封面
市场调查报告书
商品编码
1258893

到 2028 年的分布式光纤传感器市场预测——按类型、散射方法、工作原理(光频域反射计、光时域反射计)、应用、最终用户和地区进行的全球分析

Distributed Fiber Optic Sensor Market Forecasts to 2028 - Global Analysis By Type, Scattering Method, Operating principle (Optical Frequency Domain Reflectometry and Optical Time Domain Reflectometry ), Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 175+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,2022 年全球分布式光纤传感器市场规模将达到 14.4 亿美元,预计 2028 年将达到 23.8 亿美元,预测期内预计将增长年復合增长率为 8.8%

在光纤通信中,WDM 技术用于通过使用不同的激光波长(颜色)来存储单个信号,将许多光信号復用到单根光纤上。它一直是。 数据通信业务的快速普及,对传输设备、网络带宽和多业务传输能力提出了更高的可用性要求。 希望简化机械系统传感操作的公司和组织的需求增加,这为扩展创造了机会。

根据印度政府出口促进机构印度品牌资产基金会的数据,2020 年石油产品的消费量增长了 4.5%,达到 2.1369 亿吨。

市场动态:

驱动程序

对基础设施垂直整合的需求增加

分布式光纤传感器现在在基础设施领域的使用越来越频繁,尤其是用于监测结构的健康状况。 了解水坝、桥樑和高速公路等设施的结构和经济方面已成为推动该行业采用分布式传感器的关键目标。 一种新型分布式光纤传感器可以同时检测不同位置的压力、温度和应变。 分布式传感器可用于任何具有挑战性的环境,实时跟踪结构问题的能力是推动分布式传感器在土木工程中广泛使用的关键因素。

约束:

安装技术问题

阻碍分布式光纤传感器市场拓展的主要因素是与分布式传感器安装相关的技术问题。 光纤必须小心处理,以防止在安装过程中损坏。 缆状光纤对应变的敏感性较差,因此在安装过程中发生的任何弯曲都会损坏分布式光纤。 传感器电缆设计已得到显着改进,但不完善的电缆实施通常会导致数据不准确。 由于安装成本高,此类缺陷可能导致客户在未来的项目中忽略该技术。 这些风险阻碍了市场的扩张。

机会

对数据库分析的需求不断扩大

数据是通过沿光纤长度放置的光纤传感器收集的。 由于生成的数据量巨大,许多分析技术被用来检查收集到的数据。 在全球范围内,使用数据驱动的决策和策略变得越来越普遍。 这些是通过识别管理层可以评估的数据模式、破译洞察力以及改进绩效和决策制定来实现的。 使用光散射,传感器可以跟踪沿光纤长度的温度、压力、振动和应变的变化。 随着企业更频繁地采用数据密集型决策,分布式光纤传感器市场预计将在整个预测期内扩大。

威胁

分布式光纤传感器系统成本高

企业采用分布式传感器系统来监控恶劣的工作环境并捕获实时数据。 分布式传感器的市场由于其准确性和可靠性等众多优势而不断增长。 然而,这项技术仍然很昂贵,对于所有需要实时监控和传感的企业来说都是遥不可及的。 此外,这些系统的构建和维护成本很高,因此部署起来很困难。 因此,分布式光纤传感器系统的高价格是市场拓展的主要障碍。

COVID-19 的影响:

COVID-19 疫情对该行业产生了重大影响。 由于生产活动减少和产品开发减少,光纤在工业和土木工程领域的使用正在下降。 然而,製造技术的进步和关键任务情况下对光纤的需求有望扩大该行业。 等离子体光纤吸收生物传感器的发展有望使医务人员能够进行更快、更准确的测试。 随着疾病迅速传播并需要治疗,预计这一趋势将在预测期内持续。

预测期内拉曼散射效应场预计最大

由于云计算在巨型结构安全、冷却水洩漏检测和火灾检测等关键情况下的应用,以及先进技术的采用,拉曼散射效应领域正在获得优势数据处理技术,估计会增长。 此外,该技术不受电磁干扰,支持连续监测,并防止桥樑和铁路等大型设施出现结构问题。

在预测期内,预计石油和天然气行业的复合年增长率最高。

由于管道和基础设施健康监测对分布式传感技术的需求不断增长,预计石油和天然气行业在预测期内将以最快的复合年增长率增长。 此外,在预测期内,由于管道监测和气体洩漏检测的研发增加,石油和天然气行业预计将成为分布式光纤传感器的最大用户。

