全球外骨骼市场 - 按目标身体部位、操作模式、外骨骼形状、移动性、最终用户、地区:产业趋势和全球预测(2023-2035)
市场调查报告书
商品编码
1398314

全球外骨骼市场 - 按目标身体部位、操作模式、外骨骼形状、移动性、最终用户、地区:产业趋势和全球预测(2023-2035)

Global Exoskeleton Market by Body Part Covered, Mode of Operation, Form of Exoskeleton, Mobility, End Users and Geography : Industry Trends and Global Forecasts, 2023-2035

出版日期: | 出版商: Roots Analysis | 英文 425 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

预计到 2035 年,全球外骨骼市场将达到 200 亿美元,在预测期内(2023-2035 年)复合年增长率为 23.1%。

过去几年,医疗保健系统一直面临着多发性硬化症和中风等神经系统疾病带来的日益沉重的负担。 根据世界卫生组织 (WHO) 统计,目前全球约有 180 万人患有多发性硬化症,每年有超过 1,220 万人患有中风。 随着人口老化,这一数字预计将进一步增加。

神经系统疾病通常会导致肌肉无力,无论是特定肌肉群(如偏瘫、截瘫或四肢瘫痪)或全身肌肉无力,都会影响运动技能。 不幸的是,神经运动障碍无法治愈,但轮椅、拐杖和助行器等行动辅助设备可以提高患者的独立性和舒适度。 儘管这些设备被广泛使用,但它们只能提供短期缓解,而不是永久解决方案。 此外,不当操作和长时间使用这些设备可能会导致身体疲劳、不适和受伤,最终降低患者的生活品质。 事实上,据报道,大约 50% 的手动轮椅使用者在一生中的某个时刻经历过肩部损伤。

随着时间的推移,外骨骼已成为部分替代或补充復健设备,使脊髓损伤和相关疾病的患者在医院和家中比传统交通工具更加自由。我现在可以走路了。 医用外骨骼是可穿戴的外骨骼,旨在帮助行动不便的患者恢復上肢或下肢的运动能力,无论是部分还是完全瘫痪。它是一种机电设备。 透过利用神经可塑性,配备感测器、马达、致动器、电源和控制策略的医用外骨骼可以促进基本运动的恢復,并治疗后天性脑损伤(ABI)和脊髓损伤(SCI)等病症,加速损伤復健。 不仅是患者,护士和外科医生等医疗保健提供者也面临各种肌肉骨骼疾病,因为他们在医疗领域的体力要求很高。 医用外骨骼可以帮助护理人员完成抬起和移动病人、穿越障碍物以及长时间站立等任务。

除医疗行业外,建筑、物流、车辆製造、飞机製造、造船厂、汽车/金属维修、铸造、航空、维修和其他工厂运营等广泛行业都可以提高工人绩效并减少职业事故。外骨骼科技正在被用来防止这种情况发生。 国际劳工组织 (ILO) 估计,每年有超过 230 万名工人因工伤事故和疾病死亡。 每年都会发生如此多的事故,采用工业外骨骼来协助工人完成体力要求较高的任务,例如举起重物和进行高空作业,是工作场所安全的重要一步。除了提高生产力外,它还具有潜力提高员工留任率、提高生产力并降低成本。

儘管外骨骼设备具有许多优点,但其采用仍受到多种因素的阻碍,包括成本障碍和潜在用户缺乏意识。 为了获得更广泛的接受,外骨骼製造商正在将其研发工作转向降低外骨骼的成本。 我们还将云端运算、深度学习、智慧感测器和人工智慧等先进技术融入我们的外骨骼产品中。 随着外骨骼技术的不断进步,这些设备的成本不断下降,并且利益相关者意识到由于更高的效益成本比而与外骨骼产品相关的正投资回报(ROI),预计各行业对新兴技术的采用将会增加。 这将推动预测期内全球外骨骼市场的成长。

在本报告中,我们分析了全球外骨骼市场,包括市场的基本结构、最新情况、主要推动和限制因素、产品竞争力、资本交易和业务联盟的最新趋势,我们调查了整体的趋势市场规模、细分市场和地区的详细趋势、肿瘤学概况以及未来市场发展策略。

