封面
市场调查报告书
商品编码
1851998

钛合金:市场份额分析、行业趋势、统计数据和成长预测(2025-2030 年)

Titanium Alloy - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

预计到 2025 年,钛合金市场规模将达到 158.23 千吨,到 2030 年将达到 204.46 千吨,在预测期(2025-2030 年)内,复合年增长率将达到 5.26%。

钛合金市场-IMG1

波音和空中巴士稳定的订单储备、国防采购週期的復苏以及医疗植入基本客群的不断增长,都支撑着市场需求。钛合金的持续性能依赖其高强度重量比、耐腐蚀性和生物相容性;在关键应用领域,这些特性使其高昂的製造成本显得格外重要。生产商正透过氢辅助还原和增材製造等技术增加熔炼产能,以缓解供应瓶颈;同时,客户也寻求采购多元化,以降低地缘政治风险。旨在降低成本的技术创新以及监管机构对更节能飞机的推动,进一步巩固了钛合金市场的成长前景。

全球钛合金市场趋势与洞察

对航太和国防飞机的需求不断增长

超过15,000架民航机的订单将重点放在钛合金的结构件、起落架和发动机部件上,因为更轻的重量意味着更低的油耗。 ATI公司2025年第一季66%的收入来自航太和国防领域,并与空中巴士公司签订了一份为期五年、价值10亿美元的供应合约。由于引擎需求激增,豪迈航空航太公司报告称,2024年第三季商用航太销售额成长了17%。钛合金的强度如今占喷射发动机重量的15%至25%,国防项目也因其隐身性和耐久性而指定使用这种合金。摆脱对俄罗斯原物料的依赖,促使企业与日本和中东的供应商建立新的伙伴关係,进而推动钛合金市场的生产整合。

军用地面车辆减重计划

为了在不牺牲防护性能的前提下提升航程和负载容量,国防规划人员正越来越多地用钛合金取代装甲、传动系统和悬吊中的钢材。美国国防部授予IperionX公司4,710万美元的合同,凸显了美国对安全、低成本钛合金技术的迫切需求。北约统一的材料规格标准将进一步推动跨国需求,而实地数据显示,钛合金零件取代钢材可节省15%至20%的燃油。先进的製造流程将缩短零件清单,减轻部署车辆的维护负担,从而推动钛合金市场的长期发展。

高昂的製造成本和复杂的冶金工艺

传统的克罗尔法每吨钛的能耗为11-13兆瓦时,使得钛的价格比铝高三到四倍,比钢高出10-15倍。反应冶金需要惰性气氛和专用切削液,这限制了下游加工的生产效率。氢辅助还原法可望降低加工温度,但尚未实现商业化。东京大学利用钇反应脱氧的技术具有降低成本的潜力,但工业规模化生产仍需数年时间。在新製程成熟之前,高昂的转换成本限制了钛合金的市场潜力。

细分市场分析

预计到2030年,β合金的复合年增长率将达到6.14%,其中α-β合金在2024年将占据钛合金市场51.67%的份额。 Ti-5553合金具有优异的铸造性能,并具有高强度重量比,这对于机翼贯穿件和起落架结构至关重要。对含锆和铪的高熵金属间化合物的研究表明,其在8%塑性应变下的屈服强度可达1.5 GPa,从而拓展了高超音速应用领域的选择。

积层製造技术的持续应用实现了近净成形生产,可将采购量与飞行量之比降低高达 60%,并为涡轮叶片复杂的冷却通道结构提供了支援。预计到本十年末,β 钛合金市场规模将占总规模的约 25%,这主要得益于粉末雾化能力和关键飞行硬体鑑定测试的协同效应。同时,市场对 500°C 以上温度的 α 和近 α 合金的需求也将持续成长,进而支撑燃气涡轮机和航太推进系统的需求。随着生产商对真空电弧重熔参数的标准化,合金化学成分将趋于稳定,从而提高航太和国防主要供应商的可靠性。

钛合金市场报告按微观结构(α相及近α相、α-β相、β相)、终端用户产业(航太、汽车和造船、化学、电力和海水淡化、医疗和人工植牙、其他终端用户产业)以及地区(亚太地区、北美、欧洲、南美、中东和非洲)进行细分。市场预测以销售量(千吨)为单位。

区域分析

到2024年,亚太地区将占全球钛合金市场41.35%的份额,其中中国以60%的全球钛合金产量位居榜首。然而,该地区航太认证方面的差异限制了钛合金在高端喷射机专案中的即时渗透。印度正与印度斯坦航空有限公司(HAL)和国防研究与发展组织(DRDO)合作,以确保其海绵钛的生产能力;澳洲矿业公司则在探索下游合金化,以进一步提升价值链上游的净利率。这些倡议总体上推动了钛合金产量的强劲成长,但品质方面的挑战依然存在。