市场份额最高的地区

由于美国蓬勃发展的石油和天然气行业以及分布式光纤连接的广泛采用,预计在预测期内北美将占据最大的市场份额。 不断上涨的油价正在鼓励石油和天然气行业采用更容易获得和更有效的支持系统,以提高其创造利润的能力。 这增加了该行业的增长前景。

复合年增长率最高的地区:

由于该地区的技术发展,光纤市场不断扩大,预计欧洲在预测期内的复合年增长率最高。 疫情增加了对更强大的基础设施连接和更快的互联网服务的需求。 因此,服务提供商鼓励使用光纤来满足客户需求。 由于基础设施开发和建设项目数量不断增加,以及对过程安全和保障的需求,亚太地区具有巨大的增长潜力。

市场主要参与者

分布式光纤传感器市场的主要参与者包括:Omnisens SA、Halliburton、Luna Innovations Inc.、Schlumberger Ltd.、AP Sensing GmbH、Yokogawa Electric Corporation、Brugg Kable AG、OFS Fitel, LLC, Qinetiq Group PLC, Weatherford, Bandweaver, Ziebel, FISO, Osena, Lockheed Martin Corporation, Solifos AG, NEC Corporation, Verizon。

主要发展:

2023年3月,横河电机与大冢化学宣布成立Syncrest株式会社。 该合资企业将作为合同研发和製造机构进行中分子药物的研究、开发和製造。

2021 年 5 月,AP Sensing 宣布推出其第 5 代分布式声学传感 (DAS) 系统。 随着这种新型分布式声学传感 (DAS) 的推出,AP Sensing 跨入资产监控技术领域,其係统与传统点传感器不同,可无缝监控管道、电力电缆和铁路等有价值的基础设施,带来重大进展。

本报告内容

  • 区域和国家/地区细分市场份额评估
  • 向新进入者提出战略建议
  • 2020、2021、2022、2025 和 2028 年的综合市场数据
  • 市场驱动因素(市场趋势、制约因素、机遇、威胁、挑战、投资机会、建议等)
  • 根据市场预测在关键业务领域提出战略建议
  • 竞争格局和趋势
  • 公司简介,包括详细的战略、财务状况和近期发展
  • 供应链趋势反映了最新的技术进步。

提供免费定制

购买此报告的客户将免费获得以下定制之一。

  • 公司简介
    • 其他市场参与者的综合概况(最多 3 家公司)
    • 主要参与者的 SWOT 分析(最多 3 人)
  • 区域细分
    • 根据客户要求提供主要国家/地区的市场估算、预测和復合年增长率(注意:基于可行性检查。)
  • 竞争基准
    • 根据产品组合、地域分布和战略联盟对主要参与者进行基准测试

内容

第 1 章执行摘要

第二章前言

  • 概览
  • 利益相关者
  • 调查范围
  • 调查方法
    • 数据挖掘
    • 数据分析
    • 数据验证
    • 研究方法
  • 调查来源
    • 主要研究信息来源
    • 二手研究资源
    • 假设

第三章市场趋势分析

  • 司机
  • 约束因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第 4 章波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第 5 章全球分布式光纤传感器市场,按类型

  • 多模式
  • 单一模式

第 6 章全球分布式光纤传感器市场:按散射法

  • 布里渊散射效应
  • 拉曼散射效应
  • 光纤布拉格光栅
  • 瑞利散射效应
  • 布拉格光栅
  • 干涉仪

第 7 章全球分布式光纤传感器市场:按操作原理

  • 光频域反射计 (OFDR)
  • 光时域反射计 (OTDR)

第 8 章全球分布式光纤传感器市场,按应用

  • 声学传感
  • 温度感应
  • 应变传感
  • 其他应用

第 9 章全球分布式光纤传感器市场:按最终用户分类

  • 安全与保障
  • 油气
  • 沟通
  • 电力和公用事业
  • 工业
  • 基础设施
  • 土木工程
  • 军事和边境安全
  • 交通
  • 其他最终用户

第 10 章全球分布式光纤传感器市场:按地区

  • 北美
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 意大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳大利亚
    • 新西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中东和非洲
    • 沙特阿拉伯
    • 阿拉伯联合酋长国
    • 卡塔尔
    • 南非
    • 其他中东和非洲地区

