封面
市场调查报告书
商品编码
1851015

边缘运算:市场占有率分析、产业趋势、统计数据和成长预测(2025-2030 年)

Edge Computing - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

预计到 2025 年,边缘运算市场规模将达到 2,278 亿美元,到 2030 年将达到 4,241.5 亿美元,年复合成长率为 13.24%。

边缘运算市场-IMG1

网路边缘资料负载的不断增长、5G无线接取网路的部署以及全球资料主权要求,正在透过将时间敏感型处理从集中式云端转移出去,重新定义企业架构。硬体供应商受益于ASIC和SoC价格的下降,这降低了即时AI推理的准入门槛;而通讯业者透过符合ETSI第四阶段规范的多重存取边缘运算(MEC)服务,开闢了新的收入来源。製造、能源和移动出行行业的公司正在采用边缘节点来最大限度地减少延迟、保护敏感资料并提高营运弹性。同时,云端超大规模供应商正在将託管服务扩展到客户现场,从而实现对分散式工作负载的统一观察和生命週期管理。

全球边缘运算市场趋势与洞察

5G部署推动超低延迟应用场景

全球5G部署将实现自动驾驶汽车、远端手术和身临其境型维护应用所需的亚毫秒延迟。 Verizon和NVIDIA正在私有5G网路上试行即时AI服务,将边缘节点锚定在基地台,以满足严格的往返延迟计算。超大规模资料中心营运商正在通讯交换中心附近部署微型资料中心,使开发人员能够将容器部署得更靠近使用者。 ETSI MEC第四阶段规格创建了通用API,帮助营运商实现差异化延迟层级的商业化,同时确保工作负载的可移植性。这项投资週期与各国政府资助农村地区5G覆盖以及将边缘驱动服务扩展到人口密集的城市走廊之外的计划相吻合。

物联网终端和数据引力的激增

工业场所部署了数千个感测器,每天产生Terabyte的资料。 89%的製造商计划将AI推理迁移到本地网关,以实现即时品管。边缘原生架构透过将大量资料保留在本地直至摘要,从而降低频宽成本并避免云端连线费用。 TCS CleverEnergy等平台利用本地推理来标记异常情况并触发即时纠正措施。物联网设备整合了轻量级GPU和NPU,使其能够自主运行视觉模型,从而释放回程传输线路以用于监控任务。

扩大分散式节点的网路攻击面

每个网关、感测器和微型资料中心都可能成为入侵点,增加了攻击者横向入侵IT/OT网路的可能性。儘管工业营运商已经实施了零信任韧体、硬体信任根和TPM支援的身份验证,但改造后的传统设备通常缺乏安全的启动序列。随着边缘节点离开受保护的资料中心,部署在工厂车间或路边机柜中,实体篡改的风险也随之增加。缺乏本地即时取证工具会阻碍事件回应,并延长控制安全漏洞的平均时间。

细分市场分析

到2024年,硬体将占边缘运算市场的45.2%,这反映了对加固型伺服器、加速器和现场部署储存设备所需的前期投资。硬体边缘运算市场预计到2025年将达到1,028亿美元,强劲成长主要得益于ASIC价格的下降。软体平台在收入方面落后于硬件,但在创新方面领先,其复合年增长率(CAGR)高达13.7%,这主要得益于人工智慧模型生命週期管理和远端监控功能被添加到编配堆迭中。服务收入虽然不高,但至关重要,包括整合传统PLC以及在棕地工业场所部署即时作业系统。

晶片製造商之间的激烈竞争正在降低单价,并推动低功耗人工智慧推理卡的广泛应用,这些推理卡能够承受工业级温度范围。英特尔的 18A蓝图将提高收发器密度,并提升智慧闸道的确定性吞吐量。同时,研华和 Namura 的零配置框架将透过自动化节点配置来降低整合成本,这预示着围绕硬体的託管服务未来将蓬勃发展。

到2024年,本地部署解决方案将占据边缘运算市场67.2%的份额。随着企业在超大规模云端中采用集中式模型训练,并在工厂单元中采用分散式推理,混合云端边缘运算将以14.9%的复合年增长率快速成长。企业将尝试工作负载分层,在本地运行即时推理,并将非时间关键型分析任务在夜间回程传输传到区域可用区。

