封面
市场调查报告书
商品编码
1235953

低温冷却器市场:到 2028 年的预测——按产品、热交换器类型、运行週期、类型、温度、应用、最终用户和地区进行的全球分析

Cryocooler Market Forecasts to 2028 - Global Analysis By Offering, Heat Exchanger Type, Operating Cycle, Type, Temperature, Application, End User and Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 175+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,2022 年全球製冷机市场规模将达到 26.8 亿美元,预计到 2028 年将达到 42.5 亿美元,预测期内的复合年增长率为 8。我们预计增长 .0%。

低温是通过使用称为低温冷却器的机械低温冷却器冷却应用来实现的。 通常,低温定义为低于 123K 的温度,即 -150度C 或 -238度F。 在此温度下,各种物理现象会偏离其在室温以下的行为,并开始强调新现象。 因此,低温工程领域通常需要开发全新的技术能力、操作限制和测试协议。 低温学的特征之一是实现低温所需的科学和工程,我们製造称为低温冷却器的低温低温冷却器。 製冷机经常用于国防应用,主要用于冷却红外焦平面。

根据美国地质调查局的数据,2020年美国的氦气出口量将达到1亿立方米,比2018年增长19.04%。

市场动态。

驱动程序

在 MRI 中快速采用低温冷却器

製冷机用于医疗保健领域,用于冷却超导磁体。 低温冷却器用于各种医学领域,例如 MRI、NMR 设备和质子束治疗。 MRI 屏蔽使用 Gifford McMahon 低温冷却器。 低温冷却器在各种应用中的使用,包括质子治疗、MRI、NMR、冷冻手术和医院的氧气液化,是医疗保健行业对低温冷却器需求激增的一个主要因素。 最先进的医院和癌症治疗机构现在正在采用质子治疗作为治疗方式。 质子治疗中使用的高功率磁铁具有类似于 MRI 的超导特性。 需要一个低温冷却器来将磁体冷却到液氦的温度。 许多癌症治疗机构和医院正在投资和考虑这项拯救生命的技术。 预计这将在预测期内影响市场需求。

约束

製冷机性能限制

开发依赖于可靠的低温冷却器功能的航天器热管理系统是空间热系统设计中最困难的方面之一。 在做出系统级权衡决策时,大多数开发人员依赖于相当小的製冷机性能数据集。 此外,由于系统开发时间表和随后的冷却器开发截止日期导致的时间限制通常被引用为设计之外的性能映射限制的原因。 然而,在空军研究实验室,大量非设计性能映射允许在定义低温冷却器 (AFRL) 时对可量化参数相关性进行经验建模。 这些模型通过创建在大多数可能的运行范围内有效的准确性能预测方法,在关键的低温冷却器运行和环境变量之间建立关係。

机会

对具有增强功能的低温冷却器的需求不断增长

结合灵敏的电子设备和传感器,低温冷却器被用于科学、商业和军事目的的太空任务。 高功率效率和可靠性、低振动、承受卫星发射振动的能力以及长时间暴露于宇宙辐射是这些应用的常见要求。 大型军事和商业卫星应用经常使用低温冷却器来使红外传感器和光电 (EO) 组件保持在适当的温度。 由于低温冷却器不会线性缩小,因此它们是空间和微型卫星应用的主要需求之一。 因此,微型卫星技术对低温冷却器的需求显着增长。 在未来几年,低温冷却器製造商有望受益于功能改进,例如微卫星 EO 和 IR 应用的检测器灵敏度和信噪比。 近年来,低资金任务的小型卫星和微型卫星的发展为空间製冷机的使用创造了新的可能性。

威胁

製冷机的高输入功耗

功率使用是低温冷却器设计中的一个关键考虑因素。 製冷机需要多少输入功率在很大程度上取决于加热负载和工作温度。 在评估各种製冷机的整体性能时,通常应考虑製冷机的製冷量和重量。 根据所使用的製冷剂和整个系统的热效率,将工作温度从 4.2K 提高会显着降低製冷机所需的输入功率。 製冷机市场继续看到主要製造商推出最先进的特性,例如减振、高效率和低功耗。 因此,我们预计随着时间的推移,这些制约因素对市场的影响会越来越小。

