封面
市场调查报告书
商品编码
1852061

雷射:市场份额分析、行业趋势、统计数据和成长预测(2025-2030 年)

Lasers - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

全球雷射市场预计到 2025 年将达到 214.3 亿美元,到 2030 年将达到 301.4 亿美元,同期复合年增长率为 7.06%。

雷射市场-IMG1

这一扩张反映了精密微加工、积层製造、自动驾驶和下一代显示器製造等领域的日益增长的应用需求。用于加工10奈米以下半导体特征的超快脉衝光源和用于切割厚金属板的千瓦级光纤系统正逐渐成为大批量工厂的主流应用。政府资助的光电丛集正在加速亚太地区的生态系统发展,而积层製造正在减少材料浪费并缩短航太零件的生产週期。镓、锗和磷化铟基板的供应链风险仍然是一个不利因素,但温度控管和光束合成架构方面的创新不断突破可实现功率输出的上限。

全球雷射市场趋势与洞察

半导体后端封装领域对高精度微加工的需求快速成长

扇出型晶圆层次电子构装和玻璃通孔製程指定使用飞秒雷射和准分子雷射光源,以实现小于10µm的特征尺寸和脉衝间能量偏差小于1%的加工,从而确保在300mm晶圆上形成均匀的通孔。以雷射成型的微凸点取代引线接合法可将互连电阻降低40%,为3D晶片堆迭铺路。原位监测和同步光束整形模组可提高产量比率并降低大量生产工厂的废品率。亚太地区的代工厂持续采购承包雷射工作站,其性能显着优于超快光源供应商。随着封装生产线节拍时间的缩短,对更高重复频率的需求预计将推高高阶超快雷射的平均售价。

雷射技术在航太高温合金零件增材製造的应用日益广泛

目前,主要的航太製造商正在认证粉末层熔融光纤雷射器,用于加工钛铝合金和镍基高温合金,材料利用率超过95%,显着优于减材製造製程。动态光束整形技术可将製造週期缩短40%,并将消费量降低60%。雷射列印零件现已明确纳入AS9100标准修订版,简化了认证流程。美国和欧洲的引擎计画越来越多地采用「列印优先」的零件形状设计,这些形状无法透过机械加工经济地实现。这种转变将雷射需求与宽体飞机的升级改造以及计划在本十年后半期投入使用的超音速推进计划紧密联繫起来。

高等级砷化镓/磷化铟外延片持续短缺

镓和锗的出口限制加剧了化合物半导体基板的短缺,而这些基板对于高功率雷射二极体至关重要。批次间热导率的差异迫使雷射製造商进行漫长的重新认证週期,导致出货速度减慢,库存积压增加。北美和欧洲的新兴企业正在规划新的晶体生长工厂,但设备前置作业时间和製程技术的限制将使大规模生产推迟到2027年及以后。高价基板导致材料成本出现两位数的成长,尤其是对于工作在高结温下的雷射雷达和电信雷射。製造商正在尝试使用硅基中介层来扩大现有外延片的供应,但性能损失仍然十分显着。

细分市场分析

光纤雷射器凭藉其稳定的光束品质、全光纤架构和极低的维护需求,将在2024年占据全球雷射市场41.8%的份额。然而,随着定向能量武器和核融合实验对兆瓦级光链路的需求,固态雷射平台将在2030年前以9.3%的复合年增长率实现最快成长。预计到2030年,全球固态雷射器市场规模将超过50亿美元,反映了国防资金的持续投入。混合配置,即把板状增益介质熔接到铠装光纤传输线中,有助于突破单纤功率限制,同时保持亮度。二氧化碳雷射在厚截面切割领域仍占据重要地位,而二极体雷射在泵浦阵列和直写应用中不断扩展。准分子雷射和紫外线雷射对于100奈米以下的半导体微影术至关重要,儘管代工厂资本支出存在週期性波动,但它们的需求仍然保持稳定。