中东和非洲地区正以5.94%的复合年增长率快速成长,并受益于沙乌地阿拉伯460亿美元的矿业策略。该策略旨在2030年将矿业在GDP中的比例提升至750亿美元,并将沙乌地阿拉伯打造成为中性钛供应国。儘管海绵钛产量有限,但北美地区的消费量仍居高不下。北卡罗来纳州坎伯兰县已获得一项价值8.67亿美元的投资,将透过氢辅助还原法重建国内产能。在加拿大,魁北克省一家水力发电钛铁矿企业正在探索向低碳海绵钛生产领域进行垂直整合。

在大西洋彼岸,欧洲的原始设备製造商(OEM)正与哈萨克和日本的供应商洽谈合资事宜,以平衡遵守制裁规定与生产连续性之间的关係。欧盟关键材料法正在加快挪威和西班牙海绵钛计划的授权。儘管南美洲仍主要出口粗矿,巴西国营开发银行已表示有兴趣共同出资在现有钛铁矿附近建造一座下游合金厂。整体而言,供应格局的变化正持续重塑钛合金市场。

其他福利:

  • Excel格式的市场预测(ME)表
  • 3个月的分析师支持

目录

第一章 引言

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章 市场情势

  • 市场概览
  • 市场驱动因素
    • 航太和国防飞机需求成长
    • 军用地面车辆减重计划
    • 扩大医疗和人工植牙治疗
    • 积层製造技术催生新型材料等级
    • 新兴氢能经济中的热交换器需求
  • 市场限制
    • 生产成本高且冶金製程复杂
    • 全球海绵生产能力有限
    • 对俄罗斯原物料的地缘政治依赖
  • 价值链分析
  • 波特五力分析
    • 供应商的议价能力
    • 买方的议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争对手之间的竞争

第五章 市场规模与成长预测

  • 透过微观结构
    • Alpha 和 Near Alpha
    • 阿尔法贝塔
    • 测试版
  • 按最终用户行业划分
    • 航太
    • 汽车和造船
    • 化学处理
    • 电力和海水淡化
    • 医疗和牙科植入
    • 其他终端用户产业(例如,石油和天然气)
  • 地理
    • 亚太地区
      • 中国
      • 日本
      • 印度
      • 韩国
      • 亚太其他地区
    • 北美洲
      • 美国
      • 加拿大
      • 墨西哥
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 义大利
      • 俄罗斯
      • 其他欧洲地区
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲国家
    • 中东和非洲
      • 沙乌地阿拉伯
      • 南非
      • 其他中东和非洲地区

第六章 竞争情势

  • 市场集中度
  • 策略趋势
  • 市占率(%)/排名分析
  • 公司简介
    • ATI
    • Alleima
    • AMG
    • BAOTI Group Co.,Ltd.
    • Corporation VSMPO-AVISMA
    • CRS Holdings, LLC
    • Daido Steel Co., Ltd.
    • Hermith GmbH
    • Howmet Aerospace
    • KOBE STEEL, LTD.
    • OSAKA Titanium Technologies Co.,Ltd.
    • Perryman Company
    • PJSC VSMPO-AVISMA Corporation
    • TIMET(Precision Castparts Corp.)
    • Toho Titanium Co., Ltd.
    • Weber Metals(OTTO FUCHS Kommanditgesellschaft)
    • Western Superconducting Technologies Co., Ltd

第七章 市场机会与未来展望

简介目录
Product Code: 52580

The Titanium Alloy Market size is estimated at 158.23 kilotons in 2025, and is expected to reach 204.46 kilotons by 2030, at a CAGR of 5.26% during the forecast period (2025-2030).

Titanium Alloy - Market - IMG1

Consistent order backlogs at Boeing and Airbus, revived defense procurement cycles, and a widening medical-implant customer base anchor demand. Sustained performance hinges on titanium's high strength-to-weight ratio, corrosion resistance, and biocompatibility, traits that continue to outweigh its higher production cost in critical applications. Producers are adding melt capacity, often through hydrogen-assisted reduction or additive manufacturing, to alleviate supply bottlenecks, while customers diversify sourcing to mitigate geopolitical risk. Cost-down innovation and regulatory push for fuel-efficient aircraft further reinforce the growth narrative of the titanium alloy market.

