全球及中国L4级自动驾驶及初创企业分析(2022年版)
市场调查报告书
商品编码
1166377

全球及中国L4级自动驾驶及初创企业分析(2022年版)

Global and China L4 Autonomous Driving and Start-ups Report, 2022

出版日期: | 出版商: ResearchInChina | 英文 360 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

L4级自动驾驶分析:行业将进入“降维+降本”的新发展阶段。

L3/L4级自动驾驶将获得更大的政策支持。

L3/L4级自动驾驶的发展需要政策和技术的双重支持。 2022年后,中国将对高级别自动驾驶给予更大的政策支持。

一旦淘汰赛开始,L4级自动驾驶供应商将寻求“降本+缩小尺寸”,产业将进入大规模商业化阶段。

目前,汽车自动驾驶功能率呈上升趋势,L2/L2+自动驾驶技术也相对成熟。 与此同时,市场竞争日趋白热化,原始设备製造商和自动驾驶解决方案供应商竞相进入更先进的自动驾驶卡车领域,以获得更大的竞争优势。

“降维”应用

在QCraft和Cruise上,我们不断推动技术发展和广泛应用,致力于消除盲点和确保冗余。

“降低成本”应用

高成本也是L4级自动驾驶产品实现的一大障碍。 尤其是对成本敏感的乘用车,一般动辄几十万元的L4级自动驾驶显然说不过去。 因此,各家供应商都在大力进行“降本”。

在本报告中,我们分析了L4级自动驾驶技术在全球和中国的最新趋势和未来前景,创业公司的动向,以及L4级自动驾驶技术的相关政策、市场规模和竞争态势,以及主要的L4级自动驾驶技术概况及主要供应商及解决方案等信息汇总,L4级自动驾驶各领域应用场景,主机厂L4级自动驾驶解决方案部署现状及发展规划,主要L4级自动驾驶技术供应商概况及供应商概况主要技术。我们将提供。

内容

第1章L4级自动驾驶的量产、法规与标准

  • L3/L4 自动驾驶的分类和标准化
    • SAE 驾驶自动化级别
    • 中国自动驾驶汽车分类介绍(GB/T 40429-2021)
    • 中国自动驾驶分类:技术要求
    • 中国自动驾驶分类:L3/L4定义
    • 中国自动驾驶分类:中国标准强化 L3 级安全要求
    • 世界各地的自动驾驶标准化机构
    • ISO TC22/SC33 WG9:自动驾驶系统工作组的测试场景
    • ISO TC22 ADAG 工作组
    • ISO TC22/SC32/WG8 工作组
    • ISO WP29 联合国世界车辆法规协调论坛
    • ISO 22737:ISO 的首个 L4 级自动驾驶系统国际安全标准
    • ISO 22737:L4 LSAD(低速自动驾驶)系统架构
  • 中国的 L3/L4 自动驾驶政策和法规
    • 中国的 L3/L4 自动驾驶法规:摘要
    • 中国 L3/L4 级自动驾驶法规:智能网联汽车准入试驾通知(征求意见稿)
    • 中国L3/L4级自动驾驶法规:深圳市首次明确L3级自动驾驶车辆事故责任范围
    • 中国 L3/L4 级自动驾驶法规:北京市公布《智能网联自动驾驶班车管理规定》
    • 中国 L3/L4 级自动驾驶法规:上海市加快智能网联汽车创新驱动发展实施方案
  • 世界各国关于L3/L4级自动驾驶的政策法规
    • 全球自动驾驶行业领跑实质性政策支持
    • 世界 L3/L4 自动驾驶法规:摘要
    • 全球 L3/L4 级自动驾驶法规:韩国公布“出行创新路线图”
    • 全球 L3/L4 自动驾驶法规:美国 NHTSA 公布了无驾驶控制车辆的乘员保护安全标准
    • 全球 L3/L4 自动驾驶法规:欧盟宣布针对高度自动化车辆的型式认可法规
    • 全球L3/L4级自动驾驶法规:日本提议允许L4级自动驾驶汽车上路行驶

第2章L4级自动驾驶市场趋势

  • L4 级自动驾驶的市场规模
    • L4 级自动驾驶汽车的全球市场规模
    • 中国L4级自动驾驶乘用车市场规模(OEM)
    • 中国L4级自动驾驶商用车市场规模(OEM+AM)
  • L4 级自动驾驶竞争格局
    • 全球 L4 级自动驾驶市场的主要参与者

第3章L4级自动驾驶子场景应用

  • 商业模式
    • L4 级自动驾驶商业化的有限场景
    • L4 级自动驾驶标准操作 (SOP) 时间表
    • L4供应商商业化模式(一):多场景布局
    • L4供应商商业化模型(二):降维应用
  • L4应用场景:Robotaxi
    • Robotaxi 市场进入者:传统 Robotaxi 公司创造的铁三角模式
    • Robo-Taxi 市场进入者:新兴汽车製造商进入市场
    • 外资机器人出租车运营商统计数据
    • 国内robotaxi运营商统计数据
    • Robotaxi 对比:Apollo Go、Pony.ai、上汽出行
    • Robotaxi在中国的规模化发展
    • 中国的机器人出租车市场规模
  • L4应用场景:自动驾驶班车
    • 自动驾驶班车在城市管理中的作用
    • 中国的自动驾驶和低速班车供应商
    • 自动驾驶班车的市场规模
    • 自动驾驶班车主要供应商布局
  • L4 应用场景:自动化交付
    • 自动配送产业链
    • 主要用户开发自动送货车的商业运营
    • 自动送货车产品的主要用户:美团
    • 自动送货车产品的主要用户:京东
    • 自动送货车产品的主要用户:Haomo.ai
    • 自动送货车产品的主要用户:Neolix
    • 自动送货车产品的主要用户:White Rhino
    • 中国户外自动送货车市场规模
    • 中国汽车配送市场格局
    • 自动交付业务模型
  • L4 应用场景:自动驾驶卡车
    • L3+/L4 自动驾驶卡车系统供应商的竞争格局
    • 自动驾驶卡车的发展技术路线
    • 自动化卡车操作模型:采矿场景
    • 海外自动驾驶卡车市场参与者
    • 中国自动驾驶卡车市场参与者(一):自动驾驶重卡解决方案提供商
    • 中国自动驾驶卡车市场参与者(二):传统重卡企业
    • 主要 L4 自动驾驶卡车供应商的比较
    • 封闭场景中自动驾驶的案例研究
    • 中国自动驾驶卡车市场现状:按细分
    • 中国的自动驾驶卡车市场规模