COVID-19 的影响

史无前例的全球突发公共卫生事件 COVID-19 影响了几乎所有企业,其长期影响将在预测期内影响许多最终用途行业的扩张。预计将影响 为确保我们将 COVID-19 的潜在问题和潜在的未来方向包括在内,这项正在进行的调查正在扩大我们的研究框架。 它考虑了消费者的需求和行为、不断变化的购买习惯、供应链重组、当代市场动态、重要的政府举措等,以提供对 COVID-19 的洞察力。 报告的专门部分详细介绍了 COVID-19 和随后的变异爆发对需求、供应、定价和供应商采用的影响,并提出了长期解决方案。

蓄热式热交换器行业预计在预测期内将成为最大的行业

估计蓄热式换热器行业将实现有利可图的增长。 最近需要高温的应用数量有所增加。 由于对废热回收的需求不断增加,蓄热式换热器越来越受欢迎。 为了有效地传热,被称为再生式热交换器的设备允许流体以各种方式流过储热材料。 为此,製冷机的市场需求不断增加。

英镑部分预计在预测期内表现出最高的复合年增长率。

由于结构紧凑、与其他製冷机相比能够实现更高频率等各种优势,斯特林製冷机预计在预测期内将以最快的复合年增长率增长。 此外,斯特林製冷机在全球国防和太空应用中的快速普及也是推动製冷机市场增长的主要因素。 发展中国家对斯特林製冷机的采用正在迅速增加。

市场份额最高的地区

为了高效运输大量天然气,重要的是使用低温冷却器进行液化天然气的液化、运输和储存,天然气和液化天然气的体积在大气压力和温度(600乘以1或更多的)。 国际天然气联盟将日本的液化天然气再气化能力列为世界最佳。 中国即将通过管道从俄罗斯采购液化天然气,但这一举措预计会放缓。

复合年增长率最高的地区。

由于在 MRI 系统、冷冻手术、质子治疗、医院氧气液化等方面的广泛应用,预计北美在预测期内的复合年增长率最高。 主要研究组致力于白血病、实体瘤和肺癌的治疗。 该地区已成为世界领先的快速发展技术生产商,例如尖端癌症治疗和低温冷却器小工具。 由于低温冷却器主要用于癌症治疗的质子治疗,北美低温冷却器市场已经增长。 低温冷却器通常用于 MRI 扫描仪和其他类似应用的医疗应用中。 为了将尖端的低温冷却技术推向市场,美国政府航天局正在大力投资研发。

主要发展。

2018 年 12 月,SunPower 宣布 NASA 将在 SpaceX 的 CRS 16 航天器上部署 CT-S,作为其机器人加油任务 3 (RRM3) 的一部分,该任务将建立航天器储存和加油技术。宣布推出低温冷却器。

2016 年 11 月,Brooks Automation 收购了 BioCision, LLC 的子公司 Cool Lab, LLC。 通过此次收购,Brooks 与 BioCision 合作开发温度控制方面的创新解决方案,包括 CryoPod,这是一种能够将低温保持四个多小时的个人移动载体。

我们的报告提供了什么

  • 区域和国家/地区细分市场份额评估
  • 向新进入者提出战略建议
  • 2020、2021、2022、2025 和 2028 年的综合市场数据
  • 市场驱动因素(市场趋势、制约因素、机遇、威胁、挑战、投资机会、建议等)
  • 根据市场预测在关键业务领域提出战略建议
  • 竞争格局和趋势
  • 公司简介,包括详细的战略、财务状况和近期发展
  • 供应链趋势反映了最新的技术进步。

提供免费定制

购买此报告的客户将免费获得以下定制之一。

  • 公司简介
    • 对其他市场参与者(最多 3 个)进行全面分析
    • 关键参与者的 SWOT 分析(最多 3 名参与者)
  • 区域细分
    • 应客户要求提供主要国家/地区的市场估算、预测和復合年增长率(注意:通过可行性检查)
  • 竞争基准
    • 根据产品组合、地域分布和战略联盟对主要参与者进行基准测试

