封面
市场调查报告书
商品编码
1400757

商用车车联网产业分析(2023-2024)

Commercial Vehicle Telematics Industry Report, 2023-2024

出版日期: | 出版商: ResearchInChina | 英文 380 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

市场往往集中在硬体方面的大公司。

商用车车联网产业链涵盖整车厂、营运商、终端设备製造商、通讯服务供应商、内容服务供应商等几个重要环节,市场主要分为硬体製造商和服务供应商等。

随着大公司技术能力的提升和供应关係的更加稳定,商用车硬体设备市场趋于向大公司集中。 2023年上半年,Xiamen Yaxon Network、Hopechart IoT、Smartlink+ 三大企业合计占重卡T-Box市场71.4%的份额。 供应关係方面,Xiamen Yaxon Network主要向Sinotruk、Foton、JAC 供应产品。Hopechart IoT也是Shaanxi Automobile、Beiben、Foton的供应商。 与FAW Jiefang合资的Smartlink+,在T-Box产品下游流程中以软硬件分离的方式支持多家厂商的T-Box硬件,同时在上游流程中与FAW紧密耦合,市场份额快速提升。

市场需要硬体+演算法+平台+服务更整合的商业模式。

商用车车联网已经经历了1.0阶段(基础互联)、2.0阶段(人车互动),目前正进入3.0阶段(V2V互动/万物连网)。 随着边缘运算、云端储存等基础设施的发展,以及各场景互联服务需求的增加,硬体+演算法+平台+服务的一体化商业模式将轻鬆实现多维度的车辆数据交互,为用户提供差异化的场景服务。 这将有可能成为未来商用车车联网的主流商业模式。

商用车远端资讯处理供应商涉足 AD/ADAS 和智慧座舱。

在智慧化和网路化方面,商用车与乘用车一样正在发展。 智慧化方面,双重预警功能已进入量产阶段,LKA、ACC等L2功能可望在未来两三年内搭载在车辆上。 在连接方面,随着车辆中使用越来越多的感测器,商用车辆将产生更多的数据,需要更多的车辆连接和分析技术来进行预测分析。 此外,随着新一代驾驶者的出现,座舱娱乐和互动智慧将成为车联网应用新的发展方向。

本报告分析了全球及中国商用车车联网产业的发展趋势,包括产业的基本结构和发展趋势、主要产品及其技术发展趋势、使用现状等主要整车厂的情况,我们正在调查主要供应商的概况和业务发展状况,以及未来技术发展和产业成长的方向。

目录

第一章商用车车联网概述

  • 商用车远端资讯处理的定义
  • 商用车市场表现
  • 商用车车联网发展史
  • 商用车车联网2.0阶段特点
  • 商用车车联网3.0阶段特点
  • 商用车车联网4.0阶段特点
  • 商用车远端资讯处理的政策环境
  • 远端资讯处理需求特性:依细分市场划分
    • 重卡智慧网联需求特点
    • 轻卡智慧网联需求特点
    • 大型客车智慧网联需求特点
    • 商用车电动化带来的智慧网路需求特点
  • 商用车车联网产业链

第二章商用车车联网终端设备

  • 远端资讯处理终端设备概述
  • 终端设备(1):行车记录仪
    • 行车记录器新国家标准
    • 行车记录器新国家标准
  • 终端设备(2):T-Box
    • T-Box 政策环境
    • T-Box 市场规模
  • 车辆连接设备主要供应商
  • 连线终端竞争状况
  • 与连接端子供应商及OEM厂商的供货关係
  • 商用车集群
  • 商用车中控台萤幕
  • 商用车OS(作业系统)
  • 智慧网关
  • 网域控制器
  • DMS(驾驶监控系统)

