封面
市场调查报告书
商品编码
1851631

热塑性复合材料:市场份额分析、行业趋势、统计数据和成长预测(2025-2030 年)

Thermoplastic Composites - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

预计到 2025 年热塑性复合材料市场规模将达到 491 万吨,到 2030 年将达到 630 万吨,预测期(2025-2030 年)复合年增长率为 5.10%。

热塑性复合材料市场-IMG1

产能的扩张意味着,预计到2030年,超过三分之一的材料产能尚未建成,这使得能够快速扩大规模的製造商拥有价格优势。同时,可回收利用工程项目的增加表明,未来部分产能将来自回收物料,而不仅仅是待开发区能,这微妙地改变了长期成本曲线,使一体化回收企业更具优势。区域和终端市场的分布表明,成长路径将呈现双管齐下:亚太地区的高通量应用将主导产能成长,而北美和欧洲的航太专案将引领价值和技术主导。

全球热塑性复合材料市场趋势与洞察

欧洲和美国迅速推出车辆轻量化强制令

随着两地车队平均排放气体法规的日益严格,乘用车每减重10公斤,都会对目标商标产品製造商(OEM)造成巨大的经济负担。热塑性复合材料比钢材轻30-40%,这意味着,采用复合材料钢板弹簧和座椅框架的中型车辆,无需改变电池化学成分,即可增加约15公里的纯电续航里程。来自设计工作室的最新反馈表明,复合复合材料组件易于焊接,带来了意想不到的好处,例如缩短原型前置作业时间和加快车型更新速度。因此,即使是供应链团队也开始从法规遵循和产品上市时间这两个角度来看待轻量化问题。

原始设备製造商正努力在电动交通推广可回收复合材料解决方案

汽车製造商正日益设定内部目标,以确保电池机壳和底盘护板中至少 30% 的复合材料可进行机械回收。由于热塑性复合材料(与热固性材料不同)可以熔融再加工,模塑商和原始设备製造商 (OEM) 之间的闭合迴路协议现在已直接写入采购合约。财务部门不仅将可回收性视为永续性指标,还将其视为对冲原生树脂价格波动的一种手段。因此,采购团队在计算总拥有成本 (TCO) 时,越来越重视报废价值回收,甚至在明确的监管政策出台之前,就已经在潜移默化地倾向于热塑性材料。

原料成本上涨和成型製程挑战

即使经过20年的製程改进,高性能树脂(例如PEEK)的价格仍然比中等价格分布的替代品高出20-40%。加工温度通常超过350°C,迫使製造商投资建造资本密集的高压釜和压机系统。然而,新兴的推测表明,五年内,封闭式回收技术的突破可能使再生PEEK和碳纤维的供应成本低于原生聚酰胺,从而打破以往的价格格局。如果这种情况成为现实,零件设计人员可能会重新评估材料的选择,不再仅仅考虑性价比,而是完全基于性能进行选择。

细分市场分析

预计到2024年,聚酰胺将维持热塑性复合材料市场38%的份额,而PEEK预计将在2025年至2030年间以6.01%的复合年增长率增长,这表明其销量和价值之间存在明显的差异。这种结构表明,双源筹资策略仍将是常态,因为原始设备製造商(OEM)需要在关键零件中平衡PEEK的性能余量和聚酰胺的成本优势。由此可以推断,如果再生PEEK实现商业性化,其整体成本优势的缩小速度将快于历史市场趋势,从而可能加速航太卡扣和支架等零件的替代。

生物基和回收的 PA6 正在被应用于消费性电子产品的外壳中,因为低碳足迹是优先考虑的因素,而高玻璃纤维 PA66 继续主导着汽车引擎盖下的零件。

到2024年,玻璃纤维将占据热塑性复合材料88%的市场份额,而碳纤维预计到2030年将以5.75%的复合年增长率增长,这主要得益于航太、高端汽车和储能领域对高模量解决方案的采用。这种日益扩大的市场份额表明,两种纤维的供应商都可以透过服务不同的应用领域来规避原材料价格波动的影响。由此可以推断,碳纤维产能成长可能会暂时超过需求成长,进而可能压缩净利率,而中阶应用领域的普及速度可能会超出预期。

区域分析

亚太地区热塑性复合材料市场占有率高达48%,这得益于其完善的製造生态系统,该系统将聚合物混炼、纤维製造和零件成型整合于单一经济体中,从而最大限度地降低了物流成本。光是中国对电动车电池机壳的需求就足以影响全球PP和PA6的供需平衡,这种动态赋予了区域买家基于销售的定价权。中东和非洲是成长最快的地区,复合年增长率达5.65%。

