2030 年生物聚合物市场预测:按产品类型、原材料、成型工艺、用途、最终用户和地区进行的全球分析
市场调查报告书
商品编码
1324208

2030 年生物聚合物市场预测:按产品类型、原材料、成型工艺、用途、最终用户和地区进行的全球分析

Biopolymers Market Forecasts to 2030 - Global Analysis By Product Type, Raw Material, Molding Process, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 175+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,2023 年全球生物聚合物市场规模为 251.6 亿美元,预计到 2030 年将达到 778 亿美元,预测期内年复合成长率为 17.5%。

生物聚合物是由生物材料通过化学或生物体进行的生物过程製成的合成聚合物。多年来,许多生物聚合物已被研究用于製药和生物用途。生物聚合物具有生物相容性和可生物降解性,使其可用于多种用途,包括可食用薄膜、乳液、食品工业的包装材料、药物输送材料、人造器官、伤口创伤治疗等医疗植入物、组织支架和敷料。

据 Plastmart 称,生物聚合物的主要缺点是与传统聚合物相比价格较高。

改变消费者对环保产品的偏好

生物塑料的商业性发展得到了消费者对永续塑料选择的了解以及消除传统不可生物降解塑料使用的必然努力的支持。传统的石油基塑料需要很长时间才能分离和分解,并在垃圾掩埋场花费大量时间。当可生物降解塑料被丢弃时,它们会更快地分解并重新融入环境的有序结构中。此外,由于微生物的作用,可生物降解聚合物的分解速度比传统塑料快得多。传统塑料需要大约 1,000 年才能分离,而可生物降解塑料在短短 180 天内就分离了 60% 以上。不断增加的垃圾掩埋场和垃圾堆对生态系统构成严重威胁,并对生物系统的绿色产生各种负面影响。

生物塑料的性能问题

生物塑料的性能和耐用性有限,使其无法广泛应用于包装、电子设备、农业和汽车工业等多种行业。与传统的石油基聚合物相比,生物基聚合物具有不同的功能特性,例如对空气、水、氧气和热的阻隔性较低,使其适用于食品、药品、个人护理产品、电子设备、等受到限制。与传统的石油基塑料相比,生物基聚合物的机械性能和加工能力较差,限制了其发展并阻碍了其在农业、汽车和其他行业的使用。

创建更现代的应用程序

与传统聚合物一样,生物基聚合物具有广泛的用途。随着政府关注永续性并支持绿色采购法规,生物基聚合物市场预计将在消费产品用途中看到巨大的开拓机会。预计包装用途将显着扩大。可生物降解地膜在农业领域有多种用途。餐饮是一个重要的用途,其中托盘、餐具和杯子等食品包装产品对生物基聚合物的需求量很大。

生物塑料的分离和加工

在农业环境中,可生物降解的生物塑料被消化、堆肥和生物降解。产品类型、市场规模、回收基础设施、立法和定价都会影响生物塑料(PET、PA、PE)的加工方法。儘管是可再生的植物来源材料,但这些材料在海洋环境中的表现与基于化石燃料的塑料相似。这些塑料如果被动物摄入可能有害,而且也很难分解成微塑料。即使是可生物降解聚合物 (PLA) 也需要时间才能分解,并且需要工业堆肥。

COVID-19 的影响:

冠状病毒 (COVID-19) 大流行扰乱了股市、收紧了边境管制并导致世界封锁,迫使大公司、政府和塑料行业补充其供应链。 COVID-19大流行正在对世界各地的社会和金融部门产生重大影响,所有大公司都遇到困难。冠状病毒的爆发对生物基产业产生了不成比例的影响。一些公司正在帮助提供技术解决方案来阻止疫情爆发,而另一些公司则看到对可生物降解外卖容器的需求增加。