空气间隙的邮轮支付系统展现了本地部署的强大韧性,即使卫星连线中断也能继续运作。另一方面,微软对 Armada 的投资则反映了这家超大规模云端服务商的信心,他们认为跨云端和边缘的统一控制平台最终将赢得市场。如今,供应商提供的设备已预先註册了他们的云端主机,从而能够实现从单一站点概念验证到多国部署的无缝扩展。

边缘运算市场按元件(硬体、软体、服务)、配置(本地部署、云端部署)、终端用户产业(製造业和工业、能源和公共产业、其他)、应用领域(工业IoT、预测性维护、其他)、企业规模(大型企业、中小企业)和地区进行细分。市场预测以美元计价。

区域分析

到2024年,北美将占据边缘运算市场24.8%的份额,这主要得益于强劲的5G部署、庞大的超大规模资料中心网路以及政府对半导体生产的公共资金支持。拜登政府已拨款2.69亿美元用于一项微电子计划,以增强国内边缘硬体能力。在美国,公共产业正在利用专用LTE和强大的MEC节点实现电网营运现代化,预计到2025年,75%的企业产生资料将保留在源头或附近。加拿大也正在效仿,致力于开发对广域网路延迟容忍度极低的自主采矿和能源工作流程。

亚太地区是成长最快的地区,预计到2030年复合年增长率将达到15.1%。中国的「新基建」政策鼓励在製造群附近建造边缘资料中心,华为计画将2024年营收的20.8%投入人工智慧、汽车和云端服务等领域的研发。印度的智慧城市计画整合了边缘运算的监控和交通优化技术,日本领先的自动化公司正在将确定性乙太网路和TSN技术应用于其生产线。区域通讯业者正积极部署光纤网络,将边缘聚合数据回程传输传至城域核心网,从而最大限度地减少抖动,提升身临其境型游戏和远距临场系统。

其他福利:

  • Excel格式的市场预测(ME)表
  • 3个月的分析师支持

目录

第一章 引言

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章 市场情势

  • 市场概览
  • 市场驱动因素
    • 5G部署推动超低延迟应用场景
    • 物联网终端的激增和边缘资料引力
    • 资料主权法规(例如欧盟资料法)
    • 降低边缘推理加速器的ASIC/SoC成本
    • 能源效率目标(ESG)驱动微型资料中心
    • RISC-V 和晶片组架构的兴起使得客製化边缘晶片成为可能。
  • 市场限制
    • 扩大分散式节点的网路攻击面
    • 部署和管理异质边缘堆迭方面的技能差距
    • 互通性与标准碎片化(MEC、Open-RAN、LF Edge)
    • 棕地工业维修投资报酬率低
  • 供应链分析
  • 技术展望
  • 监管环境
  • 波特五力分析
    • 供应商的议价能力
    • 买方的议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争对手之间的竞争
  • 评估影响市场的宏观经济因素

第五章 市场规模与成长预测

  • 按组件
    • 硬体
    • 软体
    • 服务
  • 透过部署模式
    • 本地部署
  • 按最终用户行业划分
    • 製造业和工业
    • 能源与公共产业
    • 医疗保健和生命科学
    • 零售与电子商务
    • BFSI
    • 资讯科技/通讯
    • 其他的
  • 透过使用
    • 工业IoT和预测性维护
    • 视讯分析与监控
    • 自动驾驶汽车和无人机
    • 其他的
  • 按公司规模
    • 大公司
    • 小型企业
  • 按地区
    • 北美洲
      • 美国
      • 加拿大
      • 墨西哥
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 义大利
      • 西班牙
      • 俄罗斯
      • 其他欧洲地区
    • 亚太地区
      • 中国
      • 日本
      • 印度
      • 韩国
      • 澳洲和纽西兰
      • 东南亚
      • 亚太其他地区
    • 中东和非洲
      • 中东
      • 沙乌地阿拉伯
      • 阿拉伯聯合大公国
      • 土耳其
      • 其他中东地区
      • 非洲
      • 南非
      • 奈及利亚
      • 埃及
      • 其他非洲地区