北美之所以发展良好,是因为它是民航机机身热塑性塑胶认证的中心。联邦政府对永续航空燃料的研究经费也间接促进了复合材料的需求,因为更轻的飞机可以最大限度地节省燃料。欧洲也紧跟其后,制定了严格的汽车碳排放标准,并建立了风力发电供应体系,正在试用热塑性塑胶叶片。

其他福利:

  • Excel格式的市场预测(ME)表
  • 3个月的分析师支持

目录

第一章 引言

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章 市场情势

  • 市场概览
  • 市场驱动因素
    • 欧洲和美国迅速推出车辆轻量化强制令
    • 原始设备製造商正努力在电动交通推广可回收复合材料解决方案
    • 亚太地区液化天然气和氢气储存大型企划管道
    • 智慧电子产品外壳中的热塑性包覆成型
    • 军方对耐损伤和雷达渗透性结构的需求
  • 市场限制
    • 热塑性复合材料高成本且成型製程面临许多挑战
    • 认可度和标准化程度有限
    • 来自热固性复合材料的竞争压力
  • 价值链分析
  • 波特五力模型
    • 供应商的议价能力
    • 买方的议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争对手之间的竞争

第五章 市场规模与成长预测

  • 依树脂类型
    • 聚丙烯(PP)
    • 聚酰胺(PA)
    • 聚醚醚酮(PEEK)
    • 其他树脂类型
  • 依纤维类型
    • 玻璃纤维
    • 碳纤维
    • 其他纤维类型
  • 依产品类型
    • 短纤维热塑性塑胶(SFT)
    • 长纤维热塑性塑胶(LFT)
    • 连续纤维热塑性塑胶(CFT)
    • 玻璃纤维隔板热塑性塑胶(GMT)
  • 按最终用户行业划分
    • 航太/国防
    • 电气和电子
    • 建造
    • 医疗保健
    • 其他最终用户
  • 按地区
    • 亚太地区
      • 中国
      • 日本
      • 印度
      • 韩国
      • ASEAN
      • 亚太其他地区
    • 北美洲
      • 美国
      • 加拿大
      • 墨西哥
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 义大利
      • 西班牙
      • 其他欧洲地区
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲
    • 中东和非洲
      • 沙乌地阿拉伯
      • 阿拉伯聯合大公国
      • 南非
      • 奈及利亚
      • 其他中东和非洲地区

第六章 竞争情势

  • 市场集中度
  • 策略趋势
  • 市占率分析
  • 公司简介
    • Arkema
    • Avient Corporation
    • BASF
    • Celanese Corporation
    • Daicel Corporation
    • dsm-firmenich
    • DuPont
    • Hexcel Corporation
    • LANXESS
    • LyondellBasell Industries Holdings BV
    • Mitsubishi Chemical Group Corporation
    • Owens Corning
    • RTP Company
    • SABIC
    • SGL Carbon
    • Solvay
    • TechnoCompound GmbH
    • TEIJIN LIMITED
    • TORAY INDUSTRIES, INC.
    • Victrex plc

第七章 市场机会与未来展望

简介目录
Product Code: 61972

The Thermoplastic Composites Market size is estimated at 4.91 Million tons in 2025, and is expected to reach 6.30 Million tons by 2030, at a CAGR of 5.10% during the forecast period (2025-2030).

Thermoplastic Composites - Market - IMG1

This volume expansion implies that more than one-third of the material capacity expected in 2030 is not yet installed today, so producers that can scale quickly will have a pricing advantage. A parallel rise in design-for-recycling programs indicates that part of this future capacity will come from reclaimed streams rather than only greenfield capacity, which subtly shifts long-term cost curves in favor of integrated recyclers. The geography and end-market distributions imply a dual-track growth path: volume is led by Asia-Pacific high-throughput applications, whereas value and technology leadership are anchored in North American and European aerospace programs.

Global Thermoplastic Composites Market Trends and Insights

Rapid Vehicle Lightweighting Mandates in Europe and the United States

Regulatory fleet-average emissions limits in both regions have tightened enough that every 10 kg of weight removed from a passenger car has become financially material to original-equipment manufacturers (OEMs). Thermoplastic Composites enable weight cuts of 30 to 40% against steel, so a midsize vehicle that adopts composite leaf springs or seat frames can gain roughly 15 km of additional electric-range equivalence without changing battery chemistry. A fresh inference from recent design-studio feedback is that the ease of welding composite sub-assemblies is shrinking prototype lead times, providing an unexpected benefit in faster model refresh cycles. As a result, even supply-chain teams are viewing weight savings through the twin lenses of regulatory compliance and accelerated time-to-market.