第11章主要发展

  • 合同、伙伴关係、协作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第12章公司简介

  • Omnisens SA
  • Halliburton
  • Luna Innovations Inc.
  • Schlumberger Ltd.
  • AP Sensing GmbH
  • Yokogawa Electric Corp.
  • Brugg Kable AG
  • OFS Fitel, LLC
  • Qinetiq Group PLC
  • Weatherford
  • Bandweaver
  • Ziebel
  • FISO
  • Osensa
  • Lockheed Martin Corporation.
  • Solifos AG
  • NEC Corporation
  • Verizon
Product Code: SMRC22773

According to Stratistics MRC, the Global Distributed Fiber Optic Sensor Market is accounted for $1.44 billion in 2022 and is expected to reach $2.38 billion by 2028 growing at a CAGR of 8.8% during the forecast period. In fiber-optic communications, WDM technology is used to multiplex many optical signals on a single fibre by employing diverse laser light wavelengths, or colours, to store the individual signals. A higher level of transmission equipment availability, network bandwidth, and multi-service transmission capabilities are required due to the quick proliferation of data services. The increasing demand from businesses and companies for efficient machine system sensing operations is creating expansion opportunities.

According to India Brand Equity Foundation, an Indian Government export promotion agency, the consumption of petroleum products increased by 4.5% to 213.69 million metric tons in 2020.

Market Dynamics:

Driver:

Increasing demand for infrastructure vertical

Distributed fiber optic sensors are now more frequently used in the infrastructure sector, especially for monitoring structural health. Understanding the structural and economic aspects of facilities like dams, bridges, and highways, among others, is the main goal driving the increased penetration of distributed sensors in this industry. The novel distributed fibre optic sensors can simultaneously detect pressure, temperature, and strain at various sites. The ability of distributed sensors to be used in any difficult environment and the ability to track structural problems in real time are the main drivers of greater use of distributed sensing in the civil engineering sector.

Restraint:

Technical issues in installation

The main obstacle to the market expansion for distributed fibre optic sensors is technical problems with the installation of distributed sensors. The optical fibre must be handled cautiously to prevent breakage during installation. Due to the poor strain sensitivity of cabled fibres, any bending that occurs during installation would harm the dispersed optical fibre. Although the design of the sensor cables has greatly improved, inaccurate data can still not be obtained with faulty cable implementation. Such failures may cause clients to disregard the technology in upcoming projects due to the high installation costs. These kinds of risk would hinder market expansion.

Opportunity:

Growing demand for data base analysis

Data is gathered through distributed fibre optic sensors along the optical fiber's length. Due to the vast amount of data that is produced, many analytical techniques are utilised to examine the data that has been gathered. Globally, the use of data-driven decision-making and tactics is becoming more and more popular. These are accomplished by identifying a pattern in the data that the management can assess, deciphering the insights, and improving performance and decision-making. Using light scattering, the sensors can track changes in temperature, pressure, vibration, or strain along the length of the fibre. The distributed fibre optic sensors market is anticipated to expand throughout the projected period as businesses adopt data-intensive decisions more frequently.

Threat:

High cost of distributed fiber optic sensor systems

Businesses employ distributed sensor systems to monitor demanding work conditions and comprehend dealing with real-time data accurately. The market is expanding as a result of the many benefits these dispersed sensors provide, including their precision and dependability. Yet, this technology is still expensive, making it unaffordable for every business that needs real-time monitoring and sensing. Furthermore, these systems are expensive to build and maintain, which makes their implementation challenging. As a result, the high price of distributed fibre optic sensor systems is a major obstacle to market expansion.

COVID-19 Impact:

The COVID-19 epidemic has had a profound effect on the sector. Due to fewer production operations and less product development, fibre optics use in the industrial and civil engineering sectors has decreased. The industry has prospects for expansion, nonetheless, as a result of evolving manufacturing techniques and the requirement to use fibre optics in mission-critical situations. It is anticipated that the development of plasmonic fiber-optic absorbance biosensors will enable medical professionals to conduct tests more quickly and with more accuracy. Due to the disease's rapid spread and the requirement for treatment, this trend is anticipated to persist over the projected period.

The Raman scattering effect segment is expected to be the largest during the forecast period

The Raman scattering effect segment is estimated to have a lucrative growth, due to the cloud computing application in crucial circumstances, such as the security of huge structures, the detection of coolant leaks, and the detection of fires, as well as its employment in sophisticated data processing techniques. Additionally, the technology's tolerance to electromagnetic interference supports ongoing monitoring and guards against structural issues in large-scale facilities like bridges and rail tracks.