第四章L4级自动驾驶量产关键技术

  • L4 级自动驾驶的关键技术:算法
    • 支持 L4 级自动驾驶技术的算法
    • 自动驾驶软件算法示例
  • L4 级自动驾驶技术:数据闭环
    • 数据闭环在 L4 级自动驾驶中的重要性
    • 自动驾驶数据闭环技术
    • 自动驾驶数据闭环提供商
    • 自动驾驶数据闭环案例
  • L4 级自动驾驶的关键技术:车辆/道路/云协作
    • 车-路-云协作:实现高度自动化驾驶的主要途径之一
    • 通过连接车辆、道路和云端实现自动驾驶的方法
    • 车/路/云协同解决方案提供商
    • 通过车辆、道路和云之间的协作进行 L4 级自动驾驶的案例研究
  • L4 级自动驾驶关键技术:高精地图和定位
    • 高精地图的 L4 级自动驾驶要求
    • L4级自动驾驶对高精度定位技术的要求
    • L4 自动驾驶高精度地图提供商:乘用车
    • L4 级自动驾驶高精度地图提供商:商用车
    • L4级自动驾驶高精地图定位量产实例
  • L4 自动驾驶技术:冗余
    • 自动驾驶冗余系统供应商
    • 自动驾驶冗余示例
    • 长城汽车自动驾驶冗余解决方案

第5章OEM L3/L4自动驾驶解决方案

  • 主机厂L3/L4级自动驾驶布局
    • 各大主机厂L4级自动驾驶汽车产品及应用规划
    • OEM L3/L4自动驾驶规划布局
    • L4 级自动驾驶解决方案:OEM 之间的比较
    • OEM 通用 L4 解决方案配置
  • 极度汽车
  • 小鹏汽车
  • 长城汽车
  • 特斯拉
  • 丰田
  • 沃尔沃
  • 其他汽车製造商
    • 威马
    • 红旗
    • 宇通客车

第 6 章。一级供应商和初创公司的 L4 自动驾驶解决方案

  • 国内外L4供应商的技术开发
    • 国产乘用车L4级自动驾驶解决方案
    • 国产乘用车L4级自动驾驶解决方案:小马智行
    • 国产乘用车L4级自动驾驶解决方案:百度
    • 国产乘用车L4级自动驾驶解决方案:智行者
    • 国产乘用车L4级自动驾驶解决方案:文远知行
    • 国产乘用车L4级自动驾驶解决方案:AutoX
    • 国产乘用车L4级自动驾驶解决方案:Momenta
    • 国产乘用车L4级自动驾驶解决方案:Deeproute.ai
    • 国外乘用车L4级自动驾驶解决方案
    • 国外乘用车L4级自动驾驶解决方案:Waymo
    • 国外乘用车L4级自动驾驶解决方案:Cruise
    • 来自领先技术提供商的 L4 自动驾驶解决方案:商用车
    • 主要商用车的L4自动驾驶解决方案:QCraft
    • 主要商用车 L4 级自动驾驶解决方案:嬴彻科技
    • 来自领先技术提供商的 L4 自动驾驶解决方案:自动交付
  • Waymo
  • Cruise
  • Aurora
  • Navya
  • Mobileye
  • Valeo
  • Baidu Apollo
  • Pony.ai
  • WeRide
  • AutoX
  • Momenta
  • Deeproute.ai
  • Huawei
  • Haomo.ai
  • DeepBlue Technology
  • Allride.ai
  • UISEE Technology
  • Idriverplus
  • QCraft
  • TuSimple
  • Plus.ai
  • Inceptio Technology
  • CiDi
简介目录
Product Code: ZHP125

L4 autonomous driving research: the industry enters a new development phase, "dimension reduction + cost reduction".

L3/L4 autonomous driving enjoys much greater policy support.

The development of L3/L4 autonomous driving needs both policy and technology support. Since 2022, China has given far greater policy support to high-level autonomous driving.

The Development Plan for New Energy Vehicle Industry (2021-2035) issued by the State Council indicates that "by 2025, L4 vehicles will be commercialized in limited areas and specific scenarios, and by 2035, L4 vehicles will find massive application."

On March 1, 2022, the national recommended standard GB/T 40429-2021 Taxonomy of Driving Automation for Vehicles came into force. In November 2022, the Ministry of Industry and Information Technology together with the Ministry of Public Security organized the drafting of Notice on Piloting Entry and Road Travel of Intelligent Connected Vehicles (Draft for Comments), suggesting piloting the entry of production-ready intelligent connected vehicles with autonomous driving functions (L3 and L4 in the GB/T 40429-2021 standard).

As concerns local governments, the Administrative Rules of Beijing Municipality for Autonomous Shuttles in the Pilot Areas Carrying out Intelligent Connected Vehicle Policies (Road Test and Demonstration Application) released in November 2022, is China's first policy to give the corresponding right of way in the form of coding to autonomous shuttles. In August 2022, the Regulation on the Administration of Intelligent Connected Vehicles in Shenzhen Special Economic Zone came into effect. It is China's first L3 autonomous driving regulation that highlights the first clear identification of accident responsibilities.

As the knockout starts, L4 autonomous driving suppliers seek "cost reduction + dimension reduction", and the industry enters the phase of large-scale commercial application.

At present, the installation rate of autonomous driving functions in vehicles is on the rise, and L2/L2+ autonomous driving technology has been relatively mature. The competition in the market is white hot. To gain more competitive edges, OEMs and autonomous driving solution providers compete to enter the track of higher-level autonomous driving.