主要市场公司

  • Bionic Yantra
  • CYBERDYNE
  • Ekso Bionics
  • ExoAtlet
  • Fourier Intelligence
  • Gloreha
  • Guangzhou Yikang Medical Equipment
  • Hexar Humancare
  • Hocoma
  • MediTouch
  • Milebot Robotics
  • Myomo
  • Neofect
  • NextStep Robotics
  • Panasonic
  • ReWalk Robotics
  • Rex Bionics
  • Roam Robotics
  • Trexo Robotics
  • Tyromotion
  • U&O Technologies

目录

第一章前言

第二章分析方法

第 3 章经济与其他专案特定考量

第 4 章执行摘要

第 5 章简介

  • 分析概述
  • 外骨骼概述
  • 外骨骼的历史
  • 外骨骼的分类
  • 外骨骼的应用
  • 外骨骼的特点
  • 外骨骼的局限性
  • 未来展望

第六章医疗外骨骼:市场状况

  • 分析概述
  • 医疗外骨骼:整体市场情势
  • 医疗外骨骼:开发者景观

第七章非医用外骨骼:市场状况

  • 分析概述
  • 非医用外骨骼:整体市场状况
  • 非医用外骨骼:开发者景观

第八章医疗外骨骼:产品竞争力分析

  • 分析概述
  • 假设和主要参数
  • 分析法
  • 医疗外骨骼:产品竞争力分析

第 9 章外骨骼开发商:详细公司简介

  • 分析概述
  • CYBERDYNE
  • Ekso Bionics
  • ExoAtlet
  • Fourier Intelligence
  • Gloreha
  • Guangzhou Yikang
  • Hexar Humancare
  • Hocoma
  • Panasonic
  • Tyromotion

第十章外骨骼开发商:公司简介(表格格式)

  • 分析概述
  • Bionic Yantra
  • MediTouch
  • Milebot Robotics
  • Myomo
  • Neofect
  • NextStep Robotics
  • ReWalk Robotics
  • Rex Bionics
  • Roam Robotics
  • Trexo Robotics
  • U&O Technologies

第 11 章医疗外骨骼:商业联盟/合作

  • 分析概述
  • 业务伙伴模式
  • 医疗外骨骼:商业联盟和合作列表

第十二章专利分析

  • 分析概述
  • 分析范围/方法
  • 外骨骼:专利分析
  • 外骨骼:专利基准
  • 实力雄厚的公司:依引用次数分类

第十三章蓝海战略

第 14 章市场影响分析:驱动因素、限制、机会、挑战

  • 分析概述
  • 市场驱动因素
  • 市场限制因素
  • 市场机会
  • 市场挑战
  • 结论

第十五章全球外骨骼市场

  • 分析概述
  • 预测方法与关键假设
  • 全球外骨骼市场:过去趋势(2018-2022)与预测(2023-2035)
  • 主要市场细分
  • 动态仪表板

第 16 章外骨骼市场:目标身体部位

  • 分析概述
  • 预测方法与关键假设
  • 医用上身外骨骼:过去的趋势(2018-2022)与预测(2023-2035)
  • 医用下半身外骨骼:过去的趋势(2018-2022)与预测(2023-2035)
  • 医用全身外骨骼:过去的趋势(2018-2022)与预测(2023-2035)
  • 非医用上身外骨骼:过去趋势(2018-2022)与预测(2023-2035)
  • 非医用下半身外骨骼:过去趋势(2018-2022)与预测(2023-2035)
  • 非医用全身外骨骼:过去趋势(2018-2022)与预测(2023-2035)
  • 整个上身外骨骼:过去的趋势(2018-2022)与预测(2023-2035)
  • 整个下半身外骨骼:过去的趋势(2018-2022)与预测(2023-2035)
  • 全身外骨骼:过去的趋势(2018-2022)与预测(2023-2035)
  • 数据测量与验证

第十七章外骨骼市场:依营运模式划分

  • 分析概述
  • 预测方法与关键假设
  • 医疗动力外骨骼:过去的趋势(2018-2022)与预测(2023-2035)
  • 医疗被动外骨骼:过去的趋势(2018-2022)和预测(2023-2035)
  • 医用混合外骨骼:过去的趋势(2018-2022)和预测(2023-2035)
  • 非医疗动力外骨骼:过去的趋势(2018-2022)与预测(2023-2035)
  • 非医用被动外骨骼:过去趋势(2018-2022)与预测(2023-2035)
  • 非医用混合外骨骼:过去的趋势(2018-2022)和预测(2023-2035)
  • 整体动力外骨骼:过去趋势(2018-2022 年)与预测(2023-2035 年)
  • 整体被动外骨骼:过去趋势(2018-2022)与预测(2023-2035)
  • 整体混合外骨骼:过去趋势(2018-2022 年)与预测(2023-2035 年)
  • 数据测量与验证