The oil & gas segment is expected to have the highest CAGR during the forecast period

The oil & gas segment is anticipated to witness the fastest CAGR growth during the forecast period, due to the growing need of distributed sensing technology in pipeline and infrastructure health monitoring. Additionally, it is projected that during the forecast period, the oil and gas industry would be the biggest user of distributed fibre optical sensors due to growing research and development for pipeline monitoring and gas leakage detection.

Region with highest share:

North America is projected to hold the largest market share during the forecast period owing to the U.S. having a sizable oil and gas industry, which encourages higher adoption rates for dispersed fibre optic connections. In order to increase their capacity for profit generation, oil and gas businesses are encouraged by the rising price of crude oil to implement more accessible and effective support systems. This increases the industry's growth prospects.

Region with highest CAGR:

Europe is projected to have the highest CAGR over the forecast period, owing to regional technological development, the fibre optics market is expanding. The epidemic increased the demand for more robust infrastructure connections and speedier internet services. As a result, service providers are being encouraged to use fibre optics to meet customer demands. A growing number of infrastructure and building projects in the region as well as a need for process safety and security make Asia Pacific another location where the sector has great growth potential.

Key players in the market:

Some of the key players profiled in the Distributed Fiber Optic Sensor Market include: Omnisens SA, Halliburton, Luna Innovations Inc., Schlumberger Ltd., AP Sensing GmbH, Yokogawa Electric Corp., Brugg Kable AG, OFS Fitel, LLC, Qinetiq Group PLC, Weatherford, Bandweaver, Ziebel, FISO, Osensa, Lockheed Martin Corporation., Solifos AG, NEC Corporation and Verizon.

Key Developments:

In March 2023, Yokogawa Electric and Otsuka Chemical announced the establishment of Syncrest Inc. This joint venture would research, develop, and manufacture middle molecular pharmaceuticals as a contract research, development, and manufacturing organization.

In May 2021, AP Sensing announced the release of its 5th-Generation Distributed Acoustic Sensing (DAS) system. With the launch of this new Distributed Acoustic Sensing (DAS), AP Sensing makes strides in asset monitoring technology with a system that, unlike traditional point sensors, provides gapless monitoring of valuable infrastructures such as pipelines, power cables, and railways.

Types Covered:

  • Multimode
  • Single- Mode

Scattering Methods Covered:

  • Brillouin Scattering Effect
  • Raman Scattering Effect
  • Fiber Brag Grating
  • Rayleigh Scattering Effect
  • Bragg Grating
  • Interferometric

Operating principles Covered:

  • Optical Frequency Domain Reflectometry (OFDR)
  • Optical Time Domain Reflectometry (OTDR)

Applications Covered:

  • Acoustic Sensing
  • Temperature Sensing
  • Strain Sensing
  • Other Applications

End Users Covered:

  • Safety and Security
  • Oil & Gas
  • Telecommunication
  • Power and Utility
  • Industrial
  • Infrastructure
  • Civil Engineering
  • Military & Border Security
  • Transportation
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Distributed Fiber Optic Sensor Market, By Type

  • 5.1 Introduction
  • 5.2 Multimode
  • 5.3 Single- Mode

6 Global Distributed Fiber Optic Sensor Market, By Scattering Method

  • 6.1 Introduction
  • 6.2 Brillouin Scattering Effect
  • 6.3 Raman Scattering Effect
  • 6.4 Fiber Brag Grating
  • 6.5 Rayleigh Scattering Effect
  • 6.6 Bragg Grating
  • 6.7 Interferometric

7 Global Distributed Fiber Optic Sensor Market, By Operating principle

  • 7.1 Introduction
  • 7.2 Optical Frequency Domain Reflectometry (OFDR)
  • 7.3 Optical Time Domain Reflectometry (OTDR)

8 Global Distributed Fiber Optic Sensor Market, By Application

  • 8.1 Introduction
  • 8.2 Acoustic Sensing
  • 8.3 Temperature Sensing
  • 8.4 Strain Sensing
  • 8.5 Other Applications

9 Global Distributed Fiber Optic Sensor Market, By End User

  • 9.1 Introduction
  • 9.2 Safety and Security
  • 9.3 Oil & Gas
  • 9.4 Telecommunication
  • 9.5 Power and Utility
  • 9.6 Industrial
  • 9.7 Infrastructure
  • 9.8 Civil Engineering
  • 9.9 Military & Border Security
  • 9.10 Transportation
  • 9.11 Other End Users