Yet high-level autonomous driving consumes more capital, and is unlikely to build a full commercial closed-loop in the short term. In October 2022, Argo AI, a star start-up specializing in L4 autonomous driving, declared bankruptcy due to the capital chain rupture, a result of the inability to attract further investments, as its backers Ford and Volkswagen decided to stop investing in it.

Despite ceasing to invest in Argo AI and turning the focus on L2+/L3 that is easier to implement, Ford is still optimistic about L4 autonomous driving, but chooses not to develop on its own. It would team up with L4 autonomous driving solution providers in the future.

The case of Argo AI shows the challenges faced by L4 autonomous driving suppliers in current stage. If they do not try to develop real commercial solutions, they may eventually be weeded out by the market under capital pressure. To run farther on L4 autonomous driving track, all major suppliers aim at the mass production OEM market of passenger cars and embark on "dimension reduction" application, while working hard on L4 technology.

(1) "Dimension reduction" application

QCraft: propose the dual engine strategy. On one hand, based on public road L4 autonomous driving software and hardware solutions, it makes continuous efforts to improve its technical competence; on the other hand, based on the mass production and large-scale application of autonomous driving for OEM market, it keeps expanding application scenarios.

In May 2022, QCraft introduced DBQ V4, an autonomous driving solution for passenger car OEM market. Supporting 1 to 5 LiDARs, 0 to 4 blind spot radars, 6 radars and 12 perception cameras, it enables 360-degree perception without missing blind spots and dead corners, and allows mutual redundancy between left and right. It also packs a customized traffic light recognition camera. The solution is expected to be mass produced and mounted on vehicles during 2023-2024.

DBQ V4 offers standard and high configuration versions. The high configuration version has all L4 autonomous driving functions. Compared with high configuration version, the standard version features a slightly lower configuration, but it can still enable 99% L4 autonomous driving capabilities. The DBQ V4 autonomous driving solution integrates full-stack autonomous driving software and hardware technologies independently developed by QCraft. The standard version with a reduced LiDAR configuration carries a computing platform with lower computing power, cutting down the mass production cost to about RMB10,000. The mass-produced solution for the OEM market also enables driving and parking integrated functions.

Cruise: since 2021, it has worked to build Ultra Cruise intelligent driving system for GM. This solution is mainly mounted on the high-end vehicle models of GM and complements the Super Cruise system, helping GM to apply driving assistance technologies to all of its models.

Compared with Super Cruise, Ultra Cruise has added some new autonomous driving functions:

  • Follow the internal navigation route and keep moving forward;
  • Observe the speed limit
  • Support automatic and on-demand lane change
  • Support automatic left and right turns
  • Support close object avoidance

"Cost reduction" application

In addition, the high cost is also a major obstacle to the implementation of L4 autonomous driving products. In particular, for cost-sensitive passenger cars, it is obvious that L4 autonomous driving that generally costs hundreds of thousands of yuan doesn't justify it. All suppliers therefore have begun to vigorously "cut down cost".

Deeproute.ai: in June 2022, Deeproute.ai launched DeepRoute-Driver 2.0, a low-cost L4 autonomous driving system worth USD10,000 (about RMB64,000). This solution carries 2 to 5 solid-state LiDARs and 8 cameras, Nvidia Orin high computing power automotive chip, integrated navigation and HD map, enabling high-level autonomous driving.

Deeproute.ai says that in the future the cost of L4 autonomous driving could be lowered to less than RMB20,000 by cooperating with conventional OEMs for mass production and purchasing hardware equipment uniformly.

Haomo.ai: in April 2022, Haomo.ai launched Little Magic Camel 2.0, a product priced RMB128,800 for a single vehicle. Haomo.ai can build RMB100,000 autonomous distribution vehicles, mainly because its autonomous distribution vehicles reuse its passenger car autonomous driving technologies, and cost less by virtue of passenger car supply chain advantages. In terms of hardware, Little Magic Camel 2.0 that bears an automotive perception kit and ICU 3.0, a computing platform with high computing power can cover all medium- and low-speed road scenarios and all road conditions on urban public roads.

Technology reuse helps to expand multiple application scenarios for L4 autonomous driving systems.

Affected by technology maturity and regulatory restrictions, L4 autonomous driving is available to relatively limited application scenarios in the short run. The main application scenarios include Robotaxi, autonomous delivery, autonomous shuttle, and autonomous logistics in (semi) closed scenarios.

For L4 autonomous driving is being piloted in application fields, the deployment scale is not large, and just with tweaks, L4 autonomous driving technology can be reused in different types of vehicles, so L4 suppliers rarely follow a single business line, and generally make multi-scenario deployments.

“Global and China L4 Autonomous Driving and Start-ups Report, 2022” highlights the following:

  • L4 autonomous driving (policies, standards, regulations, etc.);
  • L4 autonomous driving market (size, competitive landscape, etc.);
  • Key technologies (algorithm, HD map and positioning, data closed-loop, vehicle-road-cloud cooperation, redundancy, etc.) of L4 autonomous driving (major suppliers, technical solutions, etc.);
  • Application scenarios (Robotaxi, autonomous shuttle, autonomous delivery, autonomous truck, etc.) of L4 autonomous driving (major suppliers, technical solutions, operation, etc.);
  • OEMs' layout and planning of L4 autonomous driving solutions;
  • Major L4 technology suppliers (technical solution iterations, application and layout of L4 products, etc.).

