封面
市场调查报告书
商品编码
1851569

雷达感测器:市场份额分析、行业趋势、统计数据和成长预测(2025-2030 年)

Radar Sensors - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

预计到 2025 年雷达感测器市场规模将达到 245.4 亿美元,到 2030 年将达到 531.2 亿美元,年复合成长率为 16.7%。

雷达感测器市场-IMG1

该技术的快速发展反映了其应用范围已从单纯的防御性应用扩展到大规模汽车安全、工业自动化、无人机测绘和智慧基础设施项目等领域。欧盟《通用安全条例》(General Safety Regulation)等安全法规正在推动该技术的应用,该条例强制要求新车配备使用77-81 GHz雷达的自动紧急煞车系统。供应方面的催化剂包括价格合理的毫米波晶片组和氮化镓功率元件,这些元件在提高测距解析度的同时,还能降低尺寸、重量和功耗。亚太地区强劲的军事现代化、欧洲不断扩展的5G道路计划以及全球气候适应型气象雷达网路的建设,都进一步扩大了潜在需求。近期面临的挑战包括10 GHz以下频段的拥塞、成像阵列的校准成本以及由于中国98%的生产控製而导致的镓供应风险。

全球雷达感测器市场趋势与洞察

汽车安全系统中77-81GHz雷达的应用日益广泛

监管机构和汽车製造商更青睐77-81 GHz频段,因为与传统的24 GHz设备相比,该频段具有更远的探测距离和更高的角度解析度。大陆集团的ARS640雷达侦测距离超过300米,能够实现与L2+级自动驾驶相容的目标分类。中国工业和资讯化部于2022年暂停发放新的24 GHz雷达牌照,迫使国内OEM厂商迁移到该频段。博世也已将该频宽应用于摩托车,为KTM摩托车配备了210公尺探测距离的雷达,用于自我调整巡航和盲点警告。这些市场发展趋势推动了感测器在各类车辆中的持续普及,并促进了雷达感测器市场的成长。

基于无人机的地形测绘推动了对小型成像雷达的需求激增。

多旋翼无人机利用轻型合成孔径雷达产生亚米级高程模型,即使在光学载重失效的情况下,例如植被或云层遮蔽时,也能正常运作。研究表明,目前72.73%的矿业探勘任务采用多旋翼无人机而非直升机平台,在提高空间精度的同时,降低了60%的测量成本。美国地质调查局的移动雷达站可在野火发生后数分钟内采集降雨径流数据,进而助力紧急应变。这些应用案例正在推动对更宽频宽晶片组和机载处理器的研发投入,并扩大雷达感测器市场。

10 GHz 以下频宽的频率分配限制

雷达开发商正与通讯业者和卫星通讯业者争夺稀缺的10GHz以下频宽。美国国防部运作超过120部3GHz以下的雷达,限制了民用频谱的再利用潜力。为了符合全球相关规定,美国联邦通讯委员会(FCC)近期收紧了24GHz频宽以外的限制,迫使雷达设计进行变更。认证等待时间有时长达九个月,导致产品发布延迟,并限制了雷达感测器市场近期的普及应用。

细分市场分析

到2024年,非成像设备将占总收入的71%,这表明它们在泊车辅助和基础自我调整巡航等领域已广泛应用。然而,随着L2+自动驾驶技术的日益普及,影像解决方案预计到2030年将以18.4%的复合年增长率成长。恩智浦半导体(NXP)和sinPro的48通道入门4D单元可实现1度方位角和每帧2000个点云,展现了高解析度感知技术的普及。影像处理功能使自动煞车能够区分行人和道路标誌,从而推动OEM厂商在高阶车型之外的车型上也应用该技术。预计到2030年,具备影像处理功能的雷达感测器市场规模将达到113亿美元,占据不断成长的软体定义车辆预算。另一方面,在对识别精度要求不高的领域,例如送货机器人、堆高机碰撞预警和降雨量估算,成本优化的非成像类别仍将占据主导地位。製造商将简单的 FMCW晶粒捆绑到天线封装设计中,降低了物料清单成本,扩大了雷达感测器市场。