第十八章外骨骼市场:依外骨骼形状

  • 分析概述
  • 预测方法与关键假设
  • 医用刚性外骨骼:过去的趋势(2018-2022)与预测(2023-2035)
  • 医用软外骨骼:过去趋势(2018-2022)与预测(2023-2035)
  • 非医用刚性外骨骼:过去的趋势(2018-2022)与预测(2023-2035)
  • 非医用软外骨骼:过去的趋势(2018-2022)和预测(2023-2035)
  • 整体刚性外骨骼:过去趋势(2018-2022 年)与预测(2023-2035 年)
  • 软外骨骼整体:过去的趋势(2018-2022)与预测(2023-2035)
  • 数据测量与验证

第十九章外骨骼市场:移动性别

  • 分析概述
  • 预测方法与关键假设
  • 医疗固定/支撑外骨骼:过去趋势(2018-2022 年)和预测(2023-2035 年)
  • 医疗/移动/陆上行走外骨骼:过去的趋势(2018-2022)和预测(2023-2035)
  • 数据测量与验证

第 20 章外骨骼市场:依最终使用者划分

  • 分析概述
  • 预测方法与关键假设
  • 病人/医疗外骨骼:过去的趋势(2018-2022)和预测(2023-2035)
  • 医疗保健提供者的医疗外骨骼:过去的趋势(2018-2022)和预测(2023-2035)
  • 产业工人和非医疗用途的外骨骼:过去趋势(2018-2022 年)和预测(2023-2035 年)
  • 军用/非医用外骨骼:过去的趋势(2018-2022)和预测(2023-2035)
  • 其他/非医疗外骨骼:过去趋势(2018-2022 年)和预测(2023-2035 年)
  • 最终使用者的整体外骨骼:过去趋势(2018-2022 年)和预测(2023-2035 年)
  • 数据测量与验证

第 21 章外骨骼市场:依地区

  • 分析概述
  • 预测方法与关键假设
  • 北美:过去趋势(2018-2022 年)与预测(2023-2035 年)
  • 欧洲:过去趋势(2018-2022 年)与预测(2023-2035 年)
  • 亚太地区:过去趋势(2018-2022 年)与预测(2023-2035 年)
  • 其他地区(世界各地):过去趋势(2018-2022 年)和预测(2023-2035 年)
  • 数据测量与验证

第22章结论

第 23 章管理见解

  • 分析概述
  • ABLE Human Motion
  • Archelis
  • Biomotum
  • Bionic Power
  • Bionic Yantra

第 24 章附录 1:蓝海策略与转型工具

第 25 章附录 2:表格资料

第26章附录3:公司与组织名单

简介目录
Product Code: RA100462

The global exoskeleton market is projected to reach USD 20,000 million by 2035 growing at a CAGR of 23.1% during the forecast period 2023-2035.

From the past years, the healthcare system has faced an increasing burden from neurological disorders like multiple sclerosis and strokes, which have become more prevalent. According to the World Health Organization (WHO), approximately 1.8 million people worldwide are currently living with multiple sclerosis, and over 12.2 million individuals suffer from strokes each year. These numbers are expected to rise further due to the aging population.

Neurological disorders often result in muscle weakness, impacting mobility, whether it's in specific muscle groups (like hemiplegia, paraplegia, or quadriplegia) or throughout the entire body. Unfortunately, there is no cure for neuromotor impairment, but the use of assistive mobility devices such as wheelchairs, crutches, and walkers can enhance independence and comfort for patients. While these devices are widely used, they offer short-term relief rather than a transformative solution. Additionally, improper handling or prolonged use of these devices can lead to physical fatigue, discomfort, and injuries, ultimately reducing the patients' quality of life. In fact, it's reported that approximately 50% of manual wheelchair users experience shoulder injuries at some point in their lives.