Table of Contents

1 Policies, Regulations and Standards for L4 Autonomous Driving

  • 1.1 Taxonomy and Standardization of L3/L4 Autonomous Driving
    • 1.1.1 SAE Levels of Driving Automation (1)
    • 1.1.2 SAE Levels of Driving Automation (2)
    • 1.1.3 China's Taxonomy of Driving Automation for Vehicles (GB/T 40429-2021) Has Been Implemented
    • 1.1.4 China's Taxonomy of Driving Automation for Vehicles: Technical Requirements (1)
    • 1.1.5 China's Taxonomy of Driving Automation for Vehicles: Technical Requirements (2)
    • 1.1.6 China's Taxonomy of Driving Automation for Vehicles: Definition of L3/L4
    • 1.1.7 China's Automotive Driving Automation Classification: The Chinese Standard Enhances L3 Safety Requirements
    • 1.1.8 Global Autonomous Driving Standards Organizations
    • 1.1.9 ISO TC22/SC33 WG9 - Test Scenarios of Automated Driving Systems Working Group
    • 1.1.10 ISO TC22 ADAG Working Group
    • 1.1.11 ISO TC22/SC32/WG8 Working Group
    • 1.1.12 ISO WP29 United Nations World Forum for Harmonization of Vehicle Regulations
    • 1.1.13 ISO's First International Safety Standard for L4 Automated Driving Systems: ISO 22737
    • 1.1.14 ISO 22737: L4 LSAD (Low Speed Automated Driving) System Architecture
  • 1.2 Policies and Regulations for L3/L4 Autonomous Driving in China
    • 1.2.1 L3/L4 Autonomous Driving Regulations in China: Summary
    • 1.2.2 L3/L4 Autonomous Driving Regulations in China: Notice on Piloting the Entry and Road Travel of Intelligent Connected Vehicles (Draft for Comments) (1)
    • 1.2.3 L3/L4 Autonomous Driving Regulations in China: Notice on Piloting the Entry and Road Travel of Intelligent Connected Vehicles (Draft for Comments) (2)
    • 1.2.4 L3/L4 Autonomous Driving Regulations in China: Shenzhen Clarified the Identification of Responsibilities for L3 Autonomous Vehicle Accidents for the First Time
    • 1.2.5 L3/L4 Autonomous Driving Regulations in China: Beijing Released the Administrative Rules for Intelligent Connected Autonomous Shuttles
    • 1.2.6 L3/L4 Autonomous Driving Regulations in China: The Implementation Plan of Shanghai Municipality for Accelerating the Innovation-driven Development of Intelligent Connected Vehicles
  • 1.3 Global Policies and Regulations for L3/L4 Autonomous Driving
    • 1.3.1 The Global Autonomous Driving Industry Ushers in Substantial Policy Support
    • 1.3.2 Global L3/L4 Autonomous Driving Regulations: Summary
    • 1.3.3 Global L3/L4 Autonomous Driving Regulations: South Korea Announced "Mobility Innovation Roadmap"
    • 1.3.4 Global L3/L4 Autonomous Driving Regulations: US NHTSA Announced the Occupant Protection Safety Standards for Vehicles Without Driving Controls
    • 1.3.5 Global L3/L4 Autonomous Driving Regulations: The European Union Released the Type-approval Regulation for Highly Automated Vehicles
    • 1.3.6 Global L3/L4 Autonomous Driving Regulations: Japan Proposed to Allow L4 Autonomous Vehicles to Travel on Roads

2 L4 Autonomous Driving Market Trends

  • 2.1 L4 Autonomous Driving Market Size
    • 2.1.1 Global L4 Autonomous Vehicle Market Size
    • 2.1.2 China's L4 Autonomous Passenger Car OEM Market Size
    • 2.1.3 China's Commercial L4 Autonomous Driving Market Size (OEM + AM)
  • 2.2 Competitive Landscape of L4 Autonomous Driving
    • 2.2.1 Major Players in Global L4 Autonomous Driving Market (1)
    • 2.2.2 Major Players in Global L4 Autonomous Driving Market (2)

3 Application Sub-scenarios of L4 Autonomous Driving

  • 3.1 Business Models
    • 3.1.1 Limited Scenarios for Commercial Application of L4 Autonomous Driving
    • 3.1.2 L4 Autonomous Driving SOP Timeline
    • 3.1.3 Commercialization Models of L4 Suppliers (I): Multi-Scenario Layout (1)
    • 3.1.4 Commercialization Models of L4 Suppliers (I): Multi-Scenario Layout (2)
    • 3.1.5 Commercialization Models of L4 Suppliers (I): Multi-Scenario Layout (3)
    • 3.1.6 Commercialization Models of L4 Suppliers (I): Multi-Scenario Layout (4)
    • 3.1.7 Commercialization Models of L4 Suppliers (II): Dimension Reduction Application (1)
    • 3.1.8 Commercialization Models of L4 Suppliers (II): Dimension Reduction Application (2)
  • 3.2 L4 Application Scenarios - Robotaxi
    • 3.2.1 Players in Robotaxi Market (I): Conventional Robotaxi Companies Create an Iron Triangle Pattern (1)
    • 3.2.2 Players in Robotaxi Market (I): Conventional Robotaxi Companies Create an Iron Triangle Pattern (2)
    • 3.2.3 Players in Robotaxi Market (I): Conventional Robotaxi Companies Create an Iron Triangle Pattern (3)
    • 3.2.4 Players in Robotaxi Market (I): Conventional Robotaxi Companies Create an Iron Triangle Pattern (4)
    • 3.2.5 Players in Robotaxi Market (II): Emerging Carmakers Enter the Market
    • 3.2.6 Statistics of Foreign Robotaxi Operators
    • 3.2.7 Statistics of Chinese Robotaxi Operators (1)
    • 3.2.8 Statistics of Chinese Robotaxi Operators (2)
    • 3.2.9 Robotaxi Comparison between Apollo Go, Pony.ai and SAIC Mobility (1)
    • 3.2.10 Robotaxi Comparison between Apollo Go, Pony.ai and SAIC Mobility (2)
    • 3.2.11 Robotaxi Comparison between Apollo Go, Pony.ai and SAIC Mobility (3)
    • 3.2.12 Scale Development of Robotaxi in China
    • 3.2.13 China's Robotaxi Market Size
  • 3.3 L4 Application Scenarios - Autonomous Shuttle
    • 3.3.1 The Role of Autonomous Shuttles in City Operation
    • 3.3.2 Low-speed Autonomous Shuttle Suppliers in China (1)
    • 3.3.3 Low-speed Autonomous Shuttle Suppliers in China (2)
    • 3.3.4 Autonomous Shuttle Market Size
    • 3.3.5 Layout of Some Autonomous Shuttle Suppliers
  • 3.4 L4 Application Scenarios - Autonomous Delivery
    • 3.4.1 Autonomous Delivery Industry Chain
    • 3.4.2 Commercial Operation of Autonomous Delivery Vehicles Deployed by Major Users (1)
    • 3.4.3 Commercial Operation of Autonomous Delivery Vehicles Deployed by Major Users (2)
    • 3.4.4 Major Users That Deploy Autonomous Delivery Vehicle Products: Meituan
    • 3.4.5 Major Users That Deploy Autonomous Delivery Vehicle Products: JD
    • 3.4.6 Major Users That Deploy Autonomous Delivery Vehicle Products: Haomo.ai
    • 3.4.7 Major Users That Deploy Autonomous Delivery Vehicle Products: Neolix
    • 3.4.8 Major Users That Deploy Autonomous Delivery Vehicle Products: White Rhino
    • 3.4.9 China's Outdoor Autonomous Delivery Vehicle Market Size
    • 3.4.10 China's Autonomous Delivery Market Pattern
    • 3.4.11 Autonomous Delivery Business Models
  • 3.5 L4 Application Scenarios - Autonomous Truck
    • 3.5.1 Competitive Landscape of L3+/L4 Autonomous Truck System Suppliers
    • 3.5.2 Technical Route for the Development of Autonomous Trucks
    • 3.5.3 Operating Model of Autonomous Trucks: Mine Scenario
    • 3.5.4 Players in Foreign Autonomous Truck Market
    • 3.5.5 Players in China's Autonomous Truck Market (I): Autonomous Heavy Truck Solution Providers
    • 3.5.6 Players in China's Autonomous Truck Market (II): Conventional Heavy Truck Companies
    • 3.5.7 Comparison between Major L4 Autonomous Truck Suppliers
    • 3.5.8 Autonomous Driving Cases in Closed Scenarios
    • 3.5.9 Status Quo of Autonomous Truck Market Segments in China
    • 3.5.10 China's Autonomous Truck Market Size