目前,竞争对手的蓝图将嵌入式讯号处理器与边缘AI加速相结合,以降低延迟。大陆集团的ARS640整合了神经网路滤波功能,可即时识别弱势道路使用者,进而提升功能安全指标。在材料方面,硅锗前端对现有的砷化镓(GaAs)前端构成挑战,预计在大规模生产中实现低于10美元的晶粒。这项成本优势支援中阶车型逐步​​升级,并为雷达感测器在Scooter和超小型移动出行领域的市场渗透铺平道路。

77-81 GHz频段是路径损耗和天线孔径之间的最佳平衡点,预计将占2024年收入的43%,能够在保持成本效益的同时实现250米的车载探测。欧洲、中国和北美地区的监管协调降低了认证的复杂性,推动了雷达感测器市场的发展。义法半导体(STMicroelectronics)的77 GHz收发器在冰雪和泥泞路面上仍能保持性能,证明了其在恶劣路况下的适用性。 94 GHz以上的超宽频通道可实现亚厘米级分辨率,在路面裂缝监测和医疗微多普勒成像领域备受青睐。随着晶圆级氮化镓(GaN)功率放大器技术的日益成熟,预计到2030年,94 GHz以上频段的出货量将成长两倍以上,复合年增长率(CAGR)将达到21.7%。

10GHz以下的频谱正面临饱和,迫使开发商向更高频段迁移。中国已停止审批24GHz车载雷达,加速其全球版面。德克萨斯(TI)的单晶片雷达无需摄影机即可将儿童存在警报的准确率提升至98%。融合24GHz角部、77GHz前部和60GHz内部的多频段架构,从多个层面拓展了雷达感测器市场。

区域分析

北美地区在先进驾驶辅助系统部署和重大国防升级的推动下,仍将是2024年最大的区域贡献者。然而,镓供应风险威胁着美国6,020亿美元的经济产出,促使政策制定者将氮化镓外延技术在地化并回收废弃物。由于认证延迟,美国民用部署也面临延误;同时,加拿大正在扩大汽车雷达测试设施,而墨西哥则受益于一级供应商生产线的近岸外包。

由于统一的安全法规和大规模的智慧道路投资,欧洲未来将实现最高的复合年增长率。欧盟的自动紧急煞车(AEB)强制令将确保各类车辆统一安装感测器,而各​​国道路管理机构正在部署雷达进行拥塞分析。供应链资源配置将有助于缓解半导体短缺问题,而5G走廊将把雷达与车联网(V2X)信标技术结合。

亚太地区在国防和气象领域的支出领先。日本的AN/SPY-7飞弹部署和韩国的L-SAM II计划是推动国内氮化镓(GaN)晶圆代工产业发展的高预算计画的代表。在中国,从24GHz汽车雷达转向77GHz雷达的政策正加速本土OEM厂商的转型。印度价值5000万美元的气象雷达订单显示了公共部门对精准气象的需求。总而言之,这些倡议将把雷达感测器市场从民用移动领域拓展到更广泛的范围。

其他福利:

  • Excel格式的市场预测(ME)表
  • 3个月的分析师支持

目录

第一章 引言

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章 市场情势

  • 市场概览
  • 市场驱动因素
    • 汽车安全系统中77-81GHz雷达的应用日益广泛
    • 无人机地形测绘对紧凑型成像雷达的需求激增
    • 亚太地区军方加大对主动相控阵雷达(AESA雷达)的投入
    • 工业机器人对用于避障的毫米波感测器的需求日益增长
    • 在欧洲推广智慧公路和交通监控雷达基础设施
    • 气候变迁导致多普勒天气雷达在沿海地区的普及
  • 市场限制
    • 10 GHz 以下频段频率分配的限制
    • 成像雷达阵列的校准和维护成本很高
    • 高功率毫米波晶片组的温度控管挑战
    • 零售业3D人体追踪雷达的资料隐私问题
  • 价值/供应链分析
  • 监理展望
  • 技术展望
  • 波特五力分析
    • 供应商的议价能力
    • 买方的议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争对手之间的竞争威胁