第六章 竞争情势

  • 市场集中度
  • 策略趋势
  • 市占率分析
  • 公司简介
    • Amazon Web Services(AWS)
    • Microsoft Corporation
    • Cisco Systems Inc.
    • Huawei Technologies Co. Ltd.
    • IBM Corporation
    • Hewlett Packard Enterprise(HPE)
    • Dell Technologies Inc.
    • Google LLC(Alphabet Inc.)
    • Intel Corporation
    • NVIDIA Corporation
    • Juniper Networks Inc.
    • Advantech Co. Ltd.
    • ADLINK Technology Inc.
    • Schneider Electric SE
    • Siemens AG
    • Capgemini Engineering
    • EdgeIQ(MachineShop Inc.)
    • Vapor IO Inc.
    • Litmus Automation
    • FogHorn Systems
    • Lumen Technologies Inc.

第七章 市场机会与未来展望

简介目录
Product Code: 66305

The edge computing market size is estimated at USD 227.80 billion in 2025 and is on track to reach USD 424.15 billion by 2030, advancing at a 13.24% CAGR.

Edge Computing - Market - IMG1

Intensifying data-gravity at the network edge, the roll-out of 5G radio access networks, and global data-sovereignty mandates are redefining enterprise architecture by shifting time-sensitive processing away from centralized clouds. Hardware vendors benefit from falling ASIC and SoC prices that lower entry barriers for real-time AI inference, while telecom operators carve new revenue streams through multi-access edge compute (MEC) services aligned with ETSI Phase 4 specifications. Enterprises in manufacturing, energy, and mobility adopt edge nodes to minimize latency, protect sensitive data, and improve operational resilience. At the same time, cloud hyperscalers extend managed services to customer premises, enabling unified observability and lifecycle management of distributed workloads

Global Edge Computing Market Trends and Insights

5G Roll-out Catalyzing Ultra-Low-Latency Use-Cases

Global 5G deployments enable sub-millisecond latency that autonomous vehicles, telesurgery, and immersive maintenance applications require. Verizon and NVIDIA have begun piloting real-time AI services on private 5G networks, anchoring edge nodes at base stations to meet stringent round-trip delay budgets. Hyperscalers now colocate micro-data-centres at telecom exchanges, allowing developers to push containers closer to users. ETSI MEC Phase 4 profiles create common APIs, helping operators monetize differentiated latency tiers while ensuring workload portabilit.The investment cycle aligns with governments funding rural 5G coverage, extending edge-powered services beyond dense urban corridors.

Proliferation of IoT Endpoints and Data Gravity

Industrial sites deploy thousands of sensors that stream terabytes daily, making centralized analytics both costly and sluggish. Manufacturers report 89% intent to shift AI inference to local gateways for real-time quality control. Edge-native architectures cut bandwidth expenses and avoid cloud egress charges by keeping high-volume data onsite until summarized. Platforms such as TCS Clever Energy use local inference to flag anomalies and trigger immediate corrective action. As IoT devices integrate lightweight GPUs and NPUs, they can execute vision models autonomously, freeing backhaul links for supervisory tasks.

Cyber-Attack Surface Expansion at Distributed Nodes

Every gateway, sensor, and micro-data-centre becomes a potential ingress point, raising the probability of lateral movement across converged IT/OT networks. Industrial operators deploy zero-trust firmware, hardware root-of-trust, and TPM-backed attestation, yet retrofitted legacy devices often lack secure boot sequences. Physical tampering risk climbs as edge nodes leave protected data-centre premises and reside on factory floors or in roadside cabinets. The scarcity of real-time forensics tools that run locally hampers incident response, extending mean-time-to-contain breaches.

Other drivers and restraints analyzed in the detailed report include:

  1. Regulatory Data-Sovereignty Mandates
  2. Declining ASIC/SoC Costs for Edge Inference Accelerators
  3. Skills Gap in Deploying and Managing Heterogeneous Edge Stacks

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Hardware accounted for 45.2% of the edge computing market in 2024, reflecting the up-front capital required for ruggedized servers, accelerators, and field-deployable storage. The edge computing market size for hardware reached USD 102.8 billion in 2025 and is expected to grow steadily as ASIC prices fall. Software platforms trail in revenue but lead in innovation, posting the highest 13.7% CAGR as orchestration stacks add AI model lifecycle management and remote observability. Services revenue remains modest yet essential, addressing integration of legacy PLCs and real-time operating systems within brownfield industrial sites.