Global Titanium Alloy Market Trends and Insights

Growing Aerospace and Defense Airframe Demand

Orders exceeding 15,000 commercial aircraft place titanium squarely in structural, landing-gear, and engine components, where weight reduction translates into fuel savings. ATI drew 66% of Q1 2025 revenue from aerospace and defense and locked in a five-year USD 1 billion supply pact with Airbus. Howmet Aerospace recorded 17% commercial-aerospace sales growth in Q3 2024 on surging engine demand. Titanium intensity now reaches 15-25% of a jet engine's weight, while defense programs specify the alloy for stealth and durability. Diversification away from Russian feedstock is driving new partnerships with Japanese and Middle Eastern suppliers, reinforcing the titanium alloy market's production realignment.

Military Ground-Vehicle Light-Weighting Programs

Defense planners increasingly swap steel for titanium in armor, drivetrains, and suspensions to boost range and payload without sacrificing protection. The U.S. Department of Defense's USD 47.1 million award to IperionX underscores a national push for secure, low-cost titanium capacity. NATO standards that harmonize material specifications amplify cross-border demand, and field data show 15-20% fuel savings when titanium components replace steel. Advanced manufacturing shortens part lists, easing maintenance burden for deployed vehicle fleets and fueling long-run momentum in the titanium alloy market.

High Production Cost and Complex Metallurgy

The legacy Kroll route burns 11-13 MWh per ton, making titanium 3-4 times pricier than aluminum and 10-15 times pricier than steel. Reactive metallurgy demands inert atmospheres and specialized cutting fluids, hampering productivity in downstream machining. Hydrogen-assisted reduction pathways promise lower temperatures but remain pre-commercial. University of Tokyo techniques for oxygen removal via yttrium reactions offer potential cost savings, yet industrial scaling is several years. Until new processes mature, elevated conversion costs cap the full potential of the titanium alloy market.

Other drivers and restraints analyzed in the detailed report include:

  1. Expansion of Medical and Dental Implant Procedures
  2. Additive Manufacturing Unlocking Novel Grades
  3. Geopolitical Dependence on Russian Feedstock

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Beta alloys are projected to register a 6.14% CAGR through 2030, while Alpha-Beta grades retained 51.67% of the titanium alloy market share in 2024. Ti-5553 demonstrates superior castability, delivering high strength-to-weight ratios vital for wing-carry-throughs and landing-gear structures. Research into high-entropy intermetallics incorporating zirconium and hafnium achieves yield strengths of 1.5 GPa with 8% plastic strain, expanding options for hypersonic applications.

Ongoing additive-manufacturing deployments enable near-net-shape production, slashing buy-to-fly ratios by up to 60% and supporting intricate cooling-channel architectures in turbine blades. Beta alloys' titanium alloy market size is on track to close the decade at roughly 25% of overall volume, supported by synergistic gains in powder-atomization capacity and qualification tests for critical flight hardware. Parallel interest in Alpha and Near-Alpha alloys for temperatures above 500 °C preserves demand in gas turbines and space-propulsion contexts. As producers standardize vacuum-arc-remelting parameters, alloy chemistries stabilize, improving confidence among aerospace and defense primes.

The Titanium Alloy Report is Segmented by Microstructure (Alpha and Near-Alpha, Alpha-Beta, and Beta), End-User Industry (Aerospace, Automotive and Shipbuilding, Chemical Processing, Power and Desalination, Medical and Dental Implants, and Other End-User Industries), and Geography (Asia-Pacific, North America, Europe, South America, and Middle-East and Africa). The Market Forecasts are Provided in Terms of Volume (Kilotons).

Geography Analysis

Asia-Pacific commanded 41.35% of the titanium alloy market in 2024, anchored by China's 60% share of global metal output. However, the region's aerospace certification gap curtails immediate penetration into high-value jet programs. India collaborates with HAL and DRDO on indigenous sponge capacity, while Australian miners explore downstream alloying to capture margin farther along the value chain. These initiatives collectively support robust volume gains, although quality hurdles remain.

The Middle East and Africa region, expanding at a 5.94% CAGR, benefits from Saudi Arabia's USD 46 billion mining strategy, which aims to lift mining GDP share to 75 billion by 2030 and position the kingdom as a neutral titanium supplier. North American consumption stays high despite minimal sponge output. Cumberland County, North Carolina, secured a USD 867 million plant to rebuild domestic capacity with hydrogen-assisted reduction that could supply 10,000 tons annually once fully operational. In Canada, Quebec's hydro-powered ilmenite operations explore vertically integrating into low-carbon sponge.

Across the Atlantic, European OEMs juggle sanction compliance and production continuity, prompting joint-venture discussions with Kazakh and Japanese suppliers; the EU's Critical Raw Materials Act expedites permitting for sponge projects in Norway and Spain. South America remains largely a raw-ore exporter, but Brazil's state development bank signals interest in co-financing downstream alloy plants near existing ilmenite mines. Overall, shifting supply footprints continue to reshape the titanium alloy market.

