市场调查报告书
商品编码
1384283
SDi 空间生物学市场分析(2023):市场机会分析SDi Spatial Biology 2023 Market Opportunity Report |
太空生物学一词是指科学家在 3D 环境中收集细胞资讯的一组技术。 传统上,研究重点是分离的细胞和组织并检查它们的分子组成。 然而,这种方法通常缺乏感兴趣的细胞和组织的空间背景。 例如,批量 RNA 定序会失去细胞异质性,而单细胞 RNA 定序提供的有关组织周围环境的资讯很少,因此很难全面了解细胞环境。 然而,先进空间生物学的进步使科学家更接近透过识别和定位目标组织内的不同细胞群来填补拼图中缺少的部分。 一旦获得空间背景,就可以得出有关各种生理和病理过程的更详细的结论。
为了保存组织内的空间讯息,必须在保护其环境的同时分离 RNA。 条码(例如寡核甘酸)通常用于单独标记组织内的 RNA 并保护其周围环境。 然后研究人员可以检查细胞间相互作用、组织组成和细胞内异质性。 然而,分辨率和特异性的限制仍然是挑战,各种方法正在不断改进和开发以扩展当前的分辨率限制和适用性。 在工作流程方面,供应商正在寻求改进目前的方法并使某些部分自动化。
空间组学设备包括在定序前对转录本中的位置资讯进行编码的下一代定序碱基,以及原位定序(ISS)或萤光原位杂交(FISH)。它可以大致分为采用成像碱基 然而,随着技术的发展,没有任何一种技术可以通用,空间组学设备通常会结合这两个类别的元素。
基于成像的方法通常使用显微镜。 Nanostring 的 GeoMX 和 10x Genomics Visium 等新仪器是空间分析仪,可对组织中的蛋白质和 mRNA 进行高复数(10-10,000)数位量化。
空间研究的另一种技术是 MALDI-TOF 质谱法。 利用质谱分析,研究人员可以了解蛋白质的代谢功能,包括 ATP 和脂质等代谢物的形成。 与 IHC 和 FISH 不同,空间 MS 是无标记的。 与 MALDI 和 DESI 结合,可以直接同时对数百至数千个分子进行成像。 最后,使用 NGS 和 RNA 执行基于定序的方法来捕获空间讯息,然后进行定序。
无论采用哪种方法,太空生物学设备的创新都在加速,公司正在响应对突破性技术的需求,这些技术将使科学家能够加强他们的研究并开发新的治疗方法。这就是我的意思。
本报告透过对北美和欧洲製药/生物技术/CRO、临床和公共部门的空间生物学专业人员的调查,提供了最终用户的观点。 我们也正在考虑工作流程中使用的太空生物学技术、设备和消耗品当前/未来的使用,以及可能的改进。 此外,我们还会为您提供空间生物学的使用目的、各种技术和设备的使用频率、特定技术和设备的使用频率、当前供应商、未来的采购计划和预算预测等资讯。
本报告着眼于影响该行业的动态和众多市场趋势,并分析其对空间组学成像设备销售成长的影响。 作为分析仪器市场研究的领先供应商,SDi 创建了这份报告来评估和解释目前推动这一重要市场的因素。 本报告中的分析设备市场包括太空生物学技术中使用的染色设备、耗材、空间组学成像设备、显微镜、核磁共振、红外线设备等。 这些设备分为五种不同的技术,构成了整个市场。
|
|
The term Spatial Biology is used to describe a series of techniques with which scientists collect cellular information in the context of their 3D environment. Traditionally, studies have focused on isolated cells or tissues and looking at their molecular composition. However, these approaches often lacked the spatial context of the cells or tissues of interest. For instance, in bulk RNA sequencing, cellular heterogeneity is lost, while single-cell RNA sequencing generates minimal information regarding the tissues' surroundings; therefore developing a whole picture of a cell's environment proved difficult. However, with developments in advanced spatial biology, scientists are closer to filling the missing piece of the puzzle by identifying and localizing different cell populations within a tissue of interest. With the spatial context in hand, more in-depth conclusions can be drawn regarding various physiological and pathological processes.
For spatial information to be preserved in tissue, the RNA needs to be isolated while protecting its environment. Often, barcodes such as oligonucleotides are used to individually label the RNA in the tissue and hence preserve the surrounding environment. Researchers can then look at the cell-to-cell interactions, tissue composition and intracellular heterogeneity. However, limitations to resolution and specificity are still an issue, with various methods constantly being improved or developed to expand current resolution limits and applicability. In terms of workflow, vendors are looking to improve current methods and automate certain parts.
Spatial omics instruments can be broadly classified as next generation sequencing-based, which encode positional information onto transcripts before sequencing takes place, or imaging- based, which employ either in situ sequencing (ISS) or fluorescence in situ hybridization (FISH). However, as technology evolves, no one technique is clear-cut, and often spatial omics instruments incorporate elements of both categories.
Imaging-based methods are typically carried out using a microscope. Newer instrumentation such as Nanostring's GeoMX and 10x Genomics Visium are spatial profilers enabling high plex (10s-10,000s) digital quantitation of proteins and mRNA in tissues
An alternative technology in spatial studies is MALDI-TOF Mass Spectrometry. Utilizing mass spectrometry allows researchers to understand the metabolic functions of proteins, such as the formation of metabolites like ATP and lipids. Unlike IHC or FISH, spatial MS is label-free. Emerging methods using metal-isotope tagged tissue are also entering the market that, when coupled with MALDI or DESI, enable the direct and simultaneous imaging of hundreds to thousands of molecules. Lastly, sequencing-based methods are performed using NGS and RNA with spatial information captured and subsequently sequenced.
Regardless of the technique, innovation in spatial biology instrumentation is accelerating and companies are looking to meet the demand for breakthrough technologies to enable scientists to enhance research and develop novel therapies.
This report includes End User Perspectives derived from a survey of spatial biology experts from North America and Europe in the pharma/biotech/CRO, clinical, and public sectors. They offer insights into the current and future use of spatial biology techniques, instruments and consumables used in workflows, as well as improvements that can be made. End users share their applications utilizing spatial biology, how often they use various techniques and instruments, how often they use a particular technique or instrument, which vendors they currently purchase from, future purchase plans, and budget projections.
SDi's “2023 Spatial Biology Market” report observes the dynamics and numerous market trends influencing the industry and analyzes their effect on sales growth for spatial-omics imaging instrumentation. As the leading provider of market research on analytical instrumentation, SDi has crafted this report to evaluate and explain what is currently driving this important market. The analytical instrument market in this report includes staining equipment, consumables, spatial-omics imaging instruments, microscopes, NMR, and IR instruments utilized in spatial biology techniques. These instruments are categorized into five different technologies which build the overall market.
|
|