Intense competition among chipmakers compresses unit costs, enabling high-volume deployment of low-power AI inference cards that withstand industrial temperature ranges. Intel's 18A roadmap improves transceiver density, boosting deterministic throughput in intelligent gateways. Simultaneously, zero-touch deployment frameworks from Advantech and Namla lower integration costs by automating node provisioning, signalling future growth for managed services that wrap around hardware.

On-premises solutions retained 67.2% of the edge computing market in 2024, driven by data locality and deterministic latency requirements. Hybrid-cloud edges grow rapidly at 14.9% CAGR as enterprises adopt central model training in hyperscale clouds with distributed inference at factory cells. Enterprises pilot workload tiering, where real-time inference runs locally, and non-urgent analytics backhaul to regional availability zones overnight.

Air-gapped cruise-ship payment systems illustrate on-premises resilience, continuing operation when satellite links fail. Conversely, Microsoft's investment in Armada reflects hyperscaler conviction that unified control planes spanning cloud and edge will win long term. Vendors now ship appliances pre-registered with cloud consoles, enabling frictionless expansion from single-site POCs to multi-country estates

Edge Computing Market is Segment by Component (Hardware, Software, Services), Deployment (On Premise, Cloud), End User Industry (Manufacturing and Industrial, Energy and Utilities, and More), Application (Industrial IoT and Predictive Maintenance, and More), Organization Size (Large Enterprise, Small and Medium Enterprise), and by Geography. The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

North America held 24.8% of the edge computing market in 2024, anchored by robust 5G deployment, a vast hyperscaler footprint, and public funding for semiconductor production. The Biden administration allocated USD 269 million to micro-electronics programs that strengthen domestic edge hardware capacity. Utilities in the United States deploy private LTE coupled with ruggedized MEC nodes to modernize grid operations, and 75% of enterprise-generated data is forecast to remain at or near the source by 2025 Canada follows, targeting autonomous mining and energy workflows that cannot tolerate WAN latency.

Asia Pacific is the fastest-growing region at a 15.1% CAGR through 2030. China's "new infrastructure" policy incentivizes edge data-centre buildouts close to manufacturing clusters, and Huawei invested 20.8% of its 2024 revenue back into research and development that spans AI, automotive, and cloud services. India's smart-city programs integrate edge-enabled surveillance and traffic optimization, while Japan's automation giants embed deterministic Ethernet and TSN in production lines. Regional telcos leverage aggressive fiber roll-outs to backhaul edge aggregates to metro cores, minimizing jitter for immersive gaming and telepresence.

  1. Amazon Web Services (AWS)
  2. Microsoft Corporation
  3. Cisco Systems Inc.
  4. Huawei Technologies Co. Ltd.
  5. IBM Corporation
  6. Hewlett Packard Enterprise (HPE)
  7. Dell Technologies Inc.
  8. Google LLC (Alphabet Inc.)
  9. Intel Corporation
  10. NVIDIA Corporation
  11. Juniper Networks Inc.
  12. Advantech Co. Ltd.
  13. ADLINK Technology Inc.
  14. Schneider Electric SE
  15. Siemens AG
  16. Capgemini Engineering
  17. EdgeIQ (MachineShop Inc.)
  18. Vapor IO Inc.
  19. Litmus Automation
  20. FogHorn Systems
  21. Lumen Technologies Inc.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 5G roll-out catalysing ultra-low-latency use-cases
    • 4.2.2 Proliferation of IoT endpoints and data gravity at the edge
    • 4.2.3 Regulatory data-sovereignty mandates (e.g., EU Data Act)
    • 4.2.4 Declining ASIC/SoC costs for edge inference accelerators
    • 4.2.5 Energy-efficiency targets driving micro-data-centres (ESG)
    • 4.2.6 Rise of RISC-V and chiplet architectures enabling custom edge silicon
  • 4.3 Market Restraints
    • 4.3.1 Cyber-attack surface expansion at distributed nodes
    • 4.3.2 Skills gap in deploying and managing heterogeneous edge stacks
    • 4.3.3 Inter-operability and standards fragmentation (MEC, Open-RAN, LF Edge)
    • 4.3.4 Inefficient ROI for brown-field industrial retro-fits
  • 4.4 Supply-Chain Analysis
  • 4.5 Technological Outlook
  • 4.6 Regulatory Landscape
  • 4.7 Porter's Five Force Analysis
    • 4.7.1 Bargaining Power of Suppliers
    • 4.7.2 Bargaining Power of Buyers
    • 4.7.3 Threat of New Entrants
    • 4.7.4 Threat of Substitutes
    • 4.7.5 Intensity of Competitive Rivalry
  • 4.8 Assesment of Macroeconomic Factors on the market