OEM Push for Recyclable Composite Solutions in E-Mobility

Automakers increasingly set internal targets that at least 30% of composite content in battery enclosures and under-body shields be mechanically recyclable. Unlike thermosets, Thermoplastic Composites industry solutions can be melt-reprocessed, so closed-loop contracts between molders and OEMs are now written directly into sourcing agreements. One emergent inference is that finance departments are treating recyclability not only as a sustainability metric but also as a hedge against volatile virgin-resin pricing. Consequently, procurement teams are weighing end-of-life value recovery when calculating total cost of ownership, which subtly favors thermoplastics even before explicit regulatory credit is offered.

High Cost of Raw Materials and Forming Challenges

Even after two decades of incremental process improvements, high-performance resins such as PEEK still carry a 20 to 40% price premium over mid-range alternatives. Because processing temperatures often exceed 350 °C, manufacturers invest in autoclaves and press systems with higher capital intensity, so amortization per part remains significant for small series. A novel inference, however, is that closed-loop recycling breakthroughs now promise to supply reclaimed PEEK and carbon fiber at cost levels below virgin polyamide within five years, which could flatten the historic price hierarchy. If that scenario plays out, component designers may re-rank materials based on performance alone rather than cost-performance trade-offs.

Other drivers and restraints analyzed in the detailed report include:

  1. Asia-Pacific Megaproject Pipeline for LNG and Hydrogen Storage
  2. Thermoplastic Over-Moulding Adoption in Smart Electronics Housings
  3. Limited Awareness and Standardization

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Polyamide maintains 38% Thermoplastic Composites market share in 2024, whereas PEEK is projected to record a 6.01% CAGR between 2025-2030, reflecting a clear split between volume and value segments. This configuration signals that dual-sourcing strategies will remain standard, because OEMs balance the cost advantages of PA against the performance headroom of PEEK in critical parts. A logical inference is that as PEEK recyclate becomes commercially viable, overall cost parity could close faster than historical adoption curves suggest, accelerating substitution in aerospace clips and brackets.

Bio-based and recycled PA6 variants are gaining purchase in consumer-electronics casings where brand owners prioritise low carbon footprints, while high-glass-fiber PA66 continues to dominate automotive under-the-hood components.

Glass fiber secures 88% Thermoplastic Composites market size share in 2024, yet carbon fiber is expected to expand at a 5.75% CAGR through 2030 as aerospace, premium automotive, and energy storage adopt higher modulus solutions. The widening split indicates manufacturers supplying both fibers can hedge against raw-material price swings while servicing divergent application sets. An immediate inference is that capacity additions in carbon fiber could outpace demand growth temporarily, potentially compressing margins and enabling penetration of mid-tier applications earlier than forecast.

The Thermoplastic Composites Market Report Segments the Industry by Resin Type (Polypropylene (PP), Polyamide (PA), and More), Fiber Type (Glass Fiber, and More), Product Type (Short Fiber Thermoplastic (SFT), Long Fiber Thermoplastic (LFT), and More), End-User Industry (Automotive, Aerospace and Defense, and More), and Geography (Asia-Pacific, North America, Europe, South America, and Middle East and Africa).

Geography Analysis

Asia-Pacific's 48% Thermoplastic Composites market share rests on a manufacturing ecosystem that integrates polymer synthesis, fiber production, and part moulding within single economic zones, minimizing logistics costs. China's EV battery enclosure demand alone is large enough to influence global PP and PA6 supply-demand balances, a dynamic that grants regional buyers volume-based pricing leverage. The Middle-East and Africa are the fastest-growing regions with a 5.65% CAGR.

North America is buoyed by its role as the epicentre of thermoplastic qualification for commercial aircraft fuselages. Federal research funding into sustainable aviation fuel also indirectly benefits composite demand, because lighter airframes maximize fuel-saving returns. Europe follows closely, driven by stringent vehicle carbon-emission standards and a well-established wind energy supply base that is experimenting with thermoplastic blades.

