人工智慧基础设施市场规模、份额和成长分析(按组件、硬体类型、部署模式、最终用户产业、组织规模和地区划分)—2026-2033年产业预测
市场调查报告书
商品编码
1920986

人工智慧基础设施市场规模、份额和成长分析(按组件、硬体类型、部署模式、最终用户产业、组织规模和地区划分)—2026-2033年产业预测

AI Infrastructure Market Size, Share, and Growth Analysis, By Component (Hardware, Software), By Hardware Type (GPUs & Accelerators, CPUs), By Deployment Model, By End Use Industry, By Organization Size, By Region - Industry Forecast 2026-2033

出版日期: | 出版商: SkyQuest | 英文 191 Pages | 商品交期: 3-5个工作天内

价格
简介目录

预计到 2024 年,全球人工智慧基础设施市场规模将达到 982 亿美元,到 2025 年将成长至 1,121.4 亿美元,到 2033 年将成长至 3,244.2 亿美元,在预测期(2026-2033 年)内复合年增长率为 14.2%。

全球对人工智慧基础设施的需求主要受生成式人工智慧日益普及、企业数位转型加速以及云端架构和混合架构兴起的推动。人工智慧硬体的进步、政府主导的增加以及数据生成的指数级增长也促进了这一增长。各行业对机器学习和自动化技术的日益普及,以及对数据驱动决策的高度重视,正在推动对人工智慧基础设施的投资。政府对人工智慧研究和智慧基础设施的资助,也为云端平台和超大规模资料中心提供了支援。然而,高昂的资本和营运成本、能源消耗、永续性问题、人才短缺以及对资料安全和监管合规性的担忧等挑战,可能会阻碍未来的市场渗透。

推动全球人工智慧基础设施市场发展的因素

全球人工智慧基础设施市场的主要驱动力之一是各行业对先进数据处理能力日益增长的需求。随着企业努力利用人工智慧的力量,对能够支援复杂演算法、大型资料集和即时分析的强大基础设施的需求也日益增长。这种需求源于对机器学习、深度学习和数据驱动决策的日益依赖,迫使企业投资可扩展的云端服务、高效能运算和专用硬体。因此,这一趋势不仅提高了营运效率,也促进了创新,为扩展人工智慧基础设施能力提供了强有力的理由。

全球人工智慧基础设施市场面临的限制因素

全球人工智慧基础设施市场面临的主要限制因素之一是资料隐私和安全监管环境的快速变化。世界各国政府正日益推出旨在保护用户资料的严格法规,这可能会使人工智慧技术的应用和整合变得更加复杂。企业在创新和提升自身人工智慧能力的同时,可能面临如何确保遵守这些法规的挑战。此外,对资料外洩以及违反监管规定可能带来的后果的担忧,可能会抑制对人工智慧基础设施的投资,从而减缓市场成长并限制该领域的发展机会。

全球人工智慧基础设施市场趋势

全球人工智慧基础设施市场正呈现出向混合和分散式模型发展的显着趋势,企业寻求提升成本效益和效能。由于对延迟的敏感度以及严格的资料管治要求,企业越来越多地将人工智慧工作负载分散部署在本地资料中心、公共云端解决方案和边缘环境中。这种策略调整使企业能够在将敏感资料保留在本地边界的同时,利用云端资源的扩充性来处理资源彙整密集型训练任务。随着这一趋势的不断发展,企业将能够更好地优化其人工智慧能力,并在快速变化的数位化环境中确保柔软性和合规性。

目录

介绍

  • 调查目标
  • 市场定义和范围

调查方法

  • 调查过程
  • 二手资料和一手资料方法
  • 市场规模估算方法

执行摘要

  • 全球市场展望
  • 市场主要亮点
  • 细分市场概览
  • 竞争格局概述

市场动态与展望

  • 总体经济指标
  • 驱动因素和机会
  • 限制与挑战
  • 供给面趋势
  • 需求面趋势
  • 波特的分析和影响

关键市场考察

  • 关键成功因素
  • 影响市场的因素
  • 关键投资机会
  • 生态系测绘
  • 市场吸引力指数(2025)
  • PESTEL 分析
  • 价值链分析
  • 定价分析
  • 案例研究
  • 监管环境
  • 技术评估
  • 技术评估
  • 监管环境

全球人工智慧基础设施市场规模(按组件划分)及复合年增长率(2026-2033 年)

  • 硬体
  • 软体
  • 服务

全球人工智慧基础设施市场规模(按硬体类型和复合年增长率划分)(2026-2033 年)

  • GPU 和加速器
  • CPU
  • 储存系统
  • 网路装置
  • 边缘人工智慧设备

全球人工智慧基础设施市场规模(按部署模式和复合年增长率划分)(2026-2033 年)

  • 本地部署
  • 杂交种

全球人工智慧基础设施市场规模(按最终用户产业划分)及复合年增长率(2026-2033 年)