内容

第 1 章执行摘要

第二章前言

  • 概览
  • 利益相关者
  • 调查范围
  • 调查方法
    • 数据挖掘
    • 数据分析
    • 数据验证
    • 研究方法
  • 调查来源
    • 主要研究信息来源
    • 二手研究资源
    • 假设

第三章市场趋势分析

  • 司机
  • 约束因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第 5 章全球低温冷却器市场:按报价

  • 硬件
    • 压缩机
    • 散热管
    • 冷漠
    • 功率调节器
  • 服务
    • 客户培训
    • 维修和翻新
    • 技术支持
    • 维护
  • 其他产品

第 6 章全球低温冷却器市场:按热交换器类型分类

  • 回收热交换器
  • 蓄热式热交换器

第 7 章全球低温冷却器市场:按运行週期

  • 闭环循环
  • 开环循环

第 8 章全球低温冷却器市场:按类型

  • 英镑
  • 吉福德麦克马洪
  • 脉衝管
  • 布雷顿
  • 朱尔斯汤姆森
  • 其他类型

第 9 章全球低温冷却器市场:按温度

  • 1K~5K
  • 5.1K 到 10K
  • 10.1K~50K
  • 50.1K 到 100K
  • 100.1K 到 300K

第 10 章全球低温冷却器市场:按应用

  • 光谱仪
  • 磁共振成像 (MRI)
  • 粒子加速器
  • 变形金刚
  • 电动机和发电机
  • 磁悬浮(maglev)装置
  • 超导量子干涉装置 (SQUID)
  • 零蒸发 (ZBO) 储罐
  • 磁铁分离器
  • 低温泵
  • 红外探测器
  • 超导磁能存储 (SMES)
  • 故障电流限制器 (FCL)
  • 其他应用

第 11 章全球低温冷却器市场:按最终用户分类

  • 医学
  • 军事与国防
  • 环境
  • 商业
  • 农业和生物学
  • 研究与开发
  • 能量
  • 交通
  • 采矿和金属
  • 其他最终用户

第 12 章全球低温冷却器市场:按地区

  • 北美
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 意大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳大利亚
    • 新西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中东和非洲
    • 沙特阿拉伯
    • 阿拉伯联合酋长国
    • 卡塔尔
    • 南非
    • 其他中东地区

第13章主要发展

  • 合同、伙伴关係、协作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第14章公司简介

  • Sunpower Inc.
  • Cobham PLC
  • Cryomech Inc.
  • Sumitomo Heavy Industries Limited
  • RICOR
  • Chart Industries Inc.
  • Advanced Research Systems Inc.
  • Superconductor Technologies Inc.
  • Stirling Cryogenics BV
  • Janis Research Company LLC
  • Northrop Grumman Corporation
  • Cobham Missions Systems Wimborne Limited
  • DH Industies BV
  • Brooks Automation Inc.
  • Honeywell International Inc.
  • Lockheed Martin Corporation
  • L3 Technologies
  • Air Liquide S.A.
  • INTERNATIONAL CRYOCOOLER CONFERENCE INC
Product Code: SMRC22550

According to Stratistics MRC, the Global Cryocooler Market is accounted for $2.68 billion in 2022 and is expected to reach $4.25 billion by 2028 growing at a CAGR of 8.0% during the forecast period. Cryogenic temperatures are reached by cooling an application using a mechanical refrigerator called a cryocooler. It is common to define cryogenic temperatures as being below 123 K, or -150°C or -238°F. At these temperatures, a number of physical phenomena begin to deviate from how they behave at room temperature and below, and new phenomena gain in importance. As a result, the discipline of cryogenics frequently necessitates the development of a completely new set of specialised abilities, operational constraints, and testing protocols. One of the distinctive features of cryogenics is the science and engineering needed to achieve cryogenic temperatures, in our case, producing cryogenic freezers known as cryocoolers. Cryocoolers are frequently used in defence applications, primarily to cool infrared focal planes.