Over time, exoskeletons have emerged as a partial alternative or complementary rehabilitation device, enabling individuals with spinal cord injuries and related conditions to walk more freely in hospitals and at home compared to traditional mobility options. A medical exoskeleton is a wearable electromechanical device designed to assist patients with mobility issues, whether they are partially or completely paralyzed, in regaining movement in their upper or lower extremities. By harnessing neuroplasticity, medical exoskeletons equipped with sensors, motors, actuators, power sources, and control strategies facilitate the recovery of fundamental movements and accelerate rehabilitation from injuries, such as acquired brain injury (ABI) or spinal cord injury (SCI). Beyond patients, healthcare providers such as nurses and surgeons also face various musculoskeletal disorders due to the physically demanding nature of their roles in the healthcare sector. Medical exoskeletons can assist caregivers in tasks such as lifting and moving patients, navigating obstacles, and standing for extended periods.

Outside the healthcare industry, exoskeleton technology is being used to enhance the performance of workers and prevent work-related accidents in a wide range of industries, including construction, logistics, vehicle manufacturing, aircraft production, shipyards, automotive and metal mechanics, foundries, aeronautics, maintenance, and other factory work. According to estimates from the International Labor Organization (ILO), over 2.3 million workers die each year due to work-related accidents or diseases. With such a significant number of accidents occurring annually, the adoption of industrial exoskeletons to assist workers in physically demanding tasks such as lifting heavy loads or performing overhead work has the potential to not only improve workplace safety but also increase employee retention, enhance productivity, and reduce costs.

Owing to the numerous advantages they offer, the adoption of exoskeleton devices is hindered by various factors, including cost barriers and a lack of awareness among potential users. To encourage broader acceptance, exoskeleton companies are directing their research and development efforts towards reducing the cost of exoskeletons. They are also incorporating advanced technologies such as cloud computing, deep learning, smart sensors, and artificial intelligence into their exoskeleton product offerings. As exoskeleton technology continues to advance and the cost of these devices decreases, and as stakeholders recognize the positive return on investment (ROI) associated with exoskeleton products due to their higher benefit-cost ratio, the adoption of this emerging technology is expected to increase across various industries. This, in turn, will drive the growth of the global exoskeleton market during the forecast period.

Key Market Segments:

Body Part Covered

  • Upper Extremity
  • Lower Extremity
  • Full Body

Mode of Operation

  • Powered
  • Passive
  • Hybrid

Form

  • Rigid
  • Soft

Mobility

  • Fixed / Supported
  • Mobile

End Users

  • Patients
  • Healthcare Providers
  • Industry Workers
  • Military Personnel
  • Others

Geography

  • North America
  • Europe
  • Asia-Pacific
  • Rest of the World

Research Coverage:

  • The report studies the exoskeleton market based on body part covered, mode of operation, form of exoskeleton, mobility, end users and geography
  • The report analyzes factors (such as drivers, restraints, opportunities, and challenges) affecting the market growth
  • The report assesses the potential advantages and obstacles within the market for those involved and offers information on the competitive environment for top players in the market.
  • The report forecasts the revenue of market segments with respect to four major regions
  • It offers an insightful assessment of product competitiveness in the medical exoskeleton market, considering factors like supplier strength, product features, and end users.
  • The report features detailed profiles of key wearable exoskeleton companies, focusing on their establishment, size, location, leadership, financial performance (if available), product portfolio, recent developments, and future outlook.
  • Analysis of recent partnerships and collaborations related to medical exoskeletons, established since 2017.
  • The report delves into patents filed or granted for exoskeletons since 2016, considering patent types, application and publication years, geographical location, applicant type, publication time, CPC symbols, and leading patent holders, accompanied by a comprehensive patent benchmarking analysis.
  • It provides a strategic guide for emerging medical exoskeleton companies to gain a competitive edge through a blue ocean strategy, offering thirteen strategic tools to explore untapped market opportunities.

Key Benefits of Buying this Report:

  • The report offers market leaders and newcomers valuable insights into revenue estimations for both the overall market and its sub-segments.
  • Stakeholders can utilize the report to enhance their understanding of the competitive landscape, allowing for improved business positioning and more effective go-to-market strategies.
  • The report provides stakeholders with a pulse on the exoskeleton market, furnishing them with essential information on significant market drivers, barriers, opportunities, and challenges.