第三章商用车远端资讯处理服务提供者(TSP)平台与生态服务

  • 商用车 TSP 概述
  • OEM 主导的 TSP 服务
  • 中国整车厂主导的商用车车联网平台
  • 第三方 TSP 平台
  • 中国第三方商用车TSP
  • TSP标竿企业:中诺夫
    • 业务概览
    • 通用解决方案
    • 网路货运解决方案
    • 製造解决方案
    • 保险风险管理解决方案
    • 货运/物流平台
    • 合作伙伴
  • TSP基准公司:G7E6
    • 物联网服务
    • 交易服务
    • 大宗物流数位化解决方案
    • 客户案例

第四章中国OEM商用车车联网布局

  • 一汽解放
    • 车联网布局
    • 远距资讯处理发展史
    • 标竿车□□型Telematics功能
    • 远端资讯处理平台
    • 远端资讯处理服务
    • 海外车联网平台
    • 合作伙伴
  • Dongfeng Commercial Vehicles
  • Sinotruk
  • Shaanxi Heavy Duty Automobile
  • Foton Motor
  • SAIC Hongyan
  • Yutong Bus
  • King Long
  • If You
  • Changan Kaicheng
  • JAC
  • SAIC Maxus
  • Geely Commercial Vehicle
  • Dayun Auto
  • XCMG

第五章中国商用车车联网一级供应商

  • Hopechart IoT
  • R&D Achievements and Projects in Progress
  • Yaxon Network
  • Smartlink+
  • Qiming Information
  • South Sagittarius Integration
  • Jingwei Hirain
  • INTEST
  • Yuwei Information
  • CVNAVI
  • Shanghai Hangsheng
  • Shouhang Communication
  • Dongfeng Electronic
  • Emperor Technology
  • Tiamaes Technology
  • Xiamen Lenz Communication
  • Xiamen GNSS Development
  • Vcolco
  • Guangdong New Space-time Technology
  • Streamax Technology
  • Deewin Tianxia
  • Sea Level Data Technology

第六章商用车车联网概述与发展趋势

  • 商用车远端资讯处理开发模式比较:原始设备製造商之间
  • 商用车远端资讯处理使用者比较:原始设备製造商之间
  • 商用车远端资讯处理供应商的营运比较
  • 商用车车联网供应商业务布局对比
  • 商用车远端资讯处理供应商的业务拓展方向
  • 商用车车联网发展趋势
简介目录
Product Code: ZQ003

The market tends to be more concentrated in leading companies in terms of hardware.

The commercial vehicle telematics industry chain covers several key links such as OEMs, operators, terminal device manufacturers, communication service providers, and content service providers, and the market value is mainly distributed among hardware manufacturers and service operators. Wherein, hardware, the basis for realizing telematics, mainly includes T-Box, driving recorder, human-computer interaction terminal, and smart gateway.

T-Box: It is a telematics information exchange center, which can communicate directly with vehicle CAN, collect, transmit and analyze data such as vehicle status and condition, and then upload the data and analysis results to the backend via the mobile communication network. It can also receive the commands issued by the backend and send back execution results, achieving the purpose of reducing vehicle loss, fuel consumption and carbon emission and improving operation efficiency. In the field of commercial vehicles, telematics services with T-Box as the data center are oriented to business, consumer and government users, and empower them in multiple dimensions, helping automakers to supervise and manage vehicles in full life cycle, fleets to cut down cost and improve efficiency, dealers to reduce financial risks, and drivers to enhance vehicle use experience.

Driving recorder: it is a special digital recording device installed on large passenger and goods vehicles to record such data as vehicle speed, time and location, according to "Regulations on Implementation of Road Traffic Safety Law" and "Technical Specifications for Safety of Power-driven Vehicles Operating on Roads" (GB 7258).

IVI: As a vehicle intelligent terminal, center console screen is the core outlet of information and functions related to in-vehicle human-computer interaction, telematics, ADAS, infotainment system, fleet management system, and repair & maintenance. It not only enhances driver's experience, but also is of great significance to reducing fuel consumption and cost and improving vehicle efficiency. From early 7 inches to current mainstream 8 inches and 10 inches, and then gradually to 12 inches, large touch screens have become a design trend of truck center console screen in recent years.