预计生物降解部分在预测期内将是最大的

由于微生物具有快速降解可生物降解聚合物的特性,可最大限度地减少原始可生物降解聚合物及其产品对环境的影响,预计可生物降解领域将出现良好的增长。微生物产生的酶用于在酶催化过程中将这些聚合物分解成更小的碎片。它们逐渐变质并被土壤和其他自然元素吞噬。这种自然过程产生的污染较少,因为它不需要强制化学反应来启动该过程。

预计纺织行业在预测期内年复合成长率最高

纤维纤维预计在预测期内将出现最高的年复合成长率,因为它广泛应用于从纤维组装到染色的纺织行业。即使工程聚合物在质量方面比生物聚合物更有效,但由于组装生产的聚合物所需的昂贵资源以及各种项目中对使用环保材料的需求不断增加,开发吸收了大量能源。此外,生物聚合物在製造材料方面具有各种优势,例如较低的组装成本和更轻的质感。

占比最大的地区

由于其广泛使用以及传统聚合物,预计亚太地区在预测期内将占据最大的市场份额。随着各国政府越来越关注永续性和支持绿色采购的法规,预计生物基聚合物市场在消费品用途中将出现显着增长。此外,还计划大幅扩展包装用途。可生物降解的地膜在农业中有多种用途。食品包装产品,包括托盘、餐具和杯子,是生物基聚合物特别需求的重要用途。

复合年复合成长率最高的地区:

预计欧洲在预测期内将经历最高的年复合成长率。这是因为由于采用了严格的法规,欧洲是全球生物聚合物市场中生物聚合物的重要用户。由于当地的规则和法规,欧洲预计将在整个假设期间保持其优势。预计该社区在预测期内将出现显着增长。这主要是由于该地区的快速工业化,需要防止生产的聚合物和人造塑料造成的污染,以及当时需要投入资源进行生物聚合物的开拓性研究。

免费定制服务:

订阅此报告的客户将收到以下免费定制选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和年复合成长率(注:基于可行性检查)
  • 竞争标杆管理
    • 根据产品系列、地域分布和战略联盟对主要企业进行基准测试

目录

第1章执行摘要

第2章前言

  • 概述
  • 利益相关者
  • 调查范围
  • 调查方法
    • 资料挖掘
    • 资料分析
    • 资料检验
    • 研究途径
  • 调查来源
    • 主要调查来源
    • 二次调查来源
    • 假设

第3章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 产品分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • 新型冠状病毒感染疾病(COVID-19)的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第5章全球生物聚合物市场:按产品类型

  • 不可生物降解
    • 生物聚乙烯(Bio PE)
    • 生物聚丙烯(Bio PP)
    • 生物聚对苯二甲酸乙二醇酯 (PET)
    • 聚对苯二甲酸丙二醇酯 (PTT)
    • 聚乙烯呋喃酸酯 (PEF)
    • 生物基聚烯烃
    • 生物基聚酰胺 (Bio-PA)
      • 均聚酰胺
      • 生物聚酰胺 (PA)6
      • 生物聚酰胺 (PA) 11
      • 共聚酰胺
      • 其他生物基聚酰胺 (Bio-PA)
    • 其他不可生物降解的
  • 可生物降解
    • 聚乳酸(PLA)
    • 聚己二酸对苯二甲酸丁二醇酯 (PBSA)
    • 聚羟基链烷酸酯
    • 聚丁二酸丁二醇酯 (PBS)
    • 纤维素膜
    • 淀粉基
    • 其他可生物降解
  • 聚氨酯
  • 多醣聚合物
    • 纤维素聚合物
    • 淀粉基聚合物
  • 其他产品类型

第6章全球生物聚合物市场:按原材料分类

  • 马铃薯
  • 玉米淀粉
  • 小麦
  • 木薯
  • 柳枝草
  • 甘蔗 甜菜
  • 其他原材料

第7章全球生物聚合物市场:按成型工艺分类

  • 挤压
  • 注射
  • 熔融复合
  • 其他成型工艺

第8章全球生物聚合物市场:按用途

  • 汽车内部和外部
  • 瓶子
  • 电路基板
  • 纤维
  • 电影
  • 绝缘子
  • 层压板
  • 医疗植入物
  • 纸和纸板涂层
  • 种子包衣
  • 车辆零件
  • 其他用途