Key Market Companies:

  • Bionic Yantra
  • CYBERDYNE
  • Ekso Bionics
  • ExoAtlet
  • Fourier Intelligence
  • Gloreha
  • Guangzhou Yikang Medical Equipment
  • Hexar Humancare
  • Hocoma
  • MediTouch
  • Milebot Robotics
  • Myomo
  • Neofect
  • NextStep Robotics
  • Panasonic
  • ReWalk Robotics
  • Rex Bionics
  • Roam Robotics
  • Trexo Robotics
  • Tyromotion
  • U&O Technologies

TABLE OF CONTENTS

1. PREFACE

  • 1.1. Introduction
  • 1.2. Key Market Insights
  • 1.3. Scope of the Report
  • 1.4. Research Methodology
  • 1.5. Frequently Asked Questions
  • 1.6. Chapter Outlines

2. RESEARCH METHODOLOGY

  • 2.1. Chapter Overview
  • 2.2. Research Assumptions
  • 2.3. Project Methodology
  • 2.4. Forecast Methodology
  • 2.5. Robust Quality Control
  • 2.6. Key Market Segmentations
  • 2.7. Key Considerations
    • 2.7.1. Demographics
    • 2.7.2. Economic Factors
    • 2.7.3. Government Regulations
    • 2.7.4. Supply Chain
    • 2.7.5. COVID Impact / Related Factors
    • 2.7.6. Market Access
    • 2.7.7. Healthcare Policies
    • 2.7.8. Industry Consolidation

3. ECONOMIC AND OTHER PROJECT SPECIFIC CONSIDERATIONS

  • 3.1. Chapter Overview
  • 3.2. Market Dynamics
    • 3.2.1. Time Period
      • 3.2.1.1. Historical Trends
      • 3.2.1.2. Current and Forecasted Estimates
    • 3.2.2. Currency Coverage
      • 3.2.2.1. Overview of Major Currencies Affecting the Market
      • 3.2.2.2. Impact of Currency Fluctuations on the Industry
    • 3.2.3. Foreign Exchange Impact
      • 3.2.3.1. Evaluation of Foreign Exchange Rates and Their Impact on Market
      • 3.2.3.2. Strategies for Mitigating Foreign Exchange Risk
    • 3.2.4. Recession
      • 3.2.4.1. Historical Analysis of Past Recessions and Lessons Learnt
      • 3.2.4.2. Assessment of Current Economic Conditions and Potential Impact on the Market
    • 3.2.5. Inflation
      • 3.2.5.1. Measurement and Analysis of Inflationary Pressures in the Economy
      • 3.2.5.2. Potential Impact of Inflation on the Market Evolution

4. EXECUTIVE SUMMARY

5. INTRODUCTION

  • 5.1. Chapter Overview
  • 5.2. Overview of Exoskeleton
  • 5.3. History of Exoskeleton
  • 5.4. Classification of Exoskeleton
    • 5.4.1. Based on Body Part Supported
    • 5.4.2. Based on Form of Exoskeleton
    • 5.4.3. Based on Mode of Operation
    • 5.4.4 Based on Mobility
  • 5.5. Applications of Exoskeleton
  • 5.6. Features of Exoskeleton
  • 5.7. Limitations of Exoskeleton
  • 5.8. Future Perspectives

6. MEDICAL EXOSKELETON: MARKET LANDSCAPE

  • 6.1. Chapter Overview
  • 6.2. Medical Exoskeleton: Overall Market Landscape
    • 6.2.1. Analysis by Status of Development
    • 6.2.2. Analysis by Type of Body Part Covered
    • 6.2.3. Analysis by Mode of Operation
    • 6.2.4. Analysis by Type of Body Part Covered and Mode of Operation
    • 6.2.5. Analysis by Form of Exoskeleton
    • 6.2.6. Analysis by Mode of Operation and Form of Exoskeleton
    • 6.2.7. Analysis by Type of Body Part Covered and Form of Exoskeleton
    • 6.2.8. Analysis by Device Mobility
    • 6.2.9. Analysis by Mode of Operation and Device Mobility
    • 6.2.10. Analysis by Form of Exoskeleton and Device Mobility
    • 6.2.11. Analysis by Type of Body Part Covered and Device Mobility
    • 6.2.12. Analysis by User-Machine Interface
    • 6.2.13. Analysis by Type of Body Part Covered and User-Machine Interface
    • 6.2.14. Analysis by Mode of Operation and User-Machine Interface
    • 6.2.15. Analysis by Availability of Advanced Features
    • 6.2.16. Analysis by End User
    • 6.2.17. Analysis by Patient Age Group
    • 6.2.18. Analysis by Exoskeleton Setting for Patients
    • 6.2.19. Analysis by Breakthrough Designation
  • 6.3. Medical Exoskeleton: Developer: Landscape
    • 6.3.1. Analysis by Year of Establishment
    • 6.3.2. Analysis by Company Size
    • 6.3.3. Analysis by Location of Headquarters
    • 6.3.4. Analysis by Company Size and Location of Headquarters
    • 6.3.5. Analysis by Company Ownership
    • 6.3.6. Analysis by Location of Headquarters and Company Ownership
    • 6.3.7. Analysis by Additional Services Offered
    • 6.3.8. Most Active Players: Analysis by Number of Medical Exoskeleton