4 Key Technologies for Mass Production of L4 Autonomous Driving

  • 4.1 Key Technologies of L4 Autonomous Driving: Algorithm
    • 4.1.1 Algorithm is the Support for L4 Autonomous Driving Technology (1)
    • 4.1.2 Algorithm is the Support for L4 Autonomous Driving Technology (2)
    • 4.1.3 L4 Autonomous Driving Algorithm Providers (1)
    • 4.1.4 L4 Autonomous Driving Algorithm Providers (2)
    • 4.1.5 L4 Autonomous Driving Algorithm Providers (3)
    • 4.1.6 L4 Autonomous Driving Algorithm Providers (4)
    • 4.1.7 L4 Autonomous Driving Algorithm Providers (5)
    • 4.1.8 L4 Autonomous Driving Algorithm Providers (6)
    • 4.1.9 Autonomous Driving Software Algorithm Cases (I)
    • 4.1.10 Autonomous Driving Software Algorithm Cases (II)
    • 4.1.11 Autonomous Driving Software Algorithm Cases (III)
  • 4.2 Key Technologies of L4 Autonomous Driving: Data Closed Loop
    • 4.2.1 The Importance of Data Closed Loop to L4 Autonomous Driving
    • 4.2.2 Data Closed Loop Technology for Autonomous Driving (I)
    • 4.2.3 Data Closed Loop Technology for Autonomous Driving (II)
    • 4.2.4 Autonomous Driving Data Closed Loop Providers (2)
    • 4.2.5 Autonomous Driving Data Closed Loop Providers (2)
    • 4.2.6 Autonomous Driving Data Closed Loop Providers (3)
    • 4.2.7 Autonomous Driving Data Closed Loop Cases (I)
    • 4.2.8 Autonomous Driving Data Closed Loop Cases (II)
    • 4.2.9 Autonomous Driving Data Closed Loop Cases (III)
    • 4.2.10 Autonomous Driving Data Closed Loop Cases (IV)
    • 4.2.11 Autonomous Driving Data Closed Loop Cases (V)
    • 4.2.12 Autonomous Driving Data Closed Loop Cases (VI)
    • 4.2.13 Autonomous Driving Data Closed Loop Cases (VII)
    • 4.2.14 Autonomous Driving Data Closed Loop Cases (VIII)
    • 4.2.15 Autonomous Driving Data Closed Loop Cases (IX)
  • 4.3 Key Technologies of L4 Autonomous Driving: Vehicle-Road-Cloud Cooperation
    • 4.3.1 Vehicle-Road-Cloud Cooperation Will Become One of the Mainstream Paths to High-Level Autonomous Driving
    • 4.3.2 Ways How Vehicle-Road-Cloud Cooperation Enables Autonomous Driving
    • 4.3.3 Vehicle-Road-Cloud Cooperation Solution Providers (1)
    • 4.3.4 Vehicle-Road-Cloud Cooperation Solution Providers (2)
    • 4.3.5 Vehicle-Road-Cloud Cooperation Solution Providers (3)
    • 4.3.6 L4 Autonomous Driving Cases Based on Vehicle-Road-Cloud Cooperation (I): Nansha Smart Bus
    • 4.3.7 L4 Autonomous Driving Cases Based on Vehicle-Road-Cloud Cooperation (II): Yangshan Port Autonomous Driving
  • 4.4 Key Technologies of L4 Autonomous Driving: HD Map and Positioning
    • 4.4.1 Requirements of L4 Autonomous Driving for HD Maps (1)
    • 4.4.2 Requirements of L4 Autonomous Driving for HD Maps (2)
    • 4.4.3 Requirements of L4 Autonomous Driving for High-precision Positioning Technology
    • 4.4.4 Providers of HD Maps for L4 Autonomous Driving: Passenger Car (1)
    • 4.4.5 Providers of HD Maps for L4 Autonomous Driving: Passenger Car (2)
    • 4.4.6 Providers of HD Maps for L4 Autonomous Driving: Commercial Vehicle (1)
    • 4.4.7 Providers of HD Maps for L4 Autonomous Driving: Commercial Vehicle (2)
    • 4.4.8 Mass Production Cases of HD Map and Positioning for L4 Autonomous Driving (I)
    • 4.4.9 Mass Production Cases of HD Map and Positioning for L4 Autonomous Driving (II)
  • 4.5 Key Technologies of L4 Autonomous Driving: Redundancy
    • 4.5.1 Suppliers of Autonomous Driving Redundant Systems: Brake Redundancy
    • 4.5.2 Suppliers of Autonomous Driving Redundant Systems: Sensing Redundancy
    • 4.5.3 Suppliers of Autonomous Driving Redundant Systems: Computing Redundancy
    • 4.5.4 Autonomous Driving Redundancy Cases (I)
    • 4.5.5 Autonomous Driving Redundancy Cases (II)
    • 4.5.6 Autonomous Driving Redundancy Cases (III)
    • 4.5.7 Autonomous Driving Redundant Solutions of Great Wall Motor (1)
    • 4.5.8 Autonomous Driving Redundant Solutions of Great Wall Motor (2)