  • IT/通讯
  • BFSI
  • 卫生保健
  • 零售与电子商务

全球人工智慧基础设施市场规模(按组织规模和复合年增长率划分)(2026-2033 年)

  • 大公司
  • 小型企业

全球人工智慧基础设施市场规模及复合年增长率(2026-2033)

  • 北美洲
    • 美国
    • 加拿大
  • 欧洲
    • 德国
    • 西班牙
    • 法国
    • 英国
    • 义大利
    • 其他欧洲地区
  • 亚太地区
    • 中国
    • 印度
    • 日本
    • 韩国
    • 亚太其他地区
  • 拉丁美洲
    • 墨西哥
    • 巴西
    • 其他拉丁美洲地区
  • 中东和非洲
    • 海湾合作委员会国家
    • 南非
    • 其他中东和非洲地区

竞争资讯

  • 前五大公司对比
  • 主要企业的市场定位(2025 年)
  • 主要市场参与者所采取的策略
  • 近期市场趋势
  • 公司市占率分析(2025 年)
  • 主要企业公司简介
    • 公司详情
    • 产品系列分析
    • 依业务板块进行公司股票分析
    • 2023-2025年营收年比比较

主要企业简介

  • NVIDIA
  • Intel
  • AMD
  • Google
  • Microsoft
  • Amazon Web Services(AWS)
  • IBM
  • Oracle
  • Dell Technologies
  • Hewlett Packard Enterprise(HPE)
  • Cisco
  • Qualcomm
  • Samsung Electronics
  • Huawei
  • Alibaba Cloud
  • Tencent Cloud
  • Lenovo
  • Micron Technology
  • Xilinx(AMD)

结论与建议

简介目录
Product Code: SQMIG45I2319

Global AI Infrastructure Market size was valued at USD 98.2 billion in 2024 and is poised to grow from USD 112.14 billion in 2025 to USD 324.42 billion by 2033, growing at a CAGR of 14.2% during the forecast period (2026-2033).

The global demand for AI infrastructure is fueled by the increasing adoption of generative AI, rapid digital transformation among enterprises, and the rise of cloud and hybrid architectures. Advancements in AI hardware and heightened government initiatives contribute to this growth, alongside an exponential surge in data generation. Industries increasingly deploy machine learning and automation, leading to a strong emphasis on data-driven decision-making, thereby driving investments in AI infrastructure. The reliance on cloud platforms and hyperscale data centers is significant, supported by government funding for AI research and smart infrastructure. However, challenges such as high capital and operational costs, energy consumption, sustainability issues, talent shortages, and concerns about data security and regulatory compliance may impede market penetration in the future.

Top-down and bottom-up approaches were used to estimate and validate the size of the Global AI Infrastructure market and to estimate the size of various other dependent submarkets. The research methodology used to estimate the market size includes the following details: The key players in the market were identified through secondary research, and their market shares in the respective regions were determined through primary and secondary research. This entire procedure includes the study of the annual and financial reports of the top market players and extensive interviews for key insights from industry leaders such as CEOs, VPs, directors, and marketing executives. All percentage shares split, and breakdowns were determined using secondary sources and verified through Primary sources. All possible parameters that affect the markets covered in this research study have been accounted for, viewed in extensive detail, verified through primary research, and analyzed to get the final quantitative and qualitative data.

Global AI Infrastructure Market Segments Analysis

Global AI Infrastructure Market is segmented by Component, Hardware Type, Deployment Model, End Use Industry, Organization Size and region. Based on Component, the market is segmented into Hardware, Software and Services. Based on Hardware Type, the market is segmented into GPUs & Accelerators, CPUs, Storage Systems, Networking Equipment and Edge AI Devices. Based on Deployment Model, the market is segmented into Cloud, On-premise and Hybrid. Based on End Use Industry, the market is segmented into IT & Telecom, BFSI, Healthcare, Automotive and Retail & E-commerce. Based on Organization Size, the market is segmented into Large Enterprises and Small & Medium Enterprises. Based on region, the market is segmented into North America, Europe, Asia Pacific, Latin America and Middle East & Africa.

Driver of the Global AI Infrastructure Market

One of the key market drivers for the global AI infrastructure market is the increasing demand for advanced data processing capabilities across various industries. As organizations strive to harness the power of artificial intelligence, the need for robust infrastructure that can support complex algorithms, large datasets, and real-time analytics has intensified. This demand is driven by the growing reliance on machine learning, deep learning, and data-driven decision-making, compelling businesses to invest in scalable cloud services, high-performance computing, and specialized hardware. Consequently, this trend not only enhances operational efficiency but also fuels innovation, making a strong case for the expansion of AI infrastructure capabilities.