According to the US Geological Survey, in 2020, the helium exports from the United States amounted to 100 million cubic meters, an increase of 19.04% compared to 2018.

Market Dynamics:

Driver:

Surging adoption of cryocoolers in MRI

For the purpose of cooling superconducting magnets, cryocoolers are employed in the medical and healthcare sectors. Crycocoolers are being employed in a number of medical settings, including MRI, NMR equipment, and proton therapy. Applications involving MRI shields make use of Gifford-McMahon cryocoolers. The extensive use of cryocoolers in proton therapy, MRI systems, NMR equipment, cryosurgery, and the liquefaction of oxygen in hospitals is mostly to blame for the sharp rise in demand for cryocoolers in the healthcare sector. Modern hospitals and cancer treatment facilities currently employ proton therapy as a therapeutic approach. High-powered magnets used in proton treatment have superconducting qualities, similar to MRI devices. Cryocoolers are required to cool these magnets to liquid helium temperatures. This life-saving technology is being invested in or considered by numerous cancer treatment facilities and hospitals. This is then anticipated to have an effect on market demand over the projection period.

Restraint:

Performance Constraint of Cryocoolers

Developing spacecraft thermal management systems that rely on dependable cryocooler functioning is one of the most difficult aspects of space thermal system design. When determining trade-offs at the system level, the majority of developers rely on a data set on cryocooler performance that is rather small. Another frequent cause of off-design point performance mapping constraints is time constraints imposed by system development timetables or follow-on cooler development deadlines. But at the Air Force Research Laboratory, a sizable quantity of off-nominal performance mapping has allowed empirical modelling of quantifiable parametric correlations when defining cryocoolers (AFRL). Through the creation of precise performance prediction methodologies that are useful for the majority of conceivable operating ranges, these models establish connections between key cryocooler operational and environmental variables.

Opportunity:

Growing demand for cryocoolers with enhanced capabilities

In conjunction with delicate electronics and sensors, cryocoolers are utilised in space missions for scientific, commercial, or military purposes. High power and reliability efficiency, low vibration and the ability to withstand the vibration of satellite launches, and prolonged exposure to space radiation are the general requirements for these applications. For big military and commercial satellite applications, cryocoolers are frequently employed to keep infrared sensors and electro-optical (EO) components at the proper temperature. Cryocoolers do not scale down linearly, which is one of the primary needs in space and microsatellite applications. As a result, the demand for cryocoolers for microsatellite technologies has expanded significantly. In the upcoming years, cryocooler manufacturers are anticipated to benefit from improved features such as detector sensitivity and signal/noise ratio for an EO and IR application in microsatellites. The development of small and microsatellites in recent years for missions with less funding has created new potential for the use of space cryocoolers.

Threat:

High input power consumption of cryocoolers

Power usage is a crucial consideration in the design of cryocoolers. The heating load and operating temperature have a big impact on how much input power cryocoolers need. When evaluating the overall performance of various cryocoolers, it is generally necessary to take into account the cooling capacity and weight of the cryocooler. By increasing the operating temperature from 4.2K, depending on the refrigerant utilised and the overall thermal efficiency of the systems, cryocoolers have greatly reduced their input power requirements. The cryocoolers market is seeing a number of major manufacturers introduce cutting-edge characteristics including reduced vibrations, high efficiency, and low power consumption. Therefore, it is anticipated that over time, these restraints will have less of an effect on the market.

COVID-19 Impact

Nearly every business was impacted by the unprecedented worldwide public health emergency known as COVID-19, and the long-term effects are expected to have an impact on the expansion of a number of end-use industries over the course of the forecast period. In order to assure the inclusion of underlying COVID-19 concerns and potential future directions, this ongoing research expands the research framework. The paper offers insights on COVID-19, taking into account changes in consumer demand and behaviour, buying habits, supply chain rerouting, dynamics of contemporary market forces, and important government initiatives. In-depth examination of the effects of COVID-19 and its succeeding variant outbreaks on demand, supply, pricing, and vendor uptake is revealed in the report's devoted section, which also offers suggestions for long-term solutions.