5 L3/L4 Autonomous Driving Solutions of OEMs

  • 5.1 L3/L4 Autonomous Driving Layout of OEMs
    • 5.1.1 L4 Autonomous Vehicle Products and Application Planning of Main OEMs
    • 5.1.2 L3/L4 Autonomous Driving Planning and Layout of OEMs (1)
    • 5.1.3 L3/L4 Autonomous Driving Planning and Layout of OEMs (2)
    • 5.1.4 Comparison of L4 Autonomous Driving Solutions between OEMs (1)
    • 5.1.5 Comparison of L4 Autonomous Driving Solutions between OEMs (2)
    • 5.1.6 Typical L4 Solution Configurations of OEMs
  • 5.2 Jidu Auto
    • 5.2.1 L4 Autonomous Driving SOP Planning
    • 5.2.2 L4 Autonomous Driving Technology
    • 5.2.3 LiDAR-based Autonomous Driving Solution
  • 5.3 Xpeng Motors
    • 5.3.1 L4 Autonomous Driving Planning
    • 5.3.2 Autonomous Driving System
    • 5.3.3 Autonomous Driving Technologies (I): Perception
    • 5.3.4 Autonomous Driving Technologies (II): Data Closed Loop
  • 5.4 Great Wall Motor
    • 5.4.1 Evolution of L3/L4 Autonomous Driving Solutions
    • 5.4.2 Hpilot Autonomous Driving Product Roadmap of Great Wall Motor (Haomo.ai)
  • 5.5 Tesla
    • 5.5.1 New Autopilot Layout
    • 5.5.2 FSD Beta v 10.69 System (1)
    • 5.5.3 FSD Beta v 10.69 System (2)
  • 5.6 Toyota
    • 5.6.1 L4 Autonomous Driving Solutions (1)
    • 5.6.2 L4 Autonomous Driving Solutions (2)
  • 5.7 Volvo
    • 5.7.1 L4 Autonomous Driving Solutions
    • 5.7.2 L4 Autonomous Driving Technologies (1)
    • 5.7.3 L4 Autonomous Driving Technologies (2)
  • 5.8 Other Automakers
    • 5.8.1 L4 Autonomous Driving Solution of Weltmeister
    • 5.8.2 L4 Autonomous Driving Solution of Hongqi
    • 5.8.3 L4 Autonomous Driving Solution of Yutong Bus