7. NON-MEDICAL EXOSKELETON: MARKET LANDSCAPE

  • 7.1. Chapter Overview
  • 7.2. Non-Medical Exoskeleton: Overall Market Landscape
    • 7.2.1. Analysis by Status of Development
    • 7.2.2. Analysis by Type of Body Part Covered
    • 7.2.3. Analysis by Body Part Supported
    • 7.2.4. Analysis by Mode of Operation
    • 7.2.5. Analysis by Form of Exoskeleton
    • 7.2.6. Analysis by Type of Body Part Covered and Mode of Operation
    • 7.2.7. Analysis by Type of Body Part Covered and Form of Exoskeleton
    • 7.2.8. Analysis by Mode of Operation and Form of Exoskeleton
    • 7.2.9. Analysis by Application Area
    • 7.2.10. Analysis by Mode of Operation and Application Area
  • 7.3. Non-Medical Exoskeleton: Developer Landscape
    • 7.3.1. Analysis by Year of Establishment
    • 7.3.2. Analysis by Company Size
    • 7.3.3. Analysis by Company Size and Employee Count
    • 7.3.4. Analysis by Location of Headquarters
    • 7.3.5. Analysis by Company Size and Location of Headquarters
    • 7.3.6. Analysis by Company Ownership
    • 7.3.7. Analysis by Location of Headquarters and Company Ownership
    • 7.3.8. Most Active Players: Analysis by Number of Non-Medical Exoskeleton
    • 7.3.9. Most Active Players: Analysis by Number of Medical and Non-Medical Exoskeleton

8. MEDICAL EXOSKELETON: PRODUCT COMPETITVENESS ANALYSIS

  • 8.1 Chapter Overview
  • 8.2. Assumptions and Key Parameters
  • 8.3. Methodology
  • 8.4. Medical Exoskeleton: Product Competitiveness Analysis
    • 8.4.1. Product Competitiveness Analysis: Upper Body Medical Exoskeleton
      • 8.4.1.1. Product Competitiveness Analysis: Upper Body, Powered Exoskeleton
      • 8.4.1.2. Product Competitiveness Analysis: Upper Body, Passive Exoskeleton
      • 8.4.1.3. Product Competitiveness Analysis: Upper Body, Hybrid Exoskeleton
    • 8.4.2. Product Competitiveness Analysis: Lower Body Exoskeleton
      • 8.4.2.1. Product Competitiveness Analysis: Lower Body, Powered Exoskeleton
      • 8.4.2.2. Product Competitiveness Analysis: Lower Body, Passive Exoskeleton
      • 8.4.2.3. Product Competitiveness Analysis: Lower Body, Hybrid Exoskeleton
    • 8.4.3. Product Competitiveness Analysis: Full Body Medical Exoskeleton