  1. ATI
  2. Alleima
  3. AMG
  4. BAOTI Group Co.,Ltd.
  5. Corporation VSMPO-AVISMA
  6. CRS Holdings, LLC
  7. Daido Steel Co., Ltd.
  8. Hermith GmbH
  9. Howmet Aerospace
  10. KOBE STEEL, LTD.
  11. OSAKA Titanium Technologies Co.,Ltd.
  12. Perryman Company
  13. PJSC VSMPO-AVISMA Corporation
  14. TIMET (Precision Castparts Corp.)
  15. Toho Titanium Co., Ltd.
  16. Weber Metals (OTTO FUCHS Kommanditgesellschaft)
  17. Western Superconducting Technologies Co., Ltd

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 Introduction

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 Research Methodology

3 Executive Summary

4 Market Landscape

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Growing Aerospace and Defense Airframe Demand
    • 4.2.2 Military Ground-Vehicle Light-Weighting Programs
    • 4.2.3 Expansion of Medical and Dental Implant Procedures
    • 4.2.4 Additive Manufacturing Unlocking Novel Grades
    • 4.2.5 Heat-Exchanger Demand in Emerging Hydrogen Economy
  • 4.3 Market Restraints
    • 4.3.1 High Production Cost and Complex Metallurgy
    • 4.3.2 Limited Global Sponge Capacity
    • 4.3.3 Geopolitical Dependence on Russian Feedstock
  • 4.4 Value Chain Analysis
  • 4.5 Porter's Five Forces Analysis
    • 4.5.1 Bargaining Power of Suppliers
    • 4.5.2 Bargaining Power of Buyers
    • 4.5.3 Threat of New Entrants
    • 4.5.4 Threat of Substitutes
    • 4.5.5 Competitive Rivalry

5 Market Size and Growth Forecasts (Volume)

  • 5.1 By Microstructure
    • 5.1.1 Alpha and Near-Alpha
    • 5.1.2 Alpha-Beta
    • 5.1.3 Beta
  • 5.2 By End-User Industry
    • 5.2.1 Aerospace
    • 5.2.2 Automotive and Shipbuilding
    • 5.2.3 Chemical Processing
    • 5.2.4 Power and Desalination
    • 5.2.5 Medical and Dental Implants
    • 5.2.6 Other End-user Industries (Oil and Gas, etc.)
  • 5.3 Geography
    • 5.3.1 Asia-Pacific
      • 5.3.1.1 China
      • 5.3.1.2 Japan
      • 5.3.1.3 India
      • 5.3.1.4 South Korea
      • 5.3.1.5 Rest of Asia-Pacific
    • 5.3.2 North America
      • 5.3.2.1 United States
      • 5.3.2.2 Canada
      • 5.3.2.3 Mexico
    • 5.3.3 Europe
      • 5.3.3.1 Germany
      • 5.3.3.2 United Kingdom
      • 5.3.3.3 France
      • 5.3.3.4 Italy
      • 5.3.3.5 Russia
      • 5.3.3.6 Rest of Europe
    • 5.3.4 South America
      • 5.3.4.1 Brazil
      • 5.3.4.2 Argentina
      • 5.3.4.3 Rest of South America
    • 5.3.5 Middle-East and Africa
      • 5.3.5.1 Saudi Arabia
      • 5.3.5.2 South Africa
      • 5.3.5.3 Rest of Middle-East and Africa

6 Competitive Landscape

  • 6.1 Market Concentration
  • 6.2 Strategic Moves
  • 6.3 Market Share (%)**/Ranking Analysis
  • 6.4 Company Profiles (includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products and Services, and Recent Developments)
    • 6.4.1 ATI
    • 6.4.2 Alleima
    • 6.4.3 AMG
    • 6.4.4 BAOTI Group Co.,Ltd.
    • 6.4.5 Corporation VSMPO-AVISMA
    • 6.4.6 CRS Holdings, LLC
    • 6.4.7 Daido Steel Co., Ltd.
    • 6.4.8 Hermith GmbH
    • 6.4.9 Howmet Aerospace
    • 6.4.10 KOBE STEEL, LTD.
    • 6.4.11 OSAKA Titanium Technologies Co.,Ltd.
    • 6.4.12 Perryman Company
    • 6.4.13 PJSC VSMPO-AVISMA Corporation
    • 6.4.14 TIMET (Precision Castparts Corp.)
    • 6.4.15 Toho Titanium Co., Ltd.
    • 6.4.16 Weber Metals (OTTO FUCHS Kommanditgesellschaft)
    • 6.4.17 Western Superconducting Technologies Co., Ltd

7 Market Opportunities and Future Outlook

  • 7.1 White-space and Unmet-Need Assessment