  1. Arkema
  2. Avient Corporation
  3. BASF
  4. Celanese Corporation
  5. Daicel Corporation
  6. dsm-firmenich
  7. DuPont
  8. Hexcel Corporation
  9. LANXESS
  10. LyondellBasell Industries Holdings B.V.
  11. Mitsubishi Chemical Group Corporation
  12. Owens Corning
  13. RTP Company
  14. SABIC
  15. SGL Carbon
  16. Solvay
  17. TechnoCompound GmbH
  18. TEIJIN LIMITED
  19. TORAY INDUSTRIES, INC.
  20. Victrex plc

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 Introduction

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 Research Methodology

3 Executive Summary

4 Market Landscape

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Rapid Vehicle-Light-Weighting Mandates in the Europe and United States
    • 4.2.2 OEM Push for Recyclable Composite Solutions in E-Mobility
    • 4.2.3 Asia-Pacific Megaproject Pipeline for LNG and Hydrogen Storage
    • 4.2.4 Thermoplastic Over-Moulding Adoption in Smart Electronics Housings
    • 4.2.5 Military Demand for Damage-Tolerant, Radar-Transparent Structures
  • 4.3 Market Restraints
    • 4.3.1 High Cost of Raw Materials and Challenges to Form Thermoplastic Composites
    • 4.3.2 Limited Awareness and Standardization
    • 4.3.3 Competitive Pressure from Thermoset Composites
  • 4.4 Value Chain Analysis
  • 4.5 Porter's Five Forces
    • 4.5.1 Bargaining Power of Suppliers
    • 4.5.2 Bargaining Power of Buyers
    • 4.5.3 Threat of New Entrants
    • 4.5.4 Threat of Substitutes
    • 4.5.5 Competitive Rivalry

5 Market Size and Growth Forecasts (Volume)

  • 5.1 By Resin Type
    • 5.1.1 Polypropylene (PP)
    • 5.1.2 Polyamide (PA)
    • 5.1.3 Polyether-ether-ketone (PEEK)
    • 5.1.4 Other Resin Types
  • 5.2 By Fiber Type
    • 5.2.1 Glass Fiber
    • 5.2.2 Carbon Fiber
    • 5.2.3 Other Fiber Types
  • 5.3 By Product Type
    • 5.3.1 Short-Fiber Thermoplastic (SFT)
    • 5.3.2 Long-Fiber Thermoplastic (LFT)
    • 5.3.3 Continuous-Fiber Thermoplastic (CFT)
    • 5.3.4 Glass-Mat Thermoplastic (GMT)
  • 5.4 By End-User Industry
    • 5.4.1 Automotive
    • 5.4.2 Aerospace and Defense
    • 5.4.3 Electrical and Electronics
    • 5.4.4 Construction
    • 5.4.5 Medical
    • 5.4.6 Other End-Users
  • 5.5 By Geography
    • 5.5.1 Asia-Pacific
      • 5.5.1.1 China
      • 5.5.1.2 Japan
      • 5.5.1.3 India
      • 5.5.1.4 South Korea
      • 5.5.1.5 ASEAN
      • 5.5.1.6 Rest of Asia-Pacific
    • 5.5.2 North America
      • 5.5.2.1 United States
      • 5.5.2.2 Canada
      • 5.5.2.3 Mexico
    • 5.5.3 Europe
      • 5.5.3.1 Germany
      • 5.5.3.2 United Kingdom
      • 5.5.3.3 France
      • 5.5.3.4 Italy
      • 5.5.3.5 Spain
      • 5.5.3.6 Rest of Europe
    • 5.5.4 South America
      • 5.5.4.1 Brazil
      • 5.5.4.2 Argentina
      • 5.5.4.3 Rest of South America
    • 5.5.5 Middle-East and Africa
      • 5.5.5.1 Saudi Arabia
      • 5.5.5.2 United Arab Emirates
      • 5.5.5.3 South Africa
      • 5.5.5.4 Nigeria
      • 5.5.5.5 Rest of Middle-East and Africa

6 Competitive Landscape

  • 6.1 Market Concentration
  • 6.2 Strategic Moves
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles (includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products and Services, and Recent Developments)
    • 6.4.1 Arkema
    • 6.4.2 Avient Corporation
    • 6.4.3 BASF
    • 6.4.4 Celanese Corporation
    • 6.4.5 Daicel Corporation
    • 6.4.6 dsm-firmenich
    • 6.4.7 DuPont
    • 6.4.8 Hexcel Corporation
    • 6.4.9 LANXESS
    • 6.4.10 LyondellBasell Industries Holdings B.V.
    • 6.4.11 Mitsubishi Chemical Group Corporation
    • 6.4.12 Owens Corning
    • 6.4.13 RTP Company
    • 6.4.14 SABIC
    • 6.4.15 SGL Carbon
    • 6.4.16 Solvay
    • 6.4.17 TechnoCompound GmbH
    • 6.4.18 TEIJIN LIMITED
    • 6.4.19 TORAY INDUSTRIES, INC.
    • 6.4.20 Victrex plc

7 Market Opportunities and Future Outlook

  • 7.1 White-Space and Unmet-Need Assessment
  • 7.2 Wide Application Scope in the Healthcare Sector