10 Global Distributed Fiber Optic Sensor Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Omnisens SA
  • 12.2 Halliburton
  • 12.3 Luna Innovations Inc.
  • 12.4 Schlumberger Ltd.
  • 12.5 AP Sensing GmbH
  • 12.6 Yokogawa Electric Corp.
  • 12.7 Brugg Kable AG
  • 12.8 OFS Fitel, LLC
  • 12.9 Qinetiq Group PLC
  • 12.10 Weatherford
  • 12.11 Bandweaver
  • 12.12 Ziebel
  • 12.13 FISO
  • 12.14 Osensa
  • 12.15 Lockheed Martin Corporation.
  • 12.16 Solifos AG
  • 12.17 NEC Corporation
  • 12.18 Verizon

List of Tables

  • Table 1 Global Distributed Fiber Optic Sensor Market Outlook, By Region (2020-2028) ($MN)
  • Table 2 Global Distributed Fiber Optic Sensor Market Outlook, By Type (2020-2028) ($MN)
  • Table 3 Global Distributed Fiber Optic Sensor Market Outlook, By Multimode (2020-2028) ($MN)
  • Table 4 Global Distributed Fiber Optic Sensor Market Outlook, By Single- Mode (2020-2028) ($MN)
  • Table 5 Global Distributed Fiber Optic Sensor Market Outlook, By Scattering Method (2020-2028) ($MN)
  • Table 6 Global Distributed Fiber Optic Sensor Market Outlook, By Brillouin Scattering Effect (2020-2028) ($MN)
  • Table 7 Global Distributed Fiber Optic Sensor Market Outlook, By Raman Scattering Effect (2020-2028) ($MN)
  • Table 8 Global Distributed Fiber Optic Sensor Market Outlook, By Fiber Brag Grating (2020-2028) ($MN)
  • Table 9 Global Distributed Fiber Optic Sensor Market Outlook, By Rayleigh Scattering Effect (2020-2028) ($MN)
  • Table 10 Global Distributed Fiber Optic Sensor Market Outlook, By Bragg Grating (2020-2028) ($MN)
  • Table 11 Global Distributed Fiber Optic Sensor Market Outlook, By Interferometric (2020-2028) ($MN)
  • Table 12 Global Distributed Fiber Optic Sensor Market Outlook, By Operating principle (2020-2028) ($MN)
  • Table 13 Global Distributed Fiber Optic Sensor Market Outlook, By Optical Frequency Domain Reflectometry (OFDR) (2020-2028) ($MN)
  • Table 14 Global Distributed Fiber Optic Sensor Market Outlook, By Optical Time Domain Reflectometry (OTDR) (2020-2028) ($MN)
  • Table 15 Global Distributed Fiber Optic Sensor Market Outlook, By Application (2020-2028) ($MN)
  • Table 16 Global Distributed Fiber Optic Sensor Market Outlook, By Acoustic Sensing (2020-2028) ($MN)
  • Table 17 Global Distributed Fiber Optic Sensor Market Outlook, By Temperature Sensing (2020-2028) ($MN)
  • Table 18 Global Distributed Fiber Optic Sensor Market Outlook, By Strain Sensing (2020-2028) ($MN)
  • Table 19 Global Distributed Fiber Optic Sensor Market Outlook, By Other Applications (2020-2028) ($MN)
  • Table 20 Global Distributed Fiber Optic Sensor Market Outlook, By End User (2020-2028) ($MN)
  • Table 21 Global Distributed Fiber Optic Sensor Market Outlook, By Safety and Security (2020-2028) ($MN)
  • Table 22 Global Distributed Fiber Optic Sensor Market Outlook, By Oil & Gas (2020-2028) ($MN)
  • Table 23 Global Distributed Fiber Optic Sensor Market Outlook, By Telecommunication (2020-2028) ($MN)
  • Table 24 Global Distributed Fiber Optic Sensor Market Outlook, By Power and Utility (2020-2028) ($MN)
  • Table 25 Global Distributed Fiber Optic Sensor Market Outlook, By Industrial (2020-2028) ($MN)
  • Table 26 Global Distributed Fiber Optic Sensor Market Outlook, By Infrastructure (2020-2028) ($MN)
  • Table 27 Global Distributed Fiber Optic Sensor Market Outlook, By Civil Engineering (2020-2028) ($MN)
  • Table 28 Global Distributed Fiber Optic Sensor Market Outlook, By Military & Border Security (2020-2028) ($MN)
  • Table 29 Global Distributed Fiber Optic Sensor Market Outlook, By Transportation (2020-2028) ($MN)
  • Table 30 Global Distributed Fiber Optic Sensor Market Outlook, By Other End Users (2020-2028) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.