第9章全球生物聚合物市场:按最终用户分类

  • 汽车和交通
  • 农业和园艺
  • 建筑与建造
  • 涂料和黏剂
  • 电子和电力
  • 食品和饮料
  • 医疗保健
  • 航太
  • 纺织品
  • 包装
    • 软包装
    • 硬包装
  • 其他的

第10章全球生物聚合物市场:按地区

  • 北美
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 意大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳大利亚
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第11章进展

  • 合同、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第12章公司简介

  • BASF
  • Braskem
  • Total Corbion
  • Novamont
  • Mitsubishi Chemical Holding Corporation
  • Biome Bioplastics
  • NatureWorks
  • Biotec
  • Toray Industries
  • Plantic Technologies
  • Mitsubishi Chemical Group Corporation
  • Biotec Biologische Naturverpackungen GmbH & Co.
  • Dupont de Nemours Inc
  • BioBag International AS
  • Danimer Scientific Inc
  • Eastman Chemical Company
  • Rodenburg Biopolymers BV
  • Innovia Films Ltd
  • Solanyl Biopolymers Inc
Product Code: SMRC23486

According to Stratistics MRC, the Global Biopolymers Market is accounted for $25.16 billion in 2023 and is expected to reach $77.80 billion by 2030 growing at a CAGR of 17.5% during the forecast period. Biopolymers are synthetic polymers made from biological materials, either chemically or wholly through biological processes carried out by live organisms. For many years, many biopolymers have been studied for use in pharmaceutical and biological applications. The biopolymers are useful in a variety of applications because they are biocompatible and biodegradable, including edible films, emulsions, packaging materials for the food industry, drug transport materials, and medical implants like artificial organs, wound healing, tissue scaffolds, and dressing.

According to Plastmart, the major drawback of biopolymers is their higher price tag when compared to traditional polymers. While the typical, conventional polymers cost between US$1000 and US$1500 per metric tonne (MT)

Market Dynamics:

Driver:

Shift in consumer preference for products that are environmentally friendly

The commercial development of bioplastics is being aided by consumer knowledge of sustainable plastic options and inescapable efforts to eliminate the use of conventional, non-biodegradable plastics. Conventional plastics, which are mostly made of oil, take a very long time to separate or degrade and spend a considerable amount of time in landfills. When discarded, biodegradable plastics dissociate more quickly and are reincorporated into the environment's regular structure. Additionally, biodegradable polymers degrade far more quickly than conventional plastics do through the actions of microbes. Compared to traditional plastics, which take around 1,000 years to separate, biodegradable plastics separate 60% or more in as little as 180 days. Growing landfills and trash piles pose severe ecological dangers and have a number of negative effects on the biological system's verdure.

Restraint:

Performance issue with bioplastics

Biopolymers' performance and durability limitations prevent them from being widely used in a variety of industries, such as packaging, electronics, agriculture, and the automobile industry. When compared to traditional petroleum-based polymers, bio-based polymers have different functional characteristics, including lower barriers to air, water, oxygen, and heat, which limits their use in the packaging of food, medicines, personal care items, and electronics. Comparing bio-based polymers to traditional petroleum-based plastics, their low mechanical characteristics and process ability have been limiting their growth and preventing their use in industries like agricultural, automotive, and others.

Opportunity:

Creation of more modern apps

Similar to conventional polymers, bio-based polymers have a wide range of uses. The market for bio-based polymers is anticipated to see tremendous development opportunities in applications for consumer products due to the government's increased focus on sustainability and supportive green procurement rules. It is also anticipated that the packaging application would expand significantly. There are several uses for biodegradable mulch films in the agricultural sector. Catering