9. EXOSKELETON DEVELOPERS: DETAILED COMPANY PROFILES

  • 9.1. Chapter Overview
  • 9.2. CYBERDYNE
    • 9.2.1. Company Overview
    • 9.2.2. Financial Information
    • 9.2.3. Product Portfolio
    • 9.2.4 Recent Developments and Future Outlook
  • 9.3. Ekso Bionics
    • 9.3.1. Company Overview
    • 9.3.2. Financial Information
    • 9.3.3. Product Portfolio
    • 9.3.4 Recent Developments and Future Outlook
  • 9.4. ExoAtlet
    • 9.4.1. Company Overview
    • 9.4.2. Product Portfolio
    • 9.4.3. Recent Developments and Future Outlook
  • 9.5. Fourier Intelligence
    • 9.5.1. Company Overview
    • 9.5.2. Product Portfolio
    • 9.5.3. Recent Developments and Future Outlook
  • 9.6. Gloreha
    • 9.6.1. Company Overview
    • 9.6.2. Product Portfolio
    • 9.6.3. Recent Developments and Future Outlook
  • 9.7. Guangzhou Yikang
    • 9.7.1. Company Overview
    • 9.7.2. Product Portfolio
    • 9.7.3. Recent Developments and Future Outlook
  • 9.8. Hexar Humancare
    • 9.8.1. Company Overview
    • 9.8.2. Product Portfolio
    • 9.8.3. Recent Developments and Future Outlook
  • 9.9. Hocoma
    • 9.9.1. Company Overview
    • 9.9.2. Product Portfolio
    • 9.9.3. Recent Developments and Future Outlook
  • 9.10. Panasonic
    • 9.10.1. Company Overview
    • 9.10.2. Financial Information
    • 9.10.3. Product Portfolio
    • 9.10.4. Recent Developments and Future Outlook
  • 9.11. Tyromotion
    • 9.11.1. Company Overview
    • 9.11.2. Product Portfolio
    • 9.11.3. Recent Developments and Future Outlook

10. EXOSKELETON DEVELOPERS: TABULATED COMPANY PROFILES

  • 10.1. Chapter Overview
  • 10.2. Bionic Yantra
  • 10.3. MediTouch
  • 10.4. Milebot Robotics
  • 10.5. Myomo
  • 10.6. Neofect
  • 10.7. NextStep Robotics
  • 10.8. ReWalk Robotics
  • 10.9. Rex Bionics
  • 10.10. Roam Robotics
  • 10.11. Trexo Robotics
  • 10.12. U&O Technologies

11. MEDICAL EXOSKELETON: PARTNERSHIPS AND COLLABORATIONS

  • 11.1. Chapter Overview
  • 11.2. Partnership Models
  • 11.3. Medical Exoskeleton: List of Partnerships and Collaborations
    • 11.3.1. Analysis by Year of Partnership
    • 11.3.2. Analysis by Type of Partnership
    • 11.3.3. Analysis by Year and Type of Partnership
    • 11.3.4. Analysis by Type of Partner
    • 11.3.5. Analysis by Year of Partnership and Type of Partner
    • 11.3.6. Analysis by Purpose of Partnership
    • 11.3.7. Analysis by Geography
      • 11.3.7.1. Local and International Agreements
      • 11.3.7.2. Intracontinental and Intercontinental Agreements
      • 11.3.7.3. Most Active Players: Distribution by Number of Partnerships

12. PATENT ANALYSIS

  • 12.1. Chapter Overview
  • 12.2. Scope and Methodology
  • 12.3. Exoskeleton: Patent Analysis
    • 12.3.1. Analysis by Patent Application Year
    • 12.3.2. Analysis by Patent Publication Year
    • 12.3.3. Analysis by Type of Patent and Patent Publication Year
    • 12.3.4. Analysis by Publication Time
    • 12.3.5. Analysis by Patent Jurisdiction
    • 12.3.6. Analysis by CPC symbols
    • 12.3.7. Analysis by Type of Applicant
    • 12.3.8. Leading Players: Analysis by Number of Patents
    • 12.3.9. Leading Patent Assignees: Analysis by Number of Patents
  • 12.4. Exoskeleton: Patent Benchmarking
    • 12.4.1. Analysis by Patent Characteristics
    • 12.4.2. Exoskeleton: Patent Valuation
  • 12.5. Leading Players by Number of Citations

13. BLUE OCEAN STRATEGY

  • 13.1. Overview of Blue Ocean Strategy
    • 13.1.1. Red Oceans
    • 13.1.2. Blue Oceans
    • 13.1.3. Comparison of Red Ocean Strategy and Blue Ocean Strategy
    • 13.1.4. Medical Exoskeleton: Blue Ocean Strategy and Shift Tools
      • 13.1.4.1. Strategy Canvas
      • 13.1.4.2. Pioneer-Migrator-Settler (PMS) Map
      • 13.1.4.3. Buyer Utility Map

14. MARKET IMPACT ANALYSIS: DRIVERS, RESTRAINTS, OPPORTUNITIES AND CHALLENGES

  • 14.1. Chapter Overview
  • 14.2. Market Drivers
  • 14.3. Market Restraints
  • 14.4. Market Opportunities
  • 14.5. Market Challenges
  • 14.6. Conclusion