对分散式增益架构的持续研究有望在不引起热致模式不稳定性的情况下实现功率扩展。虽然自由电子和量子连锁技术目前仍占据着小众光谱区域,但紧凑型加速器架构的突破最终可能使中红外线的应用更加普及。 IEC 60825-1 的安全合规性将影响机壳设计,并进而影响高度自动化工厂的总土地成本。随着应用边界日益模糊,能够将光纤的可靠性与固态元件的强大性能相结合的供应商将获得显着的市场份额。

至2024年,材料加工领域将维持在全球雷射市场30.5%的份额,涵盖汽车、航太和一般工业领域的切割、焊接、钻孔和积层製造流程。然而,以光达和光谱模组为代表的感测器应用将在本十年末缩小这一差距,实现8.7%的复合年增长率。重工业订单仍呈现週期性波动,但棕地工厂的改装工程将维持基准产量。同时,医疗和美容领域的门诊手术量正在增加,这些手术创伤小、恢復快。

微影术的投资依赖于顶级代工厂的先进节点灯,这些灯具在每个极紫外线扫描仪中整合了多个高重复频率的准分子光源。下一代显示器依靠超快速修復技术来维持产量比率,从而提高面板利润率。军方采购用于反无人机系统的高能係统不仅创造了可观的收入来源,也增加了对基础光学研究的公共资金投入。边缘和云端资料中心的激增推动了光互连需求的成长,进而推动了通讯雷射的销量,并增强了全球雷射市场应用组合的多样性。

区域分析

预计到2024年,亚太地区将占全球雷射市场的46.9%,到2030年将以8.3%的复合年增长率成长。中国在先进微影术节点所需的准分子雷射和超快雷射供应方面处于领先地位,而日本则专注于对光束品质要求极高的精密加工应用。韩国的OLED和microLED生产线保持着较高的运转率,从而获得了持续的雷射服务合约。印度的生产连结奖励计划鼓励工具机製造商实现雷射切割和焊接产能的本地化,从而扩大了潜在需求。台湾和新加坡分别凭藉其化合物半导体和精密工程产业丛集贡献了部分市场份额。

北美位居第二,这主要得益于航太製造业的成长以及兆瓦级定向能係统的国防合约。美国「美国製造」(Manufacturing USA)旗下的光电)正在扶持整合光电和量子连锁设计领域的新兴企业公司。加拿大材料科学研究所(Materials Science Institute)正与当地机械加工厂合作,试验雷射覆层和硬化技术;墨西哥电动车走廊(Electric Vehicle Corridor)则正在扩大用于电池托盘的光纤雷射焊接规模。美墨加协定(USMCA)的协调促进了跨境供应链的发展,但出口限制使得高功率元件难以出口到某些特定目的地。此外,环境监测法规也刺激了国内对中红外线气体检测模组的需求。

欧洲凭藉德国领先的机械製造商和法国国防整合商对高能量研究的支持,在雷射技术领域占据了显着份额。英国正在利用雷射消熔技术进行航太复合材料加工,以最大限度地减少分层缺陷;而一家义大利超级跑车製造商则正在使用多千瓦级碟片雷射高效焊接铝製底盘。欧盟范围内的法规,包括《机械指令》和IEC 60825-1标准,促使出口级系统内建安全特性。像DioHELIOS这样的合作计画体现了欧洲对核融合能源赋能技术的重视,该联盟汇集二极体雷射的专业知识,以推动成本效益高的规模化生产。绿色氢能倡议的兴起进一步激发了全部区域对雷射板材切割和管道焊接技术的兴趣。

其他福利:

  • Excel格式的市场预测(ME)表
  • 3个月的分析师支持

目录

第一章 引言

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章 市场情势

  • 市场概览
  • 市场驱动因素
    • 半导体封装领域对高精度微加工技术的需求快速成长
    • 雷射在积层製造的应用日益广泛
    • 增加光达雷射的安装量
    • 超快雷射技术的拓展应用
    • 政府资助的光电丛集推动区域製造业生态系发展
    • 千瓦级光纤雷射的性价比快速提升
  • 市场限制
    • 高等级砷化镓/磷化铟外延片持续短缺
    • 限制向某些国家出口高功率雷射的出口管制制度
    • 30kW以上功率的温度控管挑战限制了切割厚度蓝图
    • 分散的安全标准增加了原始设备製造商的认证成本。
  • 价值链分析
  • 技术展望
  • 监管环境
  • 波特五力分析
    • 供应商的议价能力
    • 买方的议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争程度