Smart gateway: It is an entry point that allows vehicles to communicate with the outside world. For example, SAIC Maxus' Smart Gateway 2.0 integrates 5G communication terminals, wireless communication WIFI module, high-precision positioning module, electronic exterior rearview mirror module and V2X module, and can flexibly adapt to various platform projects of commercial vehicles and passenger cars to enable more optimized comprehensive costs of related products and meet more intelligent needs at the same cost.

As leading players gain greater technical strength and their supply relationships become stable, the commercial vehicle hardware device market tends to be more concentrated in leading companies. In H1 2023, TOP3 suppliers (Xiamen Yaxon Network, Hopechart IoT and Smartlink+) took a combined 71.4% share in the heavy truck T-Box market. With regard to supply relationships, Xiamen Yaxon Network mainly supported Sinotruk, Foton and JAC.; Hopechart IoT was a supplier of Shaanxi Automobile, Beiben and Foton; Smartlink+, a joint-venture subsidiary of FAW Jiefang, had its T-Box products downwards adapting to T-Box hardware of multiple manufacturers in software and hardware separation mode, and upwards was tightly bond with FAW, with a surging market share.

The market more needs a hardware + algorithm + platform + service integrated business model.

Commercial vehicle telematics has passed through Phase 1.0 (basic connection) and Phase 2.0 (human-vehicle interaction), and is now entering Phase 3.0 (V2V interaction/Internet of everything). As edge computing, cloud storage and other infrastructures develop and the demand for connected services for different scenarios increases, the hardware + algorithm + platform + service integrated business model makes it easier to enable multi-dimensional vehicle data interaction and provides differentiated scenario services for users. It will become a mainstream business model of commercial vehicle telematics in the future.

In the process of promoting connected and intelligent upgrade, how to break down the barriers between hardware, data, and service for integration of ecological resources is a big enduring problem faced by OEMs. Wherein, openness of OEM data and responsiveness of supplier services is the key to vehicle intelligence. On this basis, some OEMs try to break down this barrier by way of setting up subsidiaries specializing in telematics. Examples include Smartlink+ set up by FAW Jiefang and iTink set up by Foton Motor.

Smartlink+ is a joint venture subsidiary established by FAW Jiefang in 2020. It provides complete T-Box-centered solutions of hardware, algorithm, platform and service in the field of commercial vehicle telematics, which can help drivers and other consumer users expand value-added services and also assist business users such as OEMs and fleets reducing cost and improving efficiency.

Based on multi-dimensional big data (200+ kinds of vehicle raw data, 500+ kinds of label data pre-processed by intelligent devices, and 300+ kinds of scenario-based model calculation data), Smartlink+ can monitor and analyze different scenario applications of different vehicles. Coupled with financial platform, operation & management platform and fleet management platform, it can provide vehicle full lifecycle management services, digital fleet management services, intelligent vehicle eco-services, and intelligent vehicle control services for automakers, meeting the needs of automakers, dealers, fleets, as well as retail drivers.

iTink Telematics, a wholly-owned subsidiary of Foton, specializes in commercial vehicle telematics business, and has the ability to provide customers with hardware + platform + application + data + operation integrated solutions. Based on product data, telematics data and customer data and combing product characteristics data, it builds big data analysis models. Based on 436 data algorithms, it builds 158 data models and outputs 214 types of intelligent prediction results, which are intelligently pushed to prompt users through mobile phone + Foton e-Home + vehicle screen, and intelligently match tools, accessories and maintenance schemes to enhance service accuracy and efficiency.

Commercial vehicle telematics suppliers expand business towards AD/ADAS and intelligent cockpit.

In terms of intelligence and connectivity, commercial vehicles are developing along the path of passenger cars. For intelligence, dual warning functions have come into mass production, and L2 functions such as LKA and ACC will be largely seen in vehicles in the next 2-3 years. As for connectivity, as more sensors are used in vehicles, commercial vehicles will generate far more data, and need more vehicle connectivity and analysis technologies for predictive analysis. In addition, as new-generation drivers come into service, cockpit entertainment and interaction intelligence will become new development directions of telematics applications.