6 L4 Autonomous Driving Solutions of Tier 1 Suppliers and Startups

  • 6.1 L4 Technology Development of Chinese and Foreign Suppliers
    • 6.1.1 Chinese L4 Autonomous Driving Solutions for Passenger Cars (1)
    • 6.1.2 Chinese L4 Autonomous Driving Solutions for Passenger Cars (2)
    • 6.1.3 Chinese L4 Autonomous Driving Solutions for Passenger Cars (3)
    • 6.1.4 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Pony.ai (1)
    • 6.1.5 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Pony.ai (2)
    • 6.1.6 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Baidu (1)
    • 6.1.7 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Baidu (2)
    • 6.1.8 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Baidu (3)
    • 6.1.9 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Idriverplus
    • 6.1.10 Chinese L4 Autonomous Driving Solutions for Passenger Cars: WeRide (1)
    • 6.1.11 Chinese L4 Autonomous Driving Solutions for Passenger Cars WeRide (1)
    • 6.1.12 Chinese L4 Autonomous Driving Solutions for Passenger Cars: AutoX
    • 6.1.13 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Momenta
    • 6.1.14 Chinese L4 Autonomous Driving Solutions for Passenger Cars: Deeproute.ai
    • 6.1.15 Foreign L4 Autonomous Driving Solutions for Passenger Cars
    • 6.1.16 Foreign L4 Autonomous Driving Solutions for Passenger Cars: Waymo
    • 6.1.17 Foreign L4 Autonomous Driving Solutions for Passenger Cars: Cruise
    • 6.1.18 L4 Autonomous Driving Solutions of Major Technology Providers: Commercial Vehicle (1)
    • 6.1.19 L4 Autonomous Driving Solutions of Major Technology Providers: Commercial Vehicle (2)
    • 6.1.20 L4 Autonomous Driving Solutions of Major Technology Providers: Commercial Vehicle (3)
    • 6.1.21 Main L4 Autonomous Driving Solutions for Commercial Vehicles: QCraft (1)
    • 6.1.22 Main L4 Autonomous Driving Solutions for Commercial Vehicles: QCraft (2)
    • 6.1.23 Main L4 Autonomous Driving Solutions for Commercial Vehicles: Inceptio Technology (1)
    • 6.1.24 Main L4 Autonomous Driving Solutions for Commercial Vehicles: Inceptio Technology (2)
    • 6.1.25 L4 Autonomous Driving Solutions of Major Technology Providers: Autonomous Delivery
  • 6.2 Waymo
    • 6.2.1 Profile
    • 6.2.2 Layout of Autonomous Driving Business
    • 6.2.3 L4 Autonomous Driving System: Waymo Driver
    • 6.2.4 L4 Autonomous Driving Technologies (I): Perception
    • 6.2.5 L4 Autonomous Driving Technologies (II): Architecture
    • 6.2.6 L4 Autonomous Driving Technologies (III): Data Model and Architecture
    • 6.2.7 L4 Autonomous Driving Technologies (IV): Simulation
    • 6.2.8 L4 Autonomous Driving Technologies (V): Planning
    • 6.2.9 L4 Autonomous Driving Technologies (VI): Computing Platform
    • 6.2.10 L4 Products (I): Waymo One (1)
    • 6.2.11 L4 Products (I): Waymo One (2)
    • 6.2.12 L4 Products (II): Waymo Via
  • 6.3 Cruise
    • 6.3.1 Profile
    • 6.3.2 Autonomous Vehicle: Hardware
    • 6.3.3 Autonomous Vehicle: Software Algorithms and Chips (1)
    • 6.3.4 Autonomous Vehicle: Software Algorithms and Chips (2)
    • 6.3.5 Autonomous Driving Technologies (I)
    • 6.3.6 Autonomous Driving Technologies (II)
    • 6.3.7 Autonomous Driving Technologies (III)
    • 6.3.8 L4 Products (I)
    • 6.3.9 L4 Products (II)
    • 6.3.10 L4 Products (III)
  • 6.4 Aurora
    • 6.4.1 Profile
    • 6.4.2 Autonomous Driving System: Aurora Driver Platform (1)
    • 6.4.3 Autonomous Driving System: Aurora Driver Platform (2)
    • 6.4.4 Autonomous Driving Technology: Perception and Decision
    • 6.4.5 Layout of L4 Autonomous Driving
  • 6.5 Navya
    • 6.5.1 Cooperated with Valeo to Deploy L4 Autonomous Driving
    • 6.5.2 Autonomous Shuttle Business
  • 6.6 Mobileye
    • 6.6.1 L4 Autonomous Driving Service: Mobileye Drive
    • 6.6.2 L4 Autonomous Driving Service: System Design Architecture of Mobileye Drive
    • 6.6.3 Mobileye Plans to Enable the Popularization of Low-cost L4 Autonomous Driving by Independently Developing 4D Imaging Radars
    • 6.6.4 Application Layout of L4 Autonomous Driving
  • 6.7 Valeo
    • 6.7.1 L3 and L3+ Autonomous Driving Solutions
    • 6.7.2 Allocation of Safety Levels of Main ECU and Backup ECU in L3+ Autonomous Driving
  • 6.8 Baidu Apollo
    • 6.8.1 Autonomous Driving Layout
    • 6.8.2 L4 Technologies (I): Security Redundancy
    • 6.8.3 L4 Technologies (II): Computing Platform
    • 6.8.4 L4 Autonomous Driving Systems (I): Apollo Air (1)
    • 6.8.5 L4 Autonomous Driving Systems (I): Apollo Air (2)
    • 6.8.6 L4 Autonomous Driving Systems (II): Apollo Lite
    • 6.8.7 L4 Autonomous Driving Systems (III): Multi-sensor Fusion Autonomous Driving Solution
    • 6.8.8 L3/L4 Synergy
    • 6.8.9 L4 Products (I): Apollo Go (1)
    • 6.8.10 L4 Products (I): Apollo Go (2)
    • 6.8.11 L4 Products (I): Apollo Go (3)
    • 6.8.12 L4 Products (I): Apollo Go (4)
    • 6.8.13 L4 Products (I): Apollo Go (5)
    • 6.8.14 L4 Products (I): Apollo Go (6)
    • 6.8.15 L4 Products (II): 5G Cloud Valeting
    • 6.8.16 L4 Products (III): Autonomous Truck
    • 6.8.17 L4 Products (IV): Automated Valet Parking (AVP)
  • 6.9 Pony.ai
    • 6.9.1 Profile
    • 6.9.2 Persist in Simultaneous R&D of Software and Hardware
    • 6.9.3 Released the New-generation L4 Autonomous Driving System
    • 6.9.4 L4 Autonomous Driving System: Hardware Architecture (1)
    • 6.9.5 L4 Autonomous Driving System: Hardware Architecture (2)
    • 6.9.6 L4 Autonomous Driving System: Computing Unit (1)