The regenerative heat exchanger segment is expected to be the largest during the forecast period

The regenerative heat exchanger segment is estimated to have a lucrative growth. Applications that require high temperatures have increased recently. The increased demand for waste heat recovery has led to the widespread use of regenerative heat exchangers. For efficient heat transmission, a device known as a regenerative heat exchanger allows fluids to flow over the heat-storage material in varied ways. This has increased the market's demand for cryocoolers.

The stirling segment is expected to have the highest CAGR during the forecast period

The stirling segment is anticipated to witness the fastest CAGR growth during the forecast period, due to various advantages associated with them including their compact structure and the ability to achieve higher frequency compared to other cryocoolers. The surging adoption of Stirling cryocoolers in defence and space applications across the world is another major factor attributing to the growth of the market for these cryocoolers. The adoption of Stirling cryocoolers in developing countries is increasing rapidly.

Region with highest share:

Asia Pacific is projected to hold the largest market share during the forecast period owing to The effective transport of large volumes of natural gas is made possible by a significant commercial application of cryocoolers in the liquefaction, transport, and storage of LNG by drastically reducing the volume (by more than a factor of 600) between natural gas at atmospheric pressure and temperature and LNG. The International Gas Union rated Japan's capability for liquefied natural gas (LNG) regasification as the best in the world. This development is anticipated to decelerate even though China will shortly start obtaining LNG through pipelines from Russia.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, owing to their widespread use in MRI systems, cryosurgery, proton treatment, and oxygen liquefaction in hospitals. The main research groups are devoted to the treatment of leukaemia, solid tumours, and lung cancer. The area is a major global producer of cutting-edge cancer treatments and swiftly developing technology, such as cryocooler gadgets. The cryocooler market in North America has grown as a result of the device's primary application in proton therapy for the treatment of cancer. Cryocoolers are generally employed in MRI scanners and other similar applications in the medical profession. To bring cutting-edge cryogenic cooling technologies to market, American government space organisations have invested a significant amount of money in research and development.

Key players in the market

Some of the key players profiled in the Cryocooler Market include: Sunpower Inc., Cobham PLC, Cryomech Inc., Sumitomo Heavy Industries Limited, RICOR, Chart Industries Inc., Advanced Research Systems Inc., Superconductor Technologies Inc., Stirling Cryogenics BV, Janis Research Company LLC, Northrop Grumman Corporation, Cobham Missions Systems Wimborne Limited, DH Industies BV, Brooks Automation Inc., Honeywell International Inc., Lockheed Martin Corporation, L3 Technologies, Air Liquide S.A. and INTERNATIONAL CRYOCOOLER CONFERENCE INC.

Key Developments:

In Dec 2018, Sunpower announced that NASA launched CT-S cryocooler aboard SpaceX's CRS 16 spacecraft, as part of the Robotic Refuelling Mission 3 (RRM3), that will establish techniques for storing and replenishing spacecraft fuel.

In Nov 2016, Brooks Automation acquired Cool Lab, LLC, a subsidiary of BioCision, LLC. With this acquisition, Brooks cooperated with BioCision for developing innovative solutions in temperature control, which include the CryoPod personal mobile carrier that is capable of maintaining cryogenic temperatures for more than four hours.

Offerings Covered:

  • Hardware
  • Services
  • Other Offerings

Heat Exchanger Types Covered:

  • Recuperative Heat Exchangers
  • Regenerative Heat Exchangers

Operating Cycles Covered:

  • Closed-loop Cycle
  • Open-loop Cycle

Types Covered:

  • Stirling
  • Gifford-Mcmahon
  • Pulse-Tube
  • Brayton
  • Joule-Thomson
  • Other Types

Temperatures Covered:

  • 1K-5K
  • 5.1K-10K
  • 10.1K-50K
  • 50.1K-100K
  • 100.1K-300K

Applications Covered:

  • Spectrometers
  • Magnetic Resonance Imaging (MRI)
  • Particle Accelerators
  • Transformers
  • Electric Motors & Generators
  • Magnetic Levitation (Maglev) Devices
  • Superconducting Quantum Interference Devices (SQUID)
  • Zero-Boil Off (ZBO) Storage Tanks
  • Magnetic Separators
  • Cryopumps
  • Infrared Detector
  • Superconducting Magnetic Energy Storage (SMES)
  • Fault Current Limiter (FCL)
  • Other Applications

End Users Covered:

  • Medical
  • Military and Defense
  • Environmental
  • Commercial
  • Agriculture & Biology
  • Research & Development
  • Energy
  • Transport
  • Space
  • Mining and Metal
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Cryocooler Market, By Offering

  • 5.1 Introduction
  • 5.2 Hardware
    • 5.2.1 Compressor
    • 5.2.2 Heat Dissipation Pipes
    • 5.2.3 Cold Heads
    • 5.2.4 Power Conditioning Units
  • 5.3 Services
    • 5.3.1 Customer Training
    • 5.3.2 Repairs & Refurbishment
    • 5.3.3 Technical support
    • 5.3.4 Maintenance
  • 5.4 Other Offerings

6 Global Cryocooler Market, By Heat Exchanger Type

  • 6.1 Introduction
  • 6.2 Recuperative Heat Exchangers
  • 6.3 Regenerative Heat Exchangers

7 Global Cryocooler Market, By Operating Cycle

  • 7.1 Introduction
  • 7.2 Closed-loop Cycle
  • 7.3 Open-loop Cycle

8 Global Cryocooler Market, By Type

  • 8.1 Introduction
  • 8.2 Stirling
  • 8.3 Gifford-Mcmahon
  • 8.4 Pulse-Tube
  • 8.5 Brayton
  • 8.6 Joule-Thomson
  • 8.7 Other Types

9 Global Cryocooler Market, By Temperature

  • 9.1 Introduction
  • 9.2 1K-5K
  • 9.3 5.1K-10K
  • 9.4 10.1K-50K
  • 9.5 50.1K-100K
  • 9.6 100.1K-300K

10 Global Cryocooler Market, By Application

  • 10.1 Introduction
  • 10.2 Spectrometers
  • 10.3 Magnetic Resonance Imaging (MRI)
  • 10.4 Particle Accelerators
  • 10.5 Transformers
  • 10.6 Electric Motors & Generators
  • 10.7 Magnetic Levitation (Maglev) Devices
  • 10.8 Superconducting Quantum Interference Devices (SQUID)
  • 10.9 Zero-Boil Off (ZBO) Storage Tanks
  • 10.10 Magnetic Separators
  • 10.11 Cryopumps
  • 10.12 Infrared Detector
  • 10.13 Superconducting Magnetic Energy Storage (SMES)
  • 10.14 Fault Current Limiter (FCL)
  • 10.15 Other Applications

11 Global Cryocooler Market, By End User

  • 11.1 Introduction
  • 11.2 Medical
  • 11.3 Military and Defense
  • 11.4 Environmental
  • 11.5 Commercial
  • 11.6 Agriculture & Biology
  • 11.7 Research & Development
  • 11.8 Energy
  • 11.9 Transport
  • 11.10 Space
  • 11.11 Mining and Metal
  • 11.12 Other End Users

12 Global Cryocooler Market, By Geography

  • 12.1 Introduction
  • 12.2 North America
    • 12.2.1 US
    • 12.2.2 Canada
    • 12.2.3 Mexico
  • 12.3 Europe
    • 12.3.1 Germany
    • 12.3.2 UK
    • 12.3.3 Italy
    • 12.3.4 France
    • 12.3.5 Spain
    • 12.3.6 Rest of Europe
  • 12.4 Asia Pacific
    • 12.4.1 Japan
    • 12.4.2 China
    • 12.4.3 India
    • 12.4.4 Australia
    • 12.4.5 New Zealand
    • 12.4.6 South Korea
    • 12.4.7 Rest of Asia Pacific
  • 12.5 South America
    • 12.5.1 Argentina
    • 12.5.2 Brazil
    • 12.5.3 Chile
    • 12.5.4 Rest of South America
  • 12.6 Middle East & Africa
    • 12.6.1 Saudi Arabia
    • 12.6.2 UAE
    • 12.6.3 Qatar
    • 12.6.4 South Africa
    • 12.6.5 Rest of Middle East & Africa

