    • 5.6.1 BFSI
    • 5.6.2 Healthcare
    • 5.6.3 Manufacturing
    • 5.6.4 Government
    • 5.6.5 IT and Telecom
    • 5.6.6 Retail and eCommerce
    • 5.6.7 Others
  • 5.7 By Geography
    • 5.7.1 North America
      • 5.7.1.1 United States
      • 5.7.1.2 Canada
      • 5.7.1.3 Mexico
    • 5.7.2 Europe
      • 5.7.2.1 Germany
      • 5.7.2.2 United Kingdom
      • 5.7.2.3 France
      • 5.7.2.4 Italy
      • 5.7.2.5 Spain
      • 5.7.2.6 Russia
      • 5.7.2.7 Rest of Europe
    • 5.7.3 Asia-Pacific
      • 5.7.3.1 China
      • 5.7.3.2 Japan
      • 5.7.3.3 India
      • 5.7.3.4 South Korea
      • 5.7.3.5 ASEAN
      • 5.7.3.6 Australia and New Zealand
      • 5.7.3.7 Rest of Asia-Pacific
    • 5.7.4 South America
      • 5.7.4.1 Brazil
      • 5.7.4.2 Argentina
      • 5.7.4.3 Rest of South America
    • 5.7.5 Middle East and Africa
      • 5.7.5.1 Middle East
      • 5.7.5.1.1 Saudi Arabia
      • 5.7.5.1.2 UAE
      • 5.7.5.1.3 Turkey
      • 5.7.5.1.4 Rest of Middle East
      • 5.7.5.2 Africa
      • 5.7.5.2.1 South Africa
      • 5.7.5.2.2 Nigeria
      • 5.7.5.2.3 Rest of Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Strategic Moves
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles (includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products and Services, and Recent Developments)
    • 6.4.1 FICO
    • 6.4.2 Hitachi Vantara
    • 6.4.3 SAS Institute
    • 6.4.4 IBM Corporation
    • 6.4.5 Microsoft Corporation
    • 6.4.6 Oracle Corporation
    • 6.4.7 SAP SE
    • 6.4.8 Teradata Corporation
    • 6.4.9 Salesforce (Tableau)
    • 6.4.10 Qlik Tech
    • 6.4.11 TIBCO Software
    • 6.4.12 Alteryx
    • 6.4.13 ThoughtSpot
    • 6.4.14 Domo
    • 6.4.15 MicroStrategy
    • 6.4.16 Sisense
    • 6.4.17 Anaplan
    • 6.4.18 Workday Adaptive Planning
    • 6.4.19 Moody's Analytics
    • 6.4.20 SandP Global Market Intelligence
    • 6.4.21 BlackLine
    • 6.4.22 Infor
    • 6.4.23 Wolters Kluwer
    • 6.4.24 Datarails

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-space and Unmet-need Assessment