15. GLOBAL EXOSKELETON MARKET

  • 15.1. Chapter Overview
  • 15.2. Forecast Methodology and Key Assumptions
  • 15.3. Global Exoskeleton Market, Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
    • 15.3.1. Scenario Analysis
  • 15.4. Key Market Segmentations
  • 15.5. Dynamic Dashboard

16. EXOSKELETON MARKET, BY BODY PART COVERED

  • 16.1. Chapter Overview
  • 16.2. Forecast Methodology and Key Assumptions
  • 16.3. Medical Upper Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.4. Medical Lower Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.5. Medical Full Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.6. Non-Medical Upper Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.7. Non-Medical Lower Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.8. Non-Medical Full Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.9. Overall Upper Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.10. Overall Lower Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.11. Overall Full Body Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 16.12. Data Triangulation and Validation

17. EXOSKELETON MARKET, BY MODE OF OPERATION

  • 17.1. Chapter Overview
  • 17.2. Forecast Methodology and Key Assumptions
  • 17.3. Medical Powered Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.4. Medical Passive Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.5. Medical Hybrid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.6. Non-Medical Powered Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.7. Non-Medical Passive Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.8. Non-Medical Hybrid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.9. Overall Powered Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.10. Overall Passive Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.11. Overall Hybrid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 17.12. Data Triangulation and Validation

18. EXOSKELETON MARKET, BY THEIR FORM

  • 18.1. Chapter Overview
  • 18.2. Forecast Methodology and Key Assumptions
  • 18.3. Medical Rigid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.4. Medical Soft Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.4. Non-Medical Rigid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.5. Non-Medical Soft Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.6. Overall Rigid Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.7. Overall Soft Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 18.8. Data Triangulation and Validation

19. EXOSKELETON MARKET, BY THEIR MOBILITY

  • 19.1. Chapter Overview
  • 19.2. Forecast Methodology and Key Assumptions
  • 19.3. Medical Fixed/ Supported Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 19.4. Medical Mobile / Overground Walking Exoskeleton: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 19.5. Data Triangulation and Validation

20. EXOSKELETON MARKET, BY END USERS

  • 20.1. Chapter Overview
  • 20.2. Forecast Methodology and Key Assumptions
  • 20.3. Medical Exoskeleton by Patients: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.4. Medical Exoskeleton by Healthcare Providers: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.5. Non-Medical Exoskeleton by Industry Workers: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.6. Non-Medical Exoskeleton by Military Personnel: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.7. Non-Medical Exoskeleton by Others: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.8. Overall Exoskeleton by End Users: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 20.9. Data Triangulation and Validation

21. EXOSKELETON MARKET, BY GEOGRAPHY

  • 21.1. Chapter Overview
  • 21.2. Forecast Methodology and Key Assumptions
  • 21.3. North America: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 21.4. Europe: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 21.5. Asia-Pacific: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 21.6. Rest of the World: Historical Trends (2018-2022) and Forecasted Estimates (2023-2035)
  • 21.7. Data Triangulation and Validation

22. CONCLUSION

23. EXECUTIVE INSIGHTS

  • 23.1. Chapter Overview
  • 23.2. ABLE Human Motion
    • 23.2.1. Company Snapshot
    • 23.2.2. Interview Transcript: Alfons Carnicero Carmona, Co-Founder and Chief Executive Officer
  • 23.3. Archelis
    • 23.3.1. Company Snapshot
    • 23.3.2. Interview Transcript: Katsuhiko Saho, Director of Business Planning and Development
  • 23.4. Biomotum
    • 23.4.1. Company Snapshot
    • 23.4.2. Interview Transcript: Phil Astrachan, Vice President of Sales and Marketing
  • 23.5. Bionic Power
    • 23.5.1. Company Snapshot
    • 23.5.2. Interview Transcript: Rob Nathan, Marketing and Design Manager
  • 23.6. Bionic Yantra
    • 23.6.1. Company Snapshot
    • 23.6.2. Interview Transcript: Shivakumar Nagarajan, Founder and Director

24. APPENDIX 1: BLUE OCEAN STRATEGY AND SHIFT TOOLS

25. APPENDIX 2: TABULATED DATA

26. APPENDIX 3: LIST OF COMPANIES AND ORGANIZATION