Commercial vehicle telematics suppliers head in the following detections in business expansion:

1. Smart gateway and domain controller: Leading OEMs such as FAW Jiefang, Sinotruk, and BAIC Foton are developing domain controller architectures, and connected terminals like T-Box will develop in the direction of domain control and gateway. The body domain controller developed by Xiamen Yaxon Network takes Ethernet as the core and integrates such functions as BCM, PEPS, TPMS and Gateway. It allows for addition of seat adjustment, rearview mirror control, air conditioning control and other functions, and finds application in all kinds of commercial vehicles and passenger cars for intelligent control.

2. AD/ADAS: According to Intelligent Connected Vehicle Technology Roadmap 2.0, intelligent connected freight vehicles will realize conditional driving automation and platooning on highways by 2025, and high driving automation on highways by 2030. AD/ADAS is one of the expansion focuses of suppliers at this stage. Xiamen Yaxon Network, Hopechart IoT, and Smartlink+ among others combine ADAS map data and vehicle sensor data to develop PCC (Predictive Cruise Control), which saves energy through power optimization. According to test and verification by Jiefang Yingtu, the rate of fuel saving per 100km by PCC in commercial vehicles can reach 4%-8%. Moreover, Xiamen Yaxon Network, Hopechart IoT, and CVNAVI are developing BSD, DMS, and dual warning (FCW+LDW) systems to improve driving safety as the top priority. In the next step, suppliers will utilize data analysis and algorithms to improve system accuracy.

3. Intelligent cockpit: In the future, while developing towards intelligent cockpits for passenger cars, commercial vehicle cockpits will add more services for specific scenarios such as logistics and transportation, and cockpit OS developed specifically for commercial vehicle scenarios will become software foundation for cockpit intelligence. The most typical example is Smartlink+, which can link more ecosystems in line with commercial vehicle scenarios and provide users with richer intelligent vehicle ecosystem services, using Smart OS, a cockpit operating system with software-hardware separation architecture.

4. V2X: 5G network offers benefits of high bandwidth, low latency, high reliability, etc. In the field of commercial vehicle telematics, 5G plays a role in the following: 1. Connection efficiency improvement; 2. V2X application acceleration. For example, Xiamen Yaxon Network's V2X solution covers such scenarios as urban roads, highways, smart buses, autonomous ports, smart mines, and AVP-enabled parking lots.

Table of Contents

1 Overview of Commercial Vehicle Telematics

  • 1.1 Definition of Commercial Vehicle Telematics
  • 1.2 Commercial Vehicle Market Performance
  • 1.3 Commercial Vehicle Telematics Development History
  • 1.4 Characteristics of Commercial Vehicle Telematics in Phase 2.0
  • 1.5 Characteristics of Commercial Vehicle Telematics in Phase 3.0
  • 1.6 Characteristics of Commercial Vehicle Telematics in Phase 4.0
  • 1.7 Policy Environment for Commercial Vehicle Telematics
  • 1.8 Characteristics of Demand for Telematics by Market Segment
    • 1.8.1 Characteristics of Demand for Intelligent Connectivity from Heavy Trucks
    • 1.8.2 Characteristics of Demand for Intelligent Connectivity from Light Trucks
    • 1.8.3 Characteristics of Demand for Intelligent Connectivity from Large Buses
    • 1.8.4 Characteristics of Demand for Intelligent Connectivity from Commercial Vehicle Electrification
  • 1.9 Commercial Vehicle Telematics Industry Chain

2 Commercial Vehicle Telematics Terminal Devices

  • 2.1 Overview of Telematics Terminal Devices
  • 2.2 Terminal Device (1): Driving Recorder
    • 2.2.1 New National Standard for Driving Recorder
    • 2.2.2 New National Standard for Driving Recorder
  • 2.3 Terminal Device (2): T-Box
    • 2.3.1 Policy Environment for T-BOX
    • 2.3.2 T-Box Market Size
  • 2.4 Major Suppliers of Vehicle Connection Devices
  • 2.5 Competitive Landscape of Connection Terminals
  • 2.6 Supply Relationships between Connection Terminal Suppliers and OEMs
  • 2.7 Commercial Vehicle Cluster
  • 2.8 Commercial Vehicle Center Console Screen
  • 2.9 Commercial Vehicle Operating System
  • 2.10 Smart Gateway
  • 2.11 Domain Controller
  • 2.12 DMS

