全球氢能市场展望——全价值链概述与分析、29个国家的氢能战略以及39个大型氢谷、10家主要公司、电解槽、压缩机和燃料电池製造商概况
市场调查报告书
商品编码
1324417

全球氢能市场展望——全价值链概述与分析、29个国家的氢能战略以及39个大型氢谷、10家主要公司、电解槽、压缩机和燃料电池製造商概况

Global Hydrogen Market Outlook - Overview & Analysis of Entire Value Chain, including 29 National Hydrogen Strategies & 39 Large-scale Hydrogen Valleys, plus 10 Leading Companies & Profiles of Electrolyzers, Compressors, and Fuel Cell Manufacturers

出版日期: | 出版商: PTR Inc. | 英文 297 Pages | 商品交期: 2-3个工作天内

价格
简介目录

本报告调查了全球氢市场,提供了29个国家、39个氢谷、10家电解槽、压缩机和燃料电池製造商的氢战略信息,以及氢生产和最终用途的信息。我们提供了详细的信息整个氢价值链的分析。

事实/数据点

  • 2020 年,全球涉及能源电解槽安装的项目竣工量预计达到 65 MWe,到 2021 年将大幅增加至 286 MWe。
  • 根据在约 30 个国家规划的一系列小型项目,到 2026 年,全球电解槽发电量可能达到约 17GW。
  • 根据规划的大型项目,到2026年全球电解槽产能将达到8.7GW。
  • 如果计划项目到 2026 年投入运营,中国、智利、西班牙和澳大利亚将总共提供 18GW 额外可再生能源产能中的 85% 用于绿色氢生产。
  • 来自价值链各个环节的 750 多个项目已在欧洲宣布,预计将于 2025 年投入运营。
  • 自本世纪初以来,全球氢需求以 2% 的复合年增长率增长,从 60 吨增至 90 吨。
  • 到 2050 年,全球所有氢气生产商的氢气需求预计将达到约 500 公吨。
  • 在欧洲,已有 18 个国家宣布了国家氢能战略,其中欧洲在发布的国家氢能战略数量方面处于领先地位。
  • 紧随欧洲之后的是亚太地区 (5)、美洲 (4) 和中东/非洲 (2)。
  • 全球 21 个国家有 39 个氢谷。
  • 氢谷将作为新氢经济的平台,97%的氢气生产集中在利用自然能源电解制氢。
  • 聚合物电解质膜(PEM)技术是这些山谷中采用最多的绿色制氢电解技术,占总数的50%,其次是碱性电解技术,占13%。 这些山谷中产生的氢气的88%优选以压缩氢气或液态氢的形式储存。
  • 85%的氢气通过卡车和管道运输,其中50%用于化工、炼油和钢铁行业。

目录

第 1 章概述

  • i. 氢的性质
  • ii. 氢作为能量载体。 为什么现在?

第二章价值链分析

  • i. 生产
    • i. 氢的类型
    • ii. 各种颜色的氢
    • iii. 制氢工艺
    • iv.制氢技术
    • 诉蓝氢:欺诈还是救世主?
    • vi.电解生产绿色氢气
    • 七、电解槽技术对比分析
    • 八、全球主要电解槽製造基地
  • ii. 存储
    • a.现有储氢技术
    • b. 最新储氢技术
  • iii. 交通
    • a. 氢气运输方式概述
    • b. 潜在氢载体的比较
    • c. 潜在氢载体的成本比较
  • iv. 最终用途消耗
    • a. 炼油作业中的氢气
      • 一、炼油作业中氢气的生产和消耗
      • 二、炼油作业中氢处理流程图
      • III.炼油作业中的氢气压缩机
    • b. 氨生产中的氢气
      • 一、哈伯-博世法生产氨
    • c. 钢铁製造中的氢
      • 一、直接还原铁(DRI)法炼钢
      • II. 奥图泰 - 还原直接炼铁工艺
      • III. Midrex H2 直接还原铁工艺
    • d. 石化工业中的氢气
    • e. 建筑中的氢
    • f. 电力行业中的氢
    • g. 移动出行中的氢(公路运输)
      • 一、纯电动汽车与氢燃料电池汽车对比分析
      • II. FCEV 与 BEV 相比的局限性和优势
    • h. 航空中的氢
    • i. 铁路中的氢气
    • j. 氢在海洋中的应用