13 Key Developments

  • 13.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 13.2 Acquisitions & Mergers
  • 13.3 New Product Launch
  • 13.4 Expansions
  • 13.5 Other Key Strategies

14 Company Profiling

  • 14.1 Sunpower Inc.
  • 14.2 Cobham PLC
  • 14.3 Cryomech Inc.
  • 14.4 Sumitomo Heavy Industries Limited
  • 14.5 RICOR
  • 14.6 Chart Industries Inc.
  • 14.7 Advanced Research Systems Inc.
  • 14.8 Superconductor Technologies Inc.
  • 14.9 Stirling Cryogenics BV
  • 14.10 Janis Research Company LLC
  • 14.11 Northrop Grumman Corporation
  • 14.12 Cobham Missions Systems Wimborne Limited
  • 14.13 DH Industies BV
  • 14.14 Brooks Automation Inc.
  • 14.15 Honeywell International Inc.
  • 14.16 Lockheed Martin Corporation
  • 14.17 L3 Technologies
  • 14.18 Air Liquide S.A.
  • 14.19 INTERNATIONAL CRYOCOOLER CONFERENCE INC

List of Tables

  • Table 1 Global Cryocooler Market Outlook, By Region (2020-2028) ($MN)
  • Table 2 Global Cryocooler Market Outlook, By Offering (2020-2028) ($MN)
  • Table 3 Global Cryocooler Market Outlook, By Hardware (2020-2028) ($MN)
  • Table 4 Global Cryocooler Market Outlook, By Compressor (2020-2028) ($MN)
  • Table 5 Global Cryocooler Market Outlook, By Heat Dissipation Pipes (2020-2028) ($MN)
  • Table 6 Global Cryocooler Market Outlook, By Cold Heads (2020-2028) ($MN)
  • Table 7 Global Cryocooler Market Outlook, By Power Conditioning Units (2020-2028) ($MN)
  • Table 8 Global Cryocooler Market Outlook, By Services (2020-2028) ($MN)
  • Table 9 Global Cryocooler Market Outlook, By Customer Training (2020-2028) ($MN)
  • Table 10 Global Cryocooler Market Outlook, By Repairs & Refurbishment (2020-2028) ($MN)
  • Table 11 Global Cryocooler Market Outlook, By Technical support (2020-2028) ($MN)
  • Table 12 Global Cryocooler Market Outlook, By Maintenance (2020-2028) ($MN)
  • Table 13 Global Cryocooler Market Outlook, By Other Offerings (2020-2028) ($MN)
  • Table 14 Global Cryocooler Market Outlook, By Heat Exchanger Type (2020-2028) ($MN)
  • Table 15 Global Cryocooler Market Outlook, By Recuperative Heat Exchangers (2020-2028) ($MN)
  • Table 16 Global Cryocooler Market Outlook, By Regenerative Heat Exchangers (2020-2028) ($MN)
  • Table 17 Global Cryocooler Market Outlook, By Operating Cycle (2020-2028) ($MN)
  • Table 18 Global Cryocooler Market Outlook, By Closed-loop Cycle (2020-2028) ($MN)
  • Table 19 Global Cryocooler Market Outlook, By Open-loop Cycle (2020-2028) ($MN)
  • Table 20 Global Cryocooler Market Outlook, By Type (2020-2028) ($MN)
  • Table 21 Global Cryocooler Market Outlook, By Stirling (2020-2028) ($MN)
  • Table 22 Global Cryocooler Market Outlook, By Gifford-Mcmahon (2020-2028) ($MN)
  • Table 23 Global Cryocooler Market Outlook, By Pulse-Tube (2020-2028) ($MN)
  • Table 24 Global Cryocooler Market Outlook, By Brayton (2020-2028) ($MN)
  • Table 25 Global Cryocooler Market Outlook, By Joule-Thomson (2020-2028) ($MN)