第五章 市场规模与成长预测

  • 按类型
    • 成像雷达
    • 非成像雷达
  • 按频段
    • 10GHz以下(高频/超高频/ L波段)
    • 24 GHz ISM频段
    • 60-64 GHz
    • 77-81 GHz
    • 94GHz 或更高
  • 按范围
    • 短程雷达感测器(小于30公尺)
    • 中程雷达感测器(30-150公尺)
    • 远距雷达感测器(超过150公尺)
  • 透过技术
    • 脉衝雷达
    • 调频连续波(FMCW)雷达
    • 相位阵列/主动相控阵雷达
    • 数位调变与MIMO雷达
  • 最终用户
    • 航太/国防
    • 安防监控(固定和移动)
    • 工业自动化与机器人
    • 环境和气象监测
    • 交通监控和智慧基础设施
    • 医疗保健和生活协助
    • 其他最终用户
  • 按地区
    • 北美洲
      • 美国
      • 加拿大
      • 墨西哥
    • 欧洲
      • 英国
      • 德国
      • 法国
      • 义大利
      • 其他欧洲地区
    • 亚太地区
      • 中国
      • 日本
      • 印度
      • 韩国
      • 亚太其他地区
    • 中东
      • 以色列
      • 沙乌地阿拉伯
      • 阿拉伯聯合大公国
      • 土耳其
      • 其他中东地区
    • 非洲
      • 南非
      • 埃及
      • 其他非洲地区
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲

第六章 竞争情势

  • 市场集中度
  • 策略性倡议(MandA、资金筹措、伙伴关係)
  • 市占率分析
  • 公司简介
    • Robert Bosch GmbH
    • Continental AG
    • Infineon Technologies AG
    • NXP Semiconductors NV
    • Denso Corporation
    • Hella GmbH and Co. KGaA
    • Veoneer Inc.
    • STMicroelectronics NV
    • Texas Instruments Incorporated
    • Analog Devices Inc.
    • Renesas Electronics Corporation
    • Aptiv PLC
    • ZF Friedrichshafen AG
    • Valeo SA
    • Hitachi Astemo Ltd.
    • Smart Microwave Sensors GmbH
    • InnoSenT GmbH
    • Baumer Group
    • Banner Engineering Corp.
    • Lockheed Martin Corporation
    • Raytheon Technologies Corp.
    • Northrop Grumman Corp.
    • Thales Group
    • Honeywell International Inc.

第七章 市场机会与未来展望

简介目录
Product Code: 57286

The radar sensor market size is at USD 24.54 billion in 2025 and is projected to reach USD 53.12 billion by 2030, expanding at a 16.7% CAGR.

Radar Sensors - Market - IMG1

The rapid scaling reflects the technology's migration from exclusive defense use to high-volume automotive safety, industrial automation, drone mapping, and smart infrastructure programs. Adoption is propelled by safety regulations such as the European Union General Safety Regulation, which mandates automatic emergency braking using 77-81 GHz radar in new vehicles. Supply-side catalysts include affordable millimeter-wave chipsets and gallium-nitride power devices that enhance range resolution while lowering size, weight, and power requirements. Robust military modernization in Asia-Pacific, expanding 5G-enabled road projects in Europe, and climate-resilient weather radar networks worldwide deepen addressable demand. Near-term challenges center on below-10 GHz spectrum congestion, calibration expenses for imaging arrays, and gallium supply risks stemming from China's 98% production dominance.

Global Radar Sensors Market Trends and Insights

Increasing adoption of 77-81 GHz radars in automotive safety systems

Regulators and automakers endorse 77-81 GHz because it delivers longer detection ranges and sharper angular resolution than legacy 24 GHz devices. Continental's ARS640 exceeds 300 m range and enables object classification fit for Level 2+ autonomy. China's Ministry of Industry and Information Technology halted new 24 GHz radar approvals in 2022, compelling local OEMs to shift frequency bands. Bosch extended the band to motorcycles, equipping KTM bikes with 210 m range radar for adaptive cruise and blind-spot warning. These developments reinforce steady sensor penetration across vehicle classes, underpinning radar sensor market growth.