第五章 市场规模与成长预测

  • 依雷射类型
    • 光纤雷射
    • 二极体雷射
    • 二氧化碳雷射
    • 固态雷射
    • 准分子雷射与紫外线雷射器
    • 其他类型(量子连锁、自由电子)
  • 透过使用
    • 材料加工(切割、焊接、钻孔)
    • 通讯和光互连
    • 医疗美容
    • 微影术和半导体计量
    • 军事/国防
    • 显示器(OLED、Micro-LED、投影)
    • 感测器(光达、光谱学)
    • 印刷和标记
  • 透过输出
    • 低功率(小于1千瓦)
    • 中等功率(1-3千瓦)
    • 高功率(超过3千瓦)
  • 按操作模式
    • 连续波(CW)
    • 脉衝(奈秒、皮秒、飞秒)
  • 按最终用户行业划分
    • 电子和半导体
    • 工业机械
    • 卫生保健
    • 航太/国防
    • 研究与学术
  • 按地区
    • 北美洲
      • 美国
      • 加拿大
      • 墨西哥
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美洲国家
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 义大利
      • 其他欧洲地区
    • 亚太地区
      • 中国
      • 日本
      • 韩国
      • 印度
      • 亚太其他地区
    • 中东
      • 沙乌地阿拉伯
      • 阿拉伯聯合大公国
      • 其他中东地区
    • 非洲
      • 南非
      • 其他非洲地区

第六章 竞争情势

  • 市场集中度
  • 策略趋势
  • 市占率分析
  • 公司简介
    • Coherent Corp.
    • IPG Photonics Corporation
    • TRUMPF SE+Co. KG
    • nLIGHT, Inc.
    • Lumentum Holdings Inc.
    • Jenoptik AG
    • Novanta, Inc.
    • Lumibird SA
    • Wuhan Raycus Fiber Laser Technologies Co. Ltd
    • Hans Laser Technology Industry Group Co., Ltd.
    • Maxphotonics Co., Ltd.
    • Keyence Corporation
    • EKSPLA UAB
    • MKS Instruments, Inc.(Spectra-Physics)
    • Panasonic Corporation
    • EdgeWave GmbH
    • Civan Lasers Ltd.
    • Synrad Laser Division
    • Amonics Ltd.
    • TOPTICA Photonics AG

第七章 市场机会与未来展望

简介目录
Product Code: 61481

The global lasers market size stood at USD 21.43 billion in 2025 and is forecast to reach USD 30.14 billion by 2030, posting a 7.06% CAGR through the period.

Lasers - Market - IMG1

This expansion reflects rising deployment across precision micromachining, additive manufacturing, autonomous mobility, and next-generation display production. Ultrafast pulse sources that machine sub-10 nm semiconductor features and kW-class fiber systems that cut thicker metal sheets are now mainstream in high-volume factories. Government-funded photonics clusters accelerate ecosystem development in Asia-Pacific, while additive manufacturing lasers lower material waste in aerospace components and shorten production cycles. Supply chain risks around gallium, germanium, and indium phosphide substrates remain a headwind, yet innovations in thermal management and beam-combining architectures continue to raise attainable power ceilings.

Global Lasers Market Trends and Insights

Surging Demand for High-Precision Micromachining in Semiconductor Back-End Packaging

Fan-Out Wafer Level Packaging and Through-Glass Via processes specify femtosecond and excimer sources that deliver sub-10 µm features with under-1% pulse-to-pulse energy deviation, ensuring uniform via formation across full 300 mm wafers. Replacing wire bonding with laser-formed micro-bumps reduces interconnect resistance by 40% and opens the path to three-dimensional chip stacks. Beam-shaping modules synchronized with in-situ monitoring raise yield and lower scrap rates in high-volume fabs. Asia-Pacific foundries continue to procure turnkey laser stations, creating a substantial pull on ultrafast source suppliers. As packaging line takt times tighten, demand for even higher repetition rates is expected to lift average selling prices in the premium ultrafast tier.