3 Commercial Vehicle Telematics Service Provider (TSP) Platforms and Eco-services

  • 3.1 Overview of Commercial Vehicle TSP
  • 3.2 TSP Services Led by OEMs
  • 3.3 Commercial Vehicle Telematics Platform Led by Chinese OEMs
  • 3.4 Third-party TSP Platforms
  • 3.5 Third-Party Commercial Vehicle TSPs in China
  • 3.6 TSP Benchmarking Enterprise: Sinoiov
    • 3.6.1 Business Summary
    • 3.6.2 General Solutions
    • 3.6.3 Internet Freight Solutions
    • 3.6.4 Manufacturing Solutions
    • 3.6.5 Insurance Risk Control Solutions
    • 3.6.6 Freight Transportation and Logistics Platforms
    • 3.6.7 Partners
  • 3.7 TSP Benchmarking Enterprise: G7E6
    • 3.7.1 IoT Services
    • 3.7.2 Transaction Services
    • 3.7.3 Bulk Logistics Digitalization Solution
    • 3.7.4 Customer Cases

4 Commercial Vehicle Telematics Layout of Chinese OEMs

  • 4.1 FAW Jiefang
    • 4.1.1 Telematics Layout
    • 4.1.2 Telematics Development History
    • 4.1.3 Telematics Functions of Benchmark Models
    • 4.1.4 Telematics Platform
    • 4.1.5 Telematics Services
    • 4.1.6 Overseas Telematics Platform
    • 4.1.7 Partners
  • 4.2 Dongfeng Commercial Vehicles
    • 4.2.1 Telematics Development History
    • 4.2.2 Telematics Functions of Benchmark Models
    • 4.2.3 Telematics Platform
    • 4.2.4 Telematics Services
    • 4.2.5 Service Operation Platform
    • 4.2.6 Partners
  • 4.3 Sinotruk
    • 4.3.1 Telematics Development History
    • 4.3.2 Telematics Functions of Benchmark Models
    • 4.3.3 Telematics Services
    • 4.3.4 Telematics Platform
    • 4.3.5 Fleet Management System
    • 4.3.6 Full Lifecycle Solutions
  • 4.4 Shaanxi Heavy Duty Automobile
    • 4.4.1 Telematics Development History
    • 4.4.2 Telematics Functions of Benchmark Models
    • 4.3.3 Telematics Services
    • 4.4.4 Telematics Platform
    • 4.4.5 Telematics Hardware Products
    • 4.4.6 Telematics Applet
    • 4.4.7 Telematics Dynamics
  • 4.5 Foton Motor
    • 4.5.1 Telematics Development History
    • 4.5.2 Telematics Functions of Benchmark Models
    • 4.5.3 Telematics Services
    • 4.5.4 Telematics Solutions
    • 4.5.5 Telematics Software Products
    • 4.5.6 Telematics Terminal Products
    • 4.5.7 Autonomous Driving Business
    • 4.5.8 Partners
  • 4.6 SAIC Hongyan
    • 4.6.1 Telematics System
    • 4.6.2 Telematics Functions of Benchmark Models
    • 4.6.3 Telematics Software Products
    • 4.6.4 Telematics Platform
    • 4.6.5 Telematics Dynamics
    • 4.6.6 Partners
  • 4.7 Yutong Bus
    • 4.7.1 Telematics Layout
    • 4.7.2 Telematics Development History
    • 4.7.3 Telematics Functions of Benchmark Models
    • 4.7.4 Telematics Product Architecture
    • 4.7.5 Telematics Platform
    • 4.7.6 Telematics System
    • 4.7.7 Telematics Featured Models
    • 4.7.8 Telematics Overseas Status
    • 4.7.9 Partners
  • 4.8 King Long
    • 4.8.1 Telematics Development History
    • 4.8.2 Telematics Featured Models
    • 4.8.3 Telematics System
    • 4.8.4 Telematics Solutions
    • 4.8.5 Telematics Projects
    • 4.8.6 Partners
  • 4.9 If You
    • 4.9.1 Telematics Layout
    • 4.9.2 Telematics Functions of Benchmark Models
    • 4.9.3 Telematics Products
    • 4.9.4 Telematics Platform
    • 4.9.5 Capacity Solutions
    • 4.9.6 Telematics and Connected Data Service Chain System
    • 4.9.7 Telematics Hardware Products
  • 4.10 Changan Kaicheng
    • 4.10.1 Telematics Layout
    • 4.10.2 Logistic Planning
  • 4.11 JAC
    • 4.11.1 Telematics Development History
    • 4.11.2 Telematics Functions of Benchmark Models
    • 4.11.3 Telematics System 3.0
    • 4.11.4 Telematics Products
    • 4.11.5 Telematics System of JAC Light Truck
    • 4.11.6 Digital Ecological Platform
  • 4.12 SAIC Maxus
    • 4.12.1 Telematics Development History
    • 4.12.2 Telematics Products
    • 4.12.3 Telematics Services
    • 4.12.4 Smart Light Vehicle Architecture Platform
  • 4.13 Geely Commercial Vehicle
    • 4.13.1 Telematics Functions of Benchmark Models
    • 4.13.2 Telematics Platform
    • 4.13.3 Telematics Products
    • 4.13.4 Telematics Technology
    • 4.13.5 Smart Logistics System
  • 4.14 Dayun Auto
    • 4.14.1 Telematics Functions of Benchmark Models
    • 4.14.2 Telematics Functions
    • 4.14.3 Telematics Products
  • 4.15 XCMG
    • 4.15.1 Telematics Functions of Benchmark Models
    • 4.15.2 Cloud Platform