Surging demand for compact imaging radars in drone-based terrain mapping

Multirotor drones use lightweight synthetic-aperture radars to generate sub-meter elevation models even in vegetation or cloud cover where optical payloads fail. Research shows 72.73% of mining exploration missions now favor multirotor over helicopter platforms, cutting survey cost by 60% while improving spatial granularity. The U.S. Geological Survey's mobile radar observatory captures rainfall-runoff data minutes after wildfires, supporting emergency response. Such proof points fuel R&D investment in higher-bandwidth chipsets and on-board processing, broadening the radar sensor market.

Spectrum allocation constraints in sub-10 GHz bands

Radar developers compete with telecom and satellite operators for scarce sub-10 GHz slots. The U.S. Department of Defense runs more than 120 radars below 3 GHz, limiting civilian spectrum re-farm potential. The FCC recently tightened 24 GHz out-of-band limits to satisfy global rulings, forcing design changes. Certification queues can stretch nine months, delaying product launches and curbing near-term radar sensor market adoption.

Other drivers and restraints analyzed in the detailed report include:

  1. Rising military spend on AESA radars in Asia-Pacific
  2. Growing need for mm-wave sensors in industrial robot collision avoidance
  3. High calibration & maintenance cost of imaging radar arrays

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Non-imaging devices represented 71% of 2024 revenue, illustrating entrenched use in parking assistance and basic adaptive cruise. Imaging solutions, however, are forecast to post an 18.4% CAGR through 2030 as Level 2+ autonomy proliferates. NXP and sinPro's 48-channel entry-level 4D unit reaches 1-degree azimuth and 2,000 point clouds per frame, signaling democratization of high-resolution perception. Imaging capability lets automated brakes distinguish pedestrians from roadside signs, pushing OEM fitment beyond luxury trims. The radar sensor market size for imaging-enabled modules is projected to reach USD 11.3 billion by 2030, capturing escalating software-defined vehicle budgets. Conversely, the cost-optimized non-imaging category retains dominance in delivery robots, forklift collision alerts, and rainfall estimation where identification finesse is less critical. Manufacturers bundle simple FMCW dies with antenna-in-package designs to lower bill-of-material cost and sustain the wider radar sensor market.

Competitive roadmaps now combine embedded signal processors with edge AI acceleration to shrink latency. Continental's ARS640 integrates neural network filtering to classify vulnerable road users in real time, raising functional safety metrics. On the materials side, silicon germanium front-ends challenge GaAs incumbents, promising sub-USD 10 die price at high volumes. This cost curve supports incremental imaging upgrades in mid-segment cars and paves the way for radar sensor market penetration in scooters and micro-mobility.

The 77-81 GHz tier held 43% 2024 revenue due to a sweet spot between path loss and antenna aperture, enabling 250 m automotive detection while remaining cost-effective. Regulatory harmonization in Europe, China, and North America cut certification complexity and boosted the radar sensor market. STMicroelectronics' 77 GHz transceiver sustains performance in snow or dirt, validating use in harsh roadside units. Above 94 GHz, ultra-wideband channels achieve sub-centimeter resolution prized in pavement crack monitoring and medical micro-Doppler imaging. With a 21.7% CAGR, >=94 GHz shipments are set to more than triple by 2030 as wafer-scale GaN power amplifiers mature.

Spectrum below 10 GHz faces saturation, pushing developers to migrate upward. China no longer approves new 24 GHz automotive radars, accelerating global pivot. Short-range 60 GHz gear excels in cabin sensing, occupancy detection, and gesture control; Texas Instruments' single-chip radar improves child presence alert accuracy to 98% without cameras. Blended multi-band architectures deploy 24 GHz corners, 77 GHz front units, and 60 GHz interiors, expanding the radar sensor market across multiple tiers.