Growing Adoption of Additive Manufacturing Lasers for Aerospace Super-Alloy Parts

Aerospace primes now qualify powder-bed-fusion fiber lasers that process titanium aluminide and nickel super-alloys at material utilization rates above 95%, sharply outperforming subtractive machining. Dynamic beam shaping shortens build cycles by 40% and lowers energy consumption by 60%, while maintaining microstructure integrity critical for flight hardware. AS9100 revisions explicitly reference laser-printed parts, simplifying certification workflows. U.S. and European engine programs increasingly design for "print-first" geometries that cannot be machined economically. The shift ties laser demand to wide-body fleet renewal and hypersonic propulsion projects scheduled for late-decade entry into service.

Persistent Shortages of High-Grade Gallium Arsenide/Indium Phosphide Epi-Wafers

Export curbs on gallium and germanium intensify the scarcity of compound semiconductor substrates vital for high-power laser diodes. Variability in thermal conductivity across lots forces laser makers into lengthy re-qualification cycles, delaying shipments and elevating inventory buffers. Start-ups in North America and Europe plan new crystal-growth fabs, but tooling lead times and process know-how push meaningful volumes past 2027. Premium substrate pricing inflates the bill of materials by double digits, particularly for LiDAR and telecom lasers operating at elevated junction temperatures. Manufacturers are experimenting with silicon-based interposers to stretch the existing epi-wafer supply, yet performance penalties remain non-trivial.

Other drivers and restraints analyzed in the detailed report include:

  1. Rising Installation of LiDAR Lasers in Autonomous Mobility Stacks
  2. Expanding Use of Ultrafast Lasers for Next-Gen OLED and Micro-LED Display Repair
  3. Export-Control Regimes Limiting High-Power Laser Shipments to Certain Countries

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Fiber lasers held 41.8% of the global lasers market in 2024 thanks to robust beam quality, all-fiber architectures, and minimal service needs. Solid-state platforms, however, register the swiftest 9.3% CAGR to 2030 as directed-energy weapons and fusion experiments demand multi-megawatt optical chains. The global lasers market size for solid-state devices is projected to cross USD 5 billion by 2030, reflecting defense funding pipelines. Hybrid configurations that splice slab gain media into armored fiber delivery lines help transcend single-fiber power ceilings while preserving brightness. CO2 sources persist in thick-section cutting, whereas diode lasers expand in pump arrays and direct-write applications. Excimer and UV variants remain indispensable in sub-100 nm semiconductor lithography, anchoring steady demand despite cyclical foundry capex.

Ongoing research into distributed-gain architectures promises power scaling without thermally induced mode instabilities. Free-electron and quantum cascade technologies still occupy niche spectroscopy realms, but breakthroughs in compact accelerator structures could eventually democratize mid-infrared access. Safety compliance under IEC 60825-1 shapes enclosure designs, influencing total landed cost in high-automation factories. Vendors that fuse fiber reliability with solid-state punch position themselves to capture outsized share as application boundaries blur.

Materials processing retained a 30.5% share of the global lasers market in 2024, spanning cutting, welding, drilling, and additive build processes across automotive, aerospace, and general industry. Yet sensor deployments, notably LiDAR and spectroscopy modules, post an 8.7% CAGR, poised to narrow the gap by decade-end. Heavy-industry orders remain cyclical, but retrofit programs in brownfield plants sustain baseline volume. In parallel, medical and aesthetic lasers harvest incremental growth from outpatient procedures that favor low invasiveness and quick recovery.

Lithography expenditures hinge on advanced-node ramps at the top foundries, with each EUV scanner embedding multiple high-repetition excimer sources. Next-generation displays rely on ultrafast repair to maintain yield, unlocking higher panel profit margins. Military procurement of high-energy systems for counter-UAS duties injects lumpiness but also elevates public-sector funding for fundamental optics research. As edge and cloud data centers mushroom, optical interconnect demand boosts telecom laser volumes, reinforcing the application mix diversity within the global lasers market.