5 Chinese Commercial Vehicle Telematics Tier1 Suppliers

  • 5.1 Hopechart IoT
    • 5.1.1 Profile
    • 5.1.2 Revenue
    • 5.1.3 Telematics Business System
    • 5.1.4 Telematics Hardware
    • 5.1.5 Telematics System
    • 5.1.6 Telematics Platform
  • 5.1.7R&D Achievements and Projects in Progress
    • 5.1.8 Partners
  • 5.2 Yaxon Network
    • 5.2.1 Profile
    • 5.2.2 Telematics Business System
    • 5.2.3 Telematics Hardware
    • 5.2.4 Telematics Platform
    • 5.2.5 Telematics System
    • 5.2.6 Telematics Solutions
    • 5.2.7 Partners
  • 5.3 Smartlink+
    • 5.3.1 Profile
    • 5.3.2 Telematics Business System
    • 5.3.3 Telematics Hardware
    • 5.3.4 Telematics Platform
    • 5.3.5 Telematics Solutions
    • 5.3.6 Partners
  • 5.4 Qiming Information
    • 5.4.1 Profile
    • 5.4.2 Revenue
    • 5.4.3 Telematics Business System
    • 5.4.4 Telematics Hardware
    • 5.4.5 Telematics Platform
    • 5.4.6 Telematics Solutions
    • 5.4.7 Intellectual Property Rights
    • 5.4.8 R&D Projects
  • 5.5 South Sagittarius Integration
    • 5.5.1 Profile
    • 5.5.2 Business System
    • 5.5.3 Telematics Hardware
    • 5.5.4 Telematics Platform
    • 5.5.5 Telematics System
    • 5.5.6 Telematics Solutions
  • 5.6 Jingwei Hirain
    • 5.6.1 Profile
    • 5.6.2 Telematics Business System
    • 5.6.3 Telematics Hardware
    • 5.6.4 Telematics Platform
    • 5.6.5 Telematics System
    • 5.6.6 Projects in Progress
    • 5.6.7 Cooperation Dynamics
  • 5.7 INTEST
    • 5.7.1 Profile
    • 5.7.2 Telematics Business System
    • 5.7.3 Telematics Hardware
    • 5.7.4 Telematics Platform
    • 5.7.5 Telematics System
  • 5.8 Yuwei Information
    • 5.8.1 Profile
    • 5.8.2 Telematics Business System
    • 5.8.3 Telematics Hardware
    • 5.8.4 Telematics Platform
    • 5.8.5 Telematics Solutions
  • 5.9 CVNAVI
    • 5.9.1 Profile
    • 5.9.2 Telematics Hardware
    • 5.9.3 Telematics Platform
    • 5.9.4 Telematics Solutions
  • 5.10 Shanghai Hangsheng
    • 5.10.1 Profile
    • 5.10.2 Telematics Business System
    • 5.10.3 Telematics Hardware
    • 5.10.4 Telematics Platform
  • 5.11 Shouhang Communication
    • 5.11.1 Profile
    • 5.11.2 Telematics Hardware