第 3 章氢需求预测:未来 30 年概述

  • i. 全球氢需求的驱动因素
  • ii. 2021 年全球氢需求展望
  • iii.氢市场的主要限制因素和驱动因素
  • iv. 全球氢气需求预测
    • a. 高级情况
    • b. 基本场景
    • c. 低情况场景
    • v.未来30年氢气需求分析

第 4 章氢的地理重要性

  • i. 氢在世界各地的可能性
  • ii. 世界各国氢能战略概述
  • iii. 世界氢谷
  • iv. 全球主要企业

第五章国家氢能战略

  • i. 美洲
    • a. 区域概览
    • b. 各国概况
      • I. 加拿大
      • II. 智利
      • III. 哥伦比亚
      • IV. 乌拉圭
  • ii. 亚太地区
    • a. 区域概览
    • b. 各国概况
      • I. 澳大利亚
      • II. 印度
      • III. 日本
      • IV. 韩国
  • iii. 欧洲
    • a. 区域概览
      • 一、欧盟
    • b. 各国概况
      • I. 奥地利
      • II. 比利时
      • III. 捷克共和国
      • IV. 丹麦
      • V. 芬兰
      • VI. 法国
      • VII. 匈牙利
      • VIII. 意大利
      • 九、荷兰
      • X. 挪威
      • 十一、波兰
      • 十二. 葡萄牙
      • 十三、俄罗斯
      • 十四. 斯洛伐克
      • XV. 西班牙
      • XVI. 瑞典
      • XVII. 英国
  • iv. 中东/非洲
    • a. 区域概览
    • b. 各国概况
      • I. 摩洛哥
      • II. 南非
  • v. 正在製定的战略
    • a. 中国
    • b. 新西兰
    • c. 美国

第六章大规模氢谷

  • i. 美洲
    • a. 氢谷详细概述
    • b. 氢谷:按应用分类
  • ii. 亚太地区
    • a. 氢谷详细概述
    • b. 氢谷:按应用分类
  • iii. 欧洲
    • a. 氢谷详细概述
    • b. 氢谷:按应用分类
  • iv. 中东/非洲
    • a. 氢谷详细概述
    • b. 氢谷:按应用分类

第七章公司简介

  • i. 电解槽製造商
    • a. Enapter
    • b. NEL Hydrogen
    • c. ITM Power
    • d. Plug Power
    • e. Sunfire
    • f. McPhy
    • g. Elogen
    • h. Green Hydrogen Systems
    • i. Ohmium
    • j. Thyssenkrupp
  • ii. 压缩机製造商
    • a. PDC Machines
    • b. Sundyne
    • c. NASH
    • d. Baker Hughes
    • e. Burckhardt Compression
    • f. Linde
    • g. Neuman & Esser (NEA) Group
    • h. Howden
    • i. Ariel Corporation
    • j. MAN Energy Solutions
  • iii. 燃料电池製造商
    • a. Ballard Power Systems
    • b. Bloom Energy
    • c. GenCell
    • d. Toshiba Energy Systems & Solutions
    • e. Bosch
    • f. Panasonic
    • g. Loop Energy
    • h. AFC Energy
    • i. Advent Technologies
    • j. FuelCell Energy

第 8 章关于 PTR

简介目录
Product Code: S3000

Hydrogen is the most abundant naturally occurring element in the universe which can be produced at a large scale using renewable energy. It is emerging as an efficient and alternate fuel and will play a key role in achieving the climate pledge of net zero emissions by 2050. As hydrogen has potential applications in several sectors, its demand is increasing day and day, which is inadvertently causing an abrupt increase in the production of hydrogen. Several hydrogen valleys have been announced around the world which when completed, will play a major role in meeting the global hydrogen demand. Several countries around the world have come up with policy frameworks termed national hydrogen strategies to support and accelerate the adoption of hydrogen technologies. As the hydrogen economy continues to grow globally, not only the existing players are expanding their footprint in the hydrogen value chain but also new players are entering the market, therefore, it is imperative to understand the capabilities of companies involved in the hydrogen value chain.

‘The Global Hydrogen Market Outlook Report’ provides a holistic overview of the hydrogen market across the world. The report is divided into four sections: Hydrogen Market Overview, National Hydrogen Strategies, Hydrogen Valleys, and Company Profiles. It provides a global outlook of the hydrogen market, covering Asia-Pacific (APAC), Europe, Middle-East and Africa (MEA), and the North and South American regions. 29 National Hydrogen Strategies, 39 Hydrogen Valleys and 10 company profiles each of electrolyzer, compressor, and fuel cell manufacturers have been highlighted in the report along with a detailed analysis of the entire value chain of hydrogen from hydrogen production to its end-use.

Facts/Data points:

  • Project completions involving electrolyzer installations for energy purposes reached an estimated 65 MWe globally in 2020 and grew exponentially to 286 MWe in 2021.
  • Planned small-scale projects pipeline in almost 30 countries indicate global electrolyzer capacity could reach approximately 17 GW by 2026.
  • Planned large-scale projects pipeline indicates that global electrolyzer capacity could reach 8.7 GW by 2026.
  • If planned projects are commissioned by 2026, China, Chile, Spain, and Australia could together bring 85% of the additional 18 GW of renewable capacity dedicated to green hydrogen production.
  • Within Europe there are over 750 announced projects from all parts of the value chain that are expected to enter operation by 2025.
  • Global hydrogen demand has increased with a CAGR of 2% from 60 Mt to 90 Mt since the start of this century.
  • Global hydrogen demand from all sources of hydrogen production is expected to be approximately 500 Mt by 2050.
  • The European continent leads other regions when it comes to published national hydrogen strategies as 18 countries in the European continent have published their respective national hydrogen strategy.
  • Europe is followed by APAC (5), the Americas (4), and Middle East and African (2) regions.
  • There are 39 hydrogen valleys in 21 countries around the world.
  • Hydrogen Valleys act as a platform for the emerging hydrogen economy with 97% of the hydrogen production being focused on producing hydrogen through electrolysis using renewables.
  • Polymer Electrolyte Membrane (PEM) technology is the most employed electrolysis technology for green hydrogen production in these valleys which makes up 50% of the total share followed by Alkaline electrolysis technology at 13%.
  • 88% of the hydrogen produced in these valleys is preferred to be stored in the form of compressed hydrogen gas or liquid hydrogen.
  • 85% of hydrogen will be transported through trucks and pipelines whereas 50% of it will be used in chemical, refinery, and steel industries whereas the rest of it is expected to be used in other industries such as mobility, power generation, etc.

Countries Covered:

1. Global

2. Americas

  • i. Canada
  • ii. Chile
  • iii. Colombia
  • iv. Uruguay
  • v. USA

3. Asia-Pacific (APAC)

  • i. Australia
  • ii. China
  • iii. India
  • iv. Japan
  • v. New Zealand
  • vi. South Korea

5. Middle-East and Africa (MEA)

  • i. Morocco
  • ii. South Africa

4. Europe

  • i. Austria
  • ii. Belgium
  • iii. Czech Republic
  • iv. Denmark
  • v. Finland
  • vi. France
  • vii. Hungary
  • viii. Italy
  • ix. Netherlands
  • x. Norway
  • xi. Poland
  • xii. Portugal
  • xiii. Russia
  • xiv. Slovakia
  • xv. Spain
  • xvi. Sweden
  • xvii. United Kingdom

Table of Contents

1. Overview

  • i. Properties of Hydrogen
  • ii. Hydrogen as Energy Vector. Why Now?

2. Value Chain Analysis

  • i. Production
    • i. Types of Hydrogen
    • ii. The Different Colors of Hydrogen
    • iii. Hydrogen Production Process
    • iv. Hydrogen Production Technologies
    • v. Blue Hydrogen: A Scam or Savior?
    • vi. Green Hydrogen Prodcution Through Electrolysis
    • vii. Comparative Analysis of Electrolyzer Technologies
    • viii. Key Global Electrolyzer Manufacturing Sites
  • ii. Storage
    • a. Established Technologies for Hydrogen Storage
    • b. Emerging Technologies for Hydrogen Storage
  • iii. Transportation
    • a. Overview of Hydrogen Transportation Methods
    • b. Comparison of Potential Hydrogen Carriers
    • c. Cost Comparison of Potential Hydrogen Carriers
  • iv. End-Use Consumption
    • a. Hydrogen in Refining Operations
      • I. Hydrogen Production and Consumption in Refining Operations
      • II. Hydrogen Process Flow Chart in Refining Operations
      • III. Hydrogen Compressors in Refining Operations
    • b. Hydrogen in Ammonia Production
      • I. Ammonia Production through Haber-Bosch Process
    • c. Hydrogen in Steel Making
      • I. Steel Making through Direct Reduced Iron (DRI) Method
      • II. Outotec - Reduced Direct Iron Process
      • III. Midrex H2 Direct Reduced Iron Process
    • d. Hydrogen in Petrochemical Industry
    • e. Hydrogen in Buildings
    • f. Hydrogen in Power Sector
    • g. Hydrogen in Mobility (Road Transport)
      • I. Comparative Analysis of of BEVs and Hydrogen FCEVs
      • II. Constraints and Advantages of FCEVs as compared to BEVs
    • h. Hydrogen in Aviation
    • i. Hydrogen in Rail
    • j. Hydrogen in Maritime

3. Hydrogen Demand Forecast: An Overview of Next 30 Years

  • i. Global Hydrogen Demand Driving Factors
  • ii. Global Hydrogen Demand Outlook-2021
  • iii. Key Inhibitors and Accelerators to the Hydrogen Market
  • iv. Global Hydrogen Demand Forecast
    • a. High Case Scenario
    • b. Base Case Scenario
    • c. Low Case Scenario
    • v. Analysis of Hydrogen Demand Over Next 30 Years

4. Geographical Significance of Hydrogen

  • i. Hydrogen Potential Across the World
  • ii. Global Overview of National Hydrogen Strategies
  • iii. Hydrogen Valleys Across the Globe
  • iv. Key Players Across the Globe

5. National Hydrogen Strategies

  • i. Americas
    • a. Regional Overview
    • b. Country-Specific Overview
      • I. Canada
      • II. Chile
      • III. Colombia
      • IV. Uruguay
  • ii. Asia-Pacific (APAC)
    • a. Regional Overview
    • b. Country-Specific Overview
      • I. Australia
      • II. India
      • III. Japan
      • IV. South Korea
  • iii. Europe
    • a. Regional Overview
      • I. European Union
    • b. Country-Specific Overview
      • I. Austria
      • II. Belgium
      • III. Czech Republic
      • IV. Denmark
      • V. Finland
      • VI. France
      • VII. Hungary
      • VIII. Italy
      • IX. Netherlands
      • X. Norway
      • XI. Poland
      • XII. Portugal
      • XIII. Russia
      • XIV. Slovakia
      • XV. Spain
      • XVI. Sweden
      • XVII. United Kingdom
  • iv. Middle-East and Africa (MEA)
    • a. Regional Overview
    • b. Country-Specific Overview
      • I. Morocco
      • II. South Africa
  • v. Strategies Under Preparation
    • a. China
    • b. New Zealand
    • c. USA

6. Large-Scale Hydrogen Valleys

  • i. Americas
    • a. Detailed Overview of Hydrogen Valleys
    • b. Hydrogen Valleys by Application
  • ii. Asia-Pacific (APAC)
    • a. Detailed Overview of Hydrogen Valleys
    • b. Hydrogen Valleys by Application
  • iii. Europe
    • a. Detailed Overview of Hydrogen Valleys
    • b. Hydrogen Valleys by Application
  • iv. Middle-East and Africa (MEA)
    • a. Detailed Overview of Hydrogen Valleys
    • b. Hydrogen Valleys by Application

7. Company Profiles

  • i. Electrolyzer Manufacturers
    • a. Enapter
    • b. NEL Hydrogen
    • c. ITM Power
    • d. Plug Power
    • e. Sunfire
    • f. McPhy
    • g. Elogen
    • h. Green Hydrogen Systems
    • i. Ohmium
    • j. Thyssenkrupp
  • ii. Compressor Manufacturers
    • a. PDC Machines
    • b. Sundyne
    • c. NASH
    • d. Baker Hughes
    • e. Burckhardt Compression
    • f. Linde
    • g. Neuman & Esser (NEA) Group
    • h. Howden
    • i. Ariel Corporation
    • j. MAN Energy Solutions
  • iii. Fuel Cell Manufacturers
    • a. Ballard Power Systems
    • b. Bloom Energy
    • c. GenCell
    • d. Toshiba Energy Systems & Solutions
    • e. Bosch
    • f. Panasonic
    • g. Loop Energy
    • h. AFC Energy
    • i. Advent Technologies
    • j. FuelCell Energy

8. About PTR

Table of Exhibits*

  • 1.Properties of Hydrogen
  • 2.The Hydrogen Value Chain
  • 3.Hydrogen Pathways
  • 4.Types of Hydrogen
  • 5.The Different Colors of Hydrogen
  • 6.Hydrogen Production Process
  • 7.Characteristics of Electrolyzer Technologies
  • 8.Advantages of Electrolyzer Technologies
  • 9.Disadvantages of Electrolyzer Technologies
  • 10.Capacity of Electrolyzers for Hydrogen Production by Commissioning Year, By Intended Use of Hydrogen (2010-2021)
  • 11.Capacity of Electrolyzers for Hydrogen Production in 2021, By Intended Use of Hydrogen
  • 12.Small Electrolysis Projects 2020-2026 (1-10 MW)
  • 13.Large Electrolysis Announced Projects 2021-2026 (10-100 MW)
  • 14.Key Global Electrolyzer Manufacturing Sites
  • 15.Electrolyzer Capacity by Region (2030, 2050)
  • 16.Types of Hydrogen Storage Techniques
  • 17.Established Technologies for Hydrogen Storage
  • 18.Emerging Technologies for Hydrogen Storage
  • 19.Types of Hydrogen Transportation Methods
  • 20.Comparison of Potential Hydrogen Carriers
  • 21.Cost Comparison of Potential Hydrogen Carriers
  • 22.Simplified Flow Diagram of Auto-Thermal Reforming with a Carbon Capture and Storage (ATR-CCS) Plant.
  • 23.Simplified Flow Diagram of Steam Methane Reforming with a Carbon Capture and Storage (SMR-CCS) Plant.
  • 24.Hydrogen Process Flow Chart in Refining Operations
  • 25.Hydrogen in Ammonia Production
  • 26.Direct Reduced Iron (DRI) Method: Blast Furnace Route & Hybrit Route
  • 27.Outotec DRI Method
  • 28.Midrex H2 DRI Method
  • 29.Hydrogen in Petrochemical Industry
  • 30.Technical comparison of BEVs and Hydrogen FCEVs
  • 31.Constraints and advantages of BEVs and Hydrogen FCEVs
  • 32.Global Hydrogen Demand (2000-2020)
  • 33.Global Hydrogen Demand by Region-2021
  • 34.Global Hydrogen Demand by Application-2021
  • 35.Key Inhibitors and Accelerators to the Hydrogen Market
  • 36.High Case Scenario Global Temperature less than 1.8°C (2030-2050)
  • 37.Base Case Scenario Global Temperature 1.8-2.3°C (2030-2050)
  • 38.Low Case Scenario Global Temperature greater than 2.3°C (2030-2050)
  • 39.Hydrogen Potential Across the World
  • 40.Global Overview of National Hydrogen Strategies
  • 41.Hydrogen Valleys Across the Globe
  • 42.Key Players Across the Globe
  • 43.Regional Overview of National Strategies: Americas
  • 44.Regional Overview of National Strategies: APAC
  • 45.Regional Overview of National Strategies: Europe
  • 46.Regional Overview of National Strategies: MEA
  • 47.Hydrogen Valleys by Application: Americas
  • 48.Hydrogen Valleys by Application: APAC
  • 49.Hydrogen Valleys by Application: Europe
  • 50.Hydrogen Valleys by Application: MEA