The Lasers Market Report is Segmented by Laser Type (Fiber Lasers, Diode Lasers, and More), Application (Materials Processing, and More), Power Output (Low-Power, Medium-Power, High-Power), Mode of Operation (Continuous-Wave, Pulsed), End-User Industry (Electronics and Semiconductor, and More), and Geography (North America, South America, Europe, Asia-Pacific, and More). The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

Asia-Pacific controlled 46.9% of the global lasers market in 2024 and is projected to compound at 8.3% CAGR to 2030, propelled by dense semiconductor fabs, burgeoning display lines, and state-backed photonics parks. China leads excimer and ultrafast procurement for advanced lithography nodes, while Japan refines precision machining applications that demand superior beam quality. South Korea's OLED and micro-LED lines maintain high utilization, feeding sustained laser service contracts. India's Production-Linked Incentive schemes entice machine-tool makers to localize laser cutting and welding capacities, widening addressable demand. Taiwan and Singapore contribute niche volumes from compound semiconductor and precision engineering clusters, respectively.

North America ranks second, buoyed by aerospace build rates and defense contracts for megawatt-class directed-energy systems. U.S. photonics hubs under the Manufacturing USA umbrella foster start-up formation in integrated photonics and quantum cascade designs. Canada's materials-science institutes partner with local machine shops to trial laser cladding and hardening, while Mexico's electric-vehicle corridor scales fiber-laser welding for battery trays. Cross-border supply chains benefit from USMCA harmonization, though export controls constrain outbound shipments of high-power units to certain destinations. Environmental-monitoring mandates also spur domestic demand for mid-infrared gas-sensing modules.

Europe holds notable share through Germany's machinery giants and France's defense integrators that champion high-energy research lasers. The United Kingdom pursues aerospace composites processing with laser ablation to minimize delamination defects, and Italy's super-car makers adopt multi-kW disk lasers to weld aluminum chassis efficiently. EU-wide regulations, including the Machinery Directive and IEC 60825-1 alignment, shape safety features embedded in export-grade systems. Collaborative programs like DioHELIOS illustrate Europe's focus on fusion-energy enablers, with consortiums pooling diode-laser expertise to drive cost-effective scaling. Growing green-hydrogen initiatives further elevate interest in laser-based plate cutting and pipe welding across the region.

  1. Coherent Corp.
  2. IPG Photonics Corporation
  3. TRUMPF SE + Co. KG
  4. nLIGHT, Inc.
  5. Lumentum Holdings Inc.
  6. Jenoptik AG
  7. Novanta, Inc.
  8. Lumibird SA
  9. Wuhan Raycus Fiber Laser Technologies Co. Ltd
  10. Hans Laser Technology Industry Group Co., Ltd.
  11. Maxphotonics Co., Ltd.
  12. Keyence Corporation
  13. EKSPLA UAB
  14. MKS Instruments, Inc. (Spectra-Physics)
  15. Panasonic Corporation
  16. EdgeWave GmbH
  17. Civan Lasers Ltd.
  18. Synrad Laser Division
  19. Amonics Ltd.
  20. TOPTICA Photonics AG

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Surging demand for high-precision micromachining in semiconductor back-end packaging
    • 4.2.2 Growing adoption of additive manufacturing lasers
    • 4.2.3 Rising installation of LiDAR lasers
    • 4.2.4 Expanding use of ultrafast lasers
    • 4.2.5 Government-funded photonics clusters driving regional manufacturing ecosystems
    • 4.2.6 Rapid price/performance improvements in kW-class fiber lasers
  • 4.3 Market Restraints
    • 4.3.1 Persistent shortages of high-grade gallium arsenide/indium phosphide epi-wafers
    • 4.3.2 Export-control regimes limiting high-power laser shipments to certain countries
    • 4.3.3 Thermal-management challenges above 30 kW limiting cutting-thickness roadmap
    • 4.3.4 Fragmented safety standards increasing certification costs for OEMs
  • 4.4 Value Chain Analysis
  • 4.5 Technological Outlook
  • 4.6 Regulatory Landscape
  • 4.7 Porter's Five Forces Analysis
    • 4.7.1 Bargaining Power of Suppliers
    • 4.7.2 Bargaining Power of Buyers
    • 4.7.3 Threat of New Entrants
    • 4.7.4 Threat of Substitutes
    • 4.7.5 Degree of Competition