The Radar Sensor Market is Segmented by Type (Imaging Radar, Non-Imaging Radar), Frequency Band (More Than 10 GHz, 24 GHz ISM Band, and More), Range (Short-Range Radar Sensor, Medium-Range Radar Sensor, and More), Technology (Pulsed Radar, Phased-Array / AESA Radar, and More), End-User and Geography. The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

North America remained the largest regional contributor in 2024, supported by advanced driver-assistance deployment and sizable defense upgrades. Gallium supply risk, however, threatens USD 602 billion of U.S. economic output, pushing policymakers to localize GaN epitaxy and recycle scrap csis.org. The United States also grapples with certification delays that slow civilian rollouts, while Canada scales automotive radar test facilities and Mexico benefits from near-shoring Tier-1 production lines.

Europe posts the highest forward CAGR due to unified safety laws and expansive smart-road investments. The EU's AEB mandate ensures uniform sensor installation across vehicle classes, while national road agencies deploy radar for congestion analytics. smartmicro UK surpassed 1,000 roadside units, illustrating integrator momentum smartmicro.com. Supply-chain reshoring counters semiconductor scarcity, and 5G corridors embed radar hand-in-hand with V2X beacons.

Asia-Pacific leads defense and weather spending. Japan's AN/SPY-7 roll-out and South Korea's L-SAM II project typify high-budget programs driving domestic GaN foundry growth. China's policy shift away from 24 GHz automotive radar accelerates migration to 77 GHz across local OEM plants. India's USD 50 million weather radar order demonstrates public-sector appetite for precision meteorology. Collectively, these initiatives expand the radar sensor market beyond consumer mobility.

  1. Robert Bosch GmbH
  2. Continental AG
  3. Infineon Technologies AG
  4. NXP Semiconductors N.V.
  5. Denso Corporation
  6. Hella GmbH and Co. KGaA
  7. Veoneer Inc.
  8. STMicroelectronics N.V.
  9. Texas Instruments Incorporated
  10. Analog Devices Inc.
  11. Renesas Electronics Corporation
  12. Aptiv PLC
  13. ZF Friedrichshafen AG
  14. Valeo SA
  15. Hitachi Astemo Ltd.
  16. Smart Microwave Sensors GmbH
  17. InnoSenT GmbH
  18. Baumer Group
  19. Banner Engineering Corp.
  20. Lockheed Martin Corporation
  21. Raytheon Technologies Corp.
  22. Northrop Grumman Corp.
  23. Thales Group
  24. Honeywell International Inc.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Increasing Adoption of 77-81 GHz Radars in Automotive Safety Systems
    • 4.2.2 Surging Demand for Compact Imaging Radars in Drone-based Terrain Mapping
    • 4.2.3 Rising Military Spend on Active Electronically Scanned Array (AESA) Radars in Asia-Pacific
    • 4.2.4 Growing Need for mm-Wave Sensors in Industrial Robot Collision Avoidance
    • 4.2.5 Infrastructure Push for Smart Highways and Traffic-Monitoring Radars in Europe
    • 4.2.6 Climate-change-driven Uptake of Doppler Weather Radars in Coastal Regions
  • 4.3 Market Restraints
    • 4.3.1 Spectrum Allocation Constraints in Sub-10 GHz Bands
    • 4.3.2 High Calibration and Maintenance Cost of Imaging Radar Arrays
    • 4.3.3 Thermal Management Challenges in High-power mm-Wave Chipsets
    • 4.3.4 Data-privacy Concerns Over 3-D People-tracking Radars in Retail
  • 4.4 Value / Supply-Chain Analysis
  • 4.5 Regulatory Outlook
  • 4.6 Technological Outlook
  • 4.7 Porter's Five Forces Analysis
    • 4.7.1 Bargaining Power of Suppliers
    • 4.7.2 Bargaining Power of Buyers
    • 4.7.3 Threat of New Entrants
    • 4.7.4 Threat of Substitutes
    • 4.7.5 Threat of Competitive Rivalry