5 MARKET SIZE AND GROWTH FORECASTS (VALUE)

  • 5.1 By Component
    • 5.1.1 Hardware
    • 5.1.2 Software
    • 5.1.3 Services
  • 5.2 By Deployment Mode
    • 5.2.1 On-Premise
    • 5.2.2 Cloud
  • 5.3 By End-user Industry
    • 5.3.1 Manufacturing and Industrial
    • 5.3.2 Energy and Utilities
    • 5.3.3 Healthcare and Life Sciences
    • 5.3.4 Retail and E-commerce
    • 5.3.5 BFSI
    • 5.3.6 Telecommunications and IT
    • 5.3.7 Others
  • 5.4 By Application
    • 5.4.1 Industrial IoT and Predictive Maintenance
    • 5.4.2 Video Analytics and Surveillance
    • 5.4.3 Autonomous Vehicles and Drones
    • 5.4.4 Others
  • 5.5 By Organisation Size
    • 5.5.1 Large Enterprises
    • 5.5.2 Small and Medium Enterprises
  • 5.6 By Geography
    • 5.6.1 North America
      • 5.6.1.1 United States
      • 5.6.1.2 Canada
      • 5.6.1.3 Mexico
    • 5.6.2 South America
      • 5.6.2.1 Brazil
      • 5.6.2.2 Argentina
      • 5.6.2.3 Rest of South America
    • 5.6.3 Europe
      • 5.6.3.1 Germany
      • 5.6.3.2 United Kingdom
      • 5.6.3.3 France
      • 5.6.3.4 Italy
      • 5.6.3.5 Spain
      • 5.6.3.6 Russia
      • 5.6.3.7 Rest of Europe
    • 5.6.4 APAC
      • 5.6.4.1 China
      • 5.6.4.2 Japan
      • 5.6.4.3 India
      • 5.6.4.4 South Korea
      • 5.6.4.5 Australia and New Zealand
      • 5.6.4.6 Southeast Asia
      • 5.6.4.7 Rest of APAC
    • 5.6.5 Middle East and Africa
      • 5.6.5.1 Middle East
      • 5.6.5.1.1 Saudi Arabia
      • 5.6.5.1.2 United Arab Emirates
      • 5.6.5.1.3 Turkey
      • 5.6.5.1.4 Rest of Middle East
      • 5.6.5.2 Africa
      • 5.6.5.2.1 South Africa
      • 5.6.5.2.2 Nigeria
      • 5.6.5.2.3 Egypt
      • 5.6.5.2.4 Rest of Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Strategic Moves
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles (includes Global level Overview, Market level overview, Core Segments, Financials, Strategic Information, Market Rank/Share, Products and Services, Recent Developments)
    • 6.4.1 Amazon Web Services (AWS)
    • 6.4.2 Microsoft Corporation
    • 6.4.3 Cisco Systems Inc.
    • 6.4.4 Huawei Technologies Co. Ltd.
    • 6.4.5 IBM Corporation
    • 6.4.6 Hewlett Packard Enterprise (HPE)
    • 6.4.7 Dell Technologies Inc.
    • 6.4.8 Google LLC (Alphabet Inc.)
    • 6.4.9 Intel Corporation
    • 6.4.10 NVIDIA Corporation
    • 6.4.11 Juniper Networks Inc.
    • 6.4.12 Advantech Co. Ltd.
    • 6.4.13 ADLINK Technology Inc.
    • 6.4.14 Schneider Electric SE
    • 6.4.15 Siemens AG
    • 6.4.16 Capgemini Engineering
    • 6.4.17 EdgeIQ (MachineShop Inc.)
    • 6.4.18 Vapor IO Inc.
    • 6.4.19 Litmus Automation
    • 6.4.20 FogHorn Systems
    • 6.4.21 Lumen Technologies Inc.

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-space and Unmet-need Assessment