5 MARKET SIZE AND GROWTH FORECASTS (VALUE)

  • 5.1 By Laser Type
    • 5.1.1 Fiber Lasers
    • 5.1.2 Diode Lasers
    • 5.1.3 CO2 Lasers
    • 5.1.4 Solid-State Lasers
    • 5.1.5 Excimer and Ultraviolet Lasers
    • 5.1.6 Other Types (Quantum Cascade, Free-Electron)
  • 5.2 By Application
    • 5.2.1 Materials Processing (Cutting, Welding, Drilling)
    • 5.2.2 Communications and Optical Interconnects
    • 5.2.3 Medical and Aesthetic
    • 5.2.4 Lithography and Semiconductor Metrology
    • 5.2.5 Military and Defense
    • 5.2.6 Displays (OLED, Micro-LED, Projection)
    • 5.2.7 Sensors (LiDAR, Spectroscopy)
    • 5.2.8 Printing and Marking
  • 5.3 By Power Output
    • 5.3.1 Low-Power (Less than 1 kW)
    • 5.3.2 Medium-Power (1-3 kW)
    • 5.3.3 High-Power (More than 3 kW)
  • 5.4 By Mode of Operation
    • 5.4.1 Continuous-Wave (CW)
    • 5.4.2 Pulsed (ns, ps, fs)
  • 5.5 By End-User Industry
    • 5.5.1 Electronics and Semiconductor
    • 5.5.2 Automotive
    • 5.5.3 Industrial Machinery
    • 5.5.4 Healthcare
    • 5.5.5 Aerospace and Defense
    • 5.5.6 Research and Academia
  • 5.6 By Geography
    • 5.6.1 North America
      • 5.6.1.1 United States
      • 5.6.1.2 Canada
      • 5.6.1.3 Mexico
    • 5.6.2 South America
      • 5.6.2.1 Brazil
      • 5.6.2.2 Argentina
      • 5.6.2.3 Rest of South America
    • 5.6.3 Europe
      • 5.6.3.1 Germany
      • 5.6.3.2 United Kingdom
      • 5.6.3.3 France
      • 5.6.3.4 Italy
      • 5.6.3.5 Rest of Europe
    • 5.6.4 Asia-Pacific
      • 5.6.4.1 China
      • 5.6.4.2 Japan
      • 5.6.4.3 South Korea
      • 5.6.4.4 India
      • 5.6.4.5 Rest of Asia-Pacific
    • 5.6.5 Middle East
      • 5.6.5.1 Saudi Arabia
      • 5.6.5.2 United Arab Emirates
      • 5.6.5.3 Rest of Middle East
    • 5.6.6 Africa
      • 5.6.6.1 South Africa
      • 5.6.6.2 Rest of Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Strategic Moves
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles (includes Global-level Overview, Market-level Overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share, Products and Services, Recent Developments)
    • 6.4.1 Coherent Corp.
    • 6.4.2 IPG Photonics Corporation
    • 6.4.3 TRUMPF SE + Co. KG
    • 6.4.4 nLIGHT, Inc.
    • 6.4.5 Lumentum Holdings Inc.
    • 6.4.6 Jenoptik AG
    • 6.4.7 Novanta, Inc.
    • 6.4.8 Lumibird SA
    • 6.4.9 Wuhan Raycus Fiber Laser Technologies Co. Ltd
    • 6.4.10 Hans Laser Technology Industry Group Co., Ltd.
    • 6.4.11 Maxphotonics Co., Ltd.
    • 6.4.12 Keyence Corporation
    • 6.4.13 EKSPLA UAB
    • 6.4.14 MKS Instruments, Inc. (Spectra-Physics)
    • 6.4.15 Panasonic Corporation
    • 6.4.16 EdgeWave GmbH
    • 6.4.17 Civan Lasers Ltd.
    • 6.4.18 Synrad Laser Division
    • 6.4.19 Amonics Ltd.
    • 6.4.20 TOPTICA Photonics AG

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-space and Unmet-need Assessment