5 MARKET SIZE AND GROWTH FORECASTS (VALUE)

  • 5.1 By Type
    • 5.1.1 Imaging Radar
    • 5.1.2 Non-Imaging Radar
  • 5.2 By Frequency Band
    • 5.2.1 Less than 10 GHz (HF/UHF/L-Band)
    • 5.2.2 24 GHz ISM Band
    • 5.2.3 60-64 GHz
    • 5.2.4 77-81 GHz
    • 5.2.5 94 GHz and Above
  • 5.3 By Range
    • 5.3.1 Short-range Radar Sensor (less than 30 m)
    • 5.3.2 Medium-range Radar Sensor (30-150 m)
    • 5.3.3 Long-range Radar Sensor ( greater than 150 m)
  • 5.4 By Technology
    • 5.4.1 Pulsed Radar
    • 5.4.2 Frequency-Modulated Continuous-Wave (FMCW) Radar
    • 5.4.3 Phased-Array / AESA Radar
    • 5.4.4 Digital Modulation and MIMO Radar
  • 5.5 By End-User
    • 5.5.1 Automotive
    • 5.5.2 Aerospace and Defense
    • 5.5.3 Security and Surveillance (Fixed and Mobile)
    • 5.5.4 Industrial Automation and Robotics
    • 5.5.5 Environment and Weather Monitoring
    • 5.5.6 Traffic Monitoring and Smart Infrastructure
    • 5.5.7 Healthcare and Assisted-Living
    • 5.5.8 Other End-Users
  • 5.6 By Geography
    • 5.6.1 North America
      • 5.6.1.1 United States
      • 5.6.1.2 Canada
      • 5.6.1.3 Mexico
    • 5.6.2 Europe
      • 5.6.2.1 United Kingdom
      • 5.6.2.2 Germany
      • 5.6.2.3 France
      • 5.6.2.4 Italy
      • 5.6.2.5 Rest of Europe
    • 5.6.3 Asia-Pacific
      • 5.6.3.1 China
      • 5.6.3.2 Japan
      • 5.6.3.3 India
      • 5.6.3.4 South Korea
      • 5.6.3.5 Rest of Asia-Pacific
    • 5.6.4 Middle East
      • 5.6.4.1 Israel
      • 5.6.4.2 Saudi Arabia
      • 5.6.4.3 United Arab Emirates
      • 5.6.4.4 Turkey
      • 5.6.4.5 Rest of Middle East
    • 5.6.5 Africa
      • 5.6.5.1 South Africa
      • 5.6.5.2 Egypt
      • 5.6.5.3 Rest of Africa
    • 5.6.6 South America
      • 5.6.6.1 Brazil
      • 5.6.6.2 Argentina
      • 5.6.6.3 Rest of South America

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Strategic Moves (MandA, Funding, Partnerships)
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles {(includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products and Services, and Recent Developments)}
    • 6.4.1 Robert Bosch GmbH
    • 6.4.2 Continental AG
    • 6.4.3 Infineon Technologies AG
    • 6.4.4 NXP Semiconductors N.V.
    • 6.4.5 Denso Corporation
    • 6.4.6 Hella GmbH and Co. KGaA
    • 6.4.7 Veoneer Inc.
    • 6.4.8 STMicroelectronics N.V.
    • 6.4.9 Texas Instruments Incorporated
    • 6.4.10 Analog Devices Inc.
    • 6.4.11 Renesas Electronics Corporation
    • 6.4.12 Aptiv PLC
    • 6.4.13 ZF Friedrichshafen AG
    • 6.4.14 Valeo SA
    • 6.4.15 Hitachi Astemo Ltd.
    • 6.4.16 Smart Microwave Sensors GmbH
    • 6.4.17 InnoSenT GmbH
    • 6.4.18 Baumer Group
    • 6.4.19 Banner Engineering Corp.
    • 6.4.20 Lockheed Martin Corporation
    • 6.4.21 Raytheon Technologies Corp.
    • 6.4.22 Northrop Grumman Corp.
    • 6.4.23 Thales Group
    • 6.4.24 Honeywell International Inc.

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-space and Unmet-need Assessment