  • Table 26 Global Cryocooler Market Outlook, By Other Types (2020-2028) ($MN)
  • Table 27 Global Cryocooler Market Outlook, By Temperature (2020-2028) ($MN)
  • Table 28 Global Cryocooler Market Outlook, By 1K-5K (2020-2028) ($MN)
  • Table 29 Global Cryocooler Market Outlook, By 5.1K-10K (2020-2028) ($MN)
  • Table 30 Global Cryocooler Market Outlook, By 10.1K-50K (2020-2028) ($MN)
  • Table 31 Global Cryocooler Market Outlook, By 50.1K-100K (2020-2028) ($MN)
  • Table 32 Global Cryocooler Market Outlook, By 100.1K-300K (2020-2028) ($MN)
  • Table 33 Global Cryocooler Market Outlook, By Application (2020-2028) ($MN)
  • Table 34 Global Cryocooler Market Outlook, By Spectrometers (2020-2028) ($MN)
  • Table 35 Global Cryocooler Market Outlook, By Magnetic Resonance Imaging (MRI) (2020-2028) ($MN)
  • Table 36 Global Cryocooler Market Outlook, By Particle Accelerators (2020-2028) ($MN)
  • Table 37 Global Cryocooler Market Outlook, By Transformers (2020-2028) ($MN)
  • Table 38 Global Cryocooler Market Outlook, By Electric Motors & Generators (2020-2028) ($MN)
  • Table 39 Global Cryocooler Market Outlook, By Magnetic Levitation (Maglev) Devices (2020-2028) ($MN)
  • Table 40 Global Cryocooler Market Outlook, By Superconducting Quantum Interference Devices (SQUID) (2020-2028) ($MN)
  • Table 41 Global Cryocooler Market Outlook, By Zero-Boil Off (ZBO) Storage Tanks (2020-2028) ($MN)
  • Table 42 Global Cryocooler Market Outlook, By Magnetic Separators (2020-2028) ($MN)
  • Table 43 Global Cryocooler Market Outlook, By Cryopumps (2020-2028) ($MN)
  • Table 44 Global Cryocooler Market Outlook, By Infrared Detector (2020-2028) ($MN)
  • Table 45 Global Cryocooler Market Outlook, By Superconducting Magnetic Energy Storage (SMES) (2020-2028) ($MN)
  • Table 46 Global Cryocooler Market Outlook, By Fault Current Limiter (FCL) (2020-2028) ($MN)
  • Table 47 Global Cryocooler Market Outlook, By Other Applications (2020-2028) ($MN)
  • Table 48 Global Cryocooler Market Outlook, By End User (2020-2028) ($MN)
  • Table 49 Global Cryocooler Market Outlook, By Medical (2020-2028) ($MN)
  • Table 50 Global Cryocooler Market Outlook, By Military and Defense (2020-2028) ($MN)
  • Table 51 Global Cryocooler Market Outlook, By Environmental (2020-2028) ($MN)
  • Table 52 Global Cryocooler Market Outlook, By Commercial (2020-2028) ($MN)
  • Table 53 Global Cryocooler Market Outlook, By Agriculture & Biology (2020-2028) ($MN)
  • Table 54 Global Cryocooler Market Outlook, By Research & Development (2020-2028) ($MN)
  • Table 55 Global Cryocooler Market Outlook, By Energy (2020-2028) ($MN)
  • Table 56 Global Cryocooler Market Outlook, By Transport (2020-2028) ($MN)
  • Table 57 Global Cryocooler Market Outlook, By Space (2020-2028) ($MN)
  • Table 58 Global Cryocooler Market Outlook, By Mining and Metal (2020-2028) ($MN)
  • Table 59 Global Cryocooler Market Outlook, By Other End Users (2020-2028) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.