Restraints in the Global AI Infrastructure Market

One significant market restraint for the Global AI Infrastructure Market is the rapidly evolving regulatory landscape surrounding data privacy and security. Governments worldwide are increasingly implementing stringent regulations aimed at protecting user data, which can complicate the deployment and integration of AI technologies. Organizations may face challenges in ensuring compliance with these regulations while trying to innovate and enhance their AI capabilities. Additionally, the fear of data breaches and the potential repercussions of non-compliance can hinder investments in AI infrastructure, slowing down market growth and limiting opportunities for advancement within the field.

Market Trends of the Global AI Infrastructure Market

The Global AI Infrastructure market is witnessing a significant trend towards hybrid and distributed models as enterprises seek to enhance cost-efficiency and performance. Organizations are increasingly partitioning their AI workloads among on-premises data centers, public cloud solutions, and edge environments, driven by considerations of latency sensitivity and stringent data governance requirements. This strategic realignment facilitates the retention of sensitive data within local boundaries, while simultaneously capitalizing on the expansive scalability offered by cloud resources for resource-intensive training tasks. As this trend continues to evolve, businesses are poised to optimize their AI capabilities, ensuring flexibility and compliance in a rapidly changing digital landscape.

Table of Contents

Introduction

  • Objectives of the Study
  • Market Definition & Scope

Research Methodology

  • Research Process
  • Secondary & Primary Data Methods
  • Market Size Estimation Methods

Executive Summary

  • Global Market Outlook
  • Key Market Highlights
  • Segmental Overview
  • Competition Overview

Market Dynamics & Outlook

  • Macro-Economic Indicators
  • Drivers & Opportunities
  • Restraints & Challenges
  • Supply Side Trends
  • Demand Side Trends
  • Porters Analysis & Impact
    • Competitive Rivalry
    • Threat of Substitute
    • Bargaining Power of Buyers
    • Threat of New Entrants
    • Bargaining Power of Suppliers

Key Market Insights

  • Key Success Factors
  • Market Impacting Factors
  • Top Investment Pockets
  • Ecosystem Mapping
  • Market Attractiveness Index, 2025
  • PESTEL Analysis
  • Value Chain Analysis
  • Pricing Analysis
  • Case Studies
  • Regulatory Landscape
  • Technology Assessment
  • Technology Assessment
  • Regulatory Landscape

Global AI Infrastructure Market Size by Component & CAGR (2026-2033)

  • Market Overview
  • Hardware
  • Software
  • Services

Global AI Infrastructure Market Size by Hardware Type & CAGR (2026-2033)

  • Market Overview
  • GPUs & Accelerators
  • CPUs
  • Storage Systems
  • Networking Equipment
  • Edge AI Devices

Global AI Infrastructure Market Size by Deployment Model & CAGR (2026-2033)

  • Market Overview
  • Cloud
  • On-premise
  • Hybrid

Global AI Infrastructure Market Size by End Use Industry & CAGR (2026-2033)

  • Market Overview
  • IT & Telecom
  • BFSI
  • Healthcare
  • Automotive
  • Retail & E-commerce

Global AI Infrastructure Market Size by Organization Size & CAGR (2026-2033)

  • Market Overview
  • Large Enterprises
  • Small & Medium Enterprises

Global AI Infrastructure Market Size & CAGR (2026-2033)

  • North America (Component, Hardware Type, Deployment Model, End Use Industry, Organization Size)
    • US
    • Canada
  • Europe (Component, Hardware Type, Deployment Model, End Use Industry, Organization Size)
    • Germany
    • Spain
    • France
    • UK
    • Italy
    • Rest of Europe
  • Asia Pacific (Component, Hardware Type, Deployment Model, End Use Industry, Organization Size)
    • China
    • India
    • Japan
    • South Korea
    • Rest of Asia-Pacific
  • Latin America (Component, Hardware Type, Deployment Model, End Use Industry, Organization Size)
    • Mexico
    • Brazil
    • Rest of Latin America
  • Middle East & Africa (Component, Hardware Type, Deployment Model, End Use Industry, Organization Size)
    • GCC Countries
    • South Africa
    • Rest of Middle East & Africa

Competitive Intelligence

  • Top 5 Player Comparison
  • Market Positioning of Key Players, 2025
  • Strategies Adopted by Key Market Players
  • Recent Developments in the Market
  • Company Market Share Analysis, 2025
  • Company Profiles of All Key Players
    • Company Details
    • Product Portfolio Analysis
    • Company's Segmental Share Analysis
    • Revenue Y-O-Y Comparison (2023-2025)

Key Company Profiles

  • NVIDIA
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Intel
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • AMD
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Google
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Microsoft
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Amazon Web Services (AWS)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • IBM
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Oracle
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Dell Technologies
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Hewlett Packard Enterprise (HPE)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Cisco
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Qualcomm
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Samsung Electronics
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Huawei
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Alibaba Cloud
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Tencent Cloud
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Lenovo
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Micron Technology
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Xilinx (AMD)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments

Conclusion & Recommendations