    • 5.11.3 Telematics Solution
  • 5.12 Dongfeng Electronic
    • 5.12.1 Profile
    • 5.12.2 Telematics Business System
  • 5.13 Emperor Technology
    • 5.13.1 Profile
    • 5.13.2 Telematics Business System
    • 5.13.3 Telematics Hardware
    • 5.13.4 Telematics Platform
  • 5.14 Tiamaes Technology
    • 5.14.1 Profile
    • 5.14.2 Telematics Business System
    • 5.14.3 Telematics Solutions
    • 5.14.4 Partners
  • 5.15 Xiamen Lenz Communication
    • 5.15.1 Profile
    • 5.15.2 Telematics Business System
    • 5.15.3 Telematics Solutions
    • 5.15.4 Partners
  • 5.16 Xiamen GNSS Development
    • 5.16.1 Profile
    • 5.16.2 Telematics Business System
    • 5.16.3 Telematics Platform
  • 5.17 Vcolco
    • 5.17.1 Profile
    • 5.17.2 Telematics Business System
    • 5.17.3 Telematics Business
    • 5.17.4 Telematics Platform
  • 5.18 Guangdong New Space-time Technology
    • 5.18.1 Profile
    • 5.18.2 Revenue
    • 5.18.3 Telematics Hardware
    • 5.18.4 Telematics Platform
    • 5.18.5 Telematics Solutions
  • 5.19 Streamax Technology
    • 5.19.1 Profile
    • 5.19.2 Revenue
    • 5.19.3 Telematics Business System
    • 5.19.4 Telematics Hardware
    • 5.19.5 Telematics Solutions
  • 5.20 Deewin Tianxia
    • 5.20.1 Profile
    • 5.20.2 Revenue
    • 5.20.3 Telematics Business
  • 5.21 Sea Level Data Technology
    • 5.21.1 Profile
    • 5.21.2 Telematics Business System
    • 5.21.3 Telematics Hardware
    • 5.21.4 Telematics Platform
    • 5.21.5 Telematics Solutions
    • 5.21.6 Partners

6 Commercial Vehicle Telematics Summary and Development Trends

  • 6.1 Comparison of Commercial Vehicle Telematics Development Models between OEMs
  • 6.2 Comparison of Commercial Vehicle Telematics Users between OEMs
  • 6.3 Comparison of Operation between Commercial Vehicle Telematics Suppliers
  • 6.4 Comparison of Business Layout between Commercial Vehicle Telematics Suppliers
  • 6.5 Business Expansion Directions of Commercial Vehicle Telematics Suppliers
  • 6.6 Development Trends of Commercial Vehicle Telematics
    • 6.6.1 Trend 1
    • 6.6.2 Trend 2
    • 6.6.3 Trend 3
    • 6.6.4 Trend 4
    • 6.6.5 Trend 5
    • 6.6.6 Trend 6
    • 6.6.7 Trend 7