    • 6.9.7 L4 Autonomous Driving System: Computing Unit (2)
    • 6.9.8 L4 Autonomous Driving System: Computing Unit (3)
    • 6.9.9 L4 Autonomous Driving System: Data Closed Loop Capability
    • 6.9.10 Cooperation on Application of L4 Autonomous Driving System: SAIC AI LAB
    • 6.9.11 Commercial Application Achievements of L4 Autonomous Driving (1)
    • 6.9.12 Commercial Application Achievements of L4 Autonomous Driving (2)
    • 6.9.13 Implemented Business Model of L4 Autonomous Driving
  • 6.10 WeRide
    • 6.10.1 Profile
    • 6.10.2 Development History of Autonomous Driving Business
    • 6.10.3 Autonomous Driving Platform
    • 6.10.4 To Create A New-generation Autonomous Driving Platform
    • 6.10.5 Core Technology of Autonomous Driving
    • 6.10.6 Autonomous Driving Technologies (I): Data Closed Loop
    • 6.10.7 Autonomous Driving Technologies (II): Redundancy
    • 6.10.8 Autonomous Driving Technologies (III): Algorithm
    • 6.10.9 L4 Products (I): Robotaxi (1)
    • 6.10.10 L4 Products (I): Robotaxi (2)
    • 6.10.11 L4 Products (I): Robotaxi (3)
    • 6.10.12 L4 Products (II): Robobus
    • 6.10.13 L4 Products (III): Robovan
    • 6.10.14 L4 Products (IV): Robo Street Sweeper
  • 6.11 AutoX
    • 6.11.1 Profile
    • 6.11.2 Autonomous Driving Capabilities
    • 6.11.3 Autonomous Driving System: AutoX Gen5
    • 6.11.4 Autonomous Driving Technology: Panoramic Fusion Perception System - xFusion
    • 6.11.5 L4 Product: Robotaxi
  • 6.12 Momenta
    • 6.12.1 Profile
    • 6.12.2 Autonomous Driving Technology Layout
    • 6.12.3 Autonomous Driving Solutions
    • 6.12.4 Autonomous Driving Solutions: Mpilot
    • 6.12.5 Autonomous Driving Solutions: L4 Solution
    • 6.12.6 Strategic Planning of L4 Autonomous Driving
    • 6.12.7 L4 Product: Robotaxi
  • 6.13 Deeproute.ai
    • 6.13.1 Profile
    • 6.13.2 L4 Autonomous Driving Solution
    • 6.13.3 L4 Autonomous Driving Technologies: Multi-sensor Fusion
    • 6.13.4 L4 Autonomous Driving Technologies: Self-developed Reasoning Engine
    • 6.13.5 L4 Products (I): Robotaxi
    • 6.13.6 L4 Products (II): Autonomous Container Truck
  • 6.14 Huawei
    • 6.14.1 Advanced Autonomous Driving System: ADS (1)
    • 6.14.2 Advanced Autonomous Driving System: ADS (2)
    • 6.14.3 L4 Autonomous Driving Technology: Computing Platform
  • 6.15 Haomo.ai
    • 6.15.1 Profile
    • 6.15.2 Passenger Car Autonomous Driving System
    • 6.15.3 Autonomous Vehicle Technologies (I): Data Closed Loop (1)
    • 6.15.4 Autonomous Vehicle Technologies (I): Data Closed Loop (2)
    • 6.15.5 Autonomous Vehicle Technologies (II): Algorithm
    • 6.15.6 Autonomous Vehicle Technologies (III): Computing Platform
    • 6.15.7 L3/L4 Autonomous Driving Planning
    • 6.15.8 L4 Products (I): Autonomous Delivery Vehicle (1)
    • 6.15.9 L4 Products (I): Autonomous Delivery Vehicle (2)
    • 6.15.10 L3/L4 Products (II): Passenger Car
  • 6.16 DeepBlue Technology
    • 6.16.1 Main Products
    • 6.16.2 L4 Product: Panda AI Bus (1)
    • 6.16.3 L4 Product: Panda AI Bus (2)
  • 6.17 Allride.ai
    • 6.17.1 Profile
    • 6.17.2 L4 Autonomous Driving System for Roadside Sensing Only
    • 6.17.3 L4 Products (I): Robotaxi
    • 6.17.4 L4 Products (II): Robobus
  • 6.18 UISEE Technology
    • 6.18.1 Profile
    • 6.18.2 Main Autonomous Driving Products and Solutions
    • 6.18.3 L4 Autonomous Driving Platform: U-Drive
    • 6.18.4 L4 Products (I): Robotaxi
    • 6.18.5 L4 Products (II): Autonomous Logistics
    • 6.18.6 L4 Products (III): Autonomous Delivery (1)
    • 6.18.7 L4 Products (III): Autonomous Delivery (2)
    • 6.18.8 L4 Products (IV): Autonomous Minibus
  • 6.19 Idriverplus
    • 6.19.1 L4 Autonomous Driving Technologies
    • 6.19.2 L4 Autonomous Driving Technology: Data Closed Loop
    • 6.19.3 L4 Products (I): Robotaxi (1)
    • 6.19.4 L4 Products (I): Robotaxi (2)
    • 6.19.5 L4 Products (II): Robobus
  • 6.20 QCraft
    • 6.20.1 Development Strategy for L4 Autonomous Driving
    • 6.20.2 4th-Generation L4 Autonomous Driving Mass Production Solution: DBQ V4
    • 6.20.3 L4 Autonomous Driving Technology Layout
    • 6.20.4 L4 Autonomous Driving Technologies (I): Algorithm (1)
    • 6.20.5 L4 Autonomous Driving Technologies (I): Algorithm (2)
    • 6.20.6 L4 Autonomous Driving Technologies (II): QCraft Matrix
    • 6.20.7 L4 Autonomous Driving Technologies (III): Perception
    • 6.20.8 L4 Products (I): Autonomous Commercial Vehicle
    • 6.20.9 L4 Products (II): Robotaxi
  • 6.21 TuSimple
    • 6.21.1 Profile
    • 6.21.2 Layout of L4 Autonomous Driving Business
    • 6.21.3 Autonomous Driving Technology Providers
    • 6.21.4 Completed Unmanned Tests of L4 Heavy Truck
    • 6.21.5 Autonomous Driving Business Model
  • 6.22 Plus.ai
    • 6.22.1 L4 Autonomous Driving Layout
    • 6.22.2 L4 Autonomous Driving Planning
    • 6.22.3 L4 Autonomous Driving Demonstration
    • 6.22.4 L4 Autonomous Driving System: PlusDrive
  • 6.23 Inceptio Technology
    • 6.23.1 Completed L4 Autonomous Heavy Truck Road Tests
    • 6.23.2 Evolution of Autonomous Driving System
    • 6.23.3 Self-developed Autonomous Driving Technologies (I): Regulation and Control Integration
    • 6.23.4 Self-developed Autonomous Driving Technologies (II): Fuel-saving Algorithm
    • 6.23.5 Self-developed Autonomous Driving Technologies (III): Data Closed Loop
  • 6.24 CiDi
    • 6.24.1 L4 Products (I): Autonomous Mining Truck
    • 6.24.2 L4 Products (II): Non-cabin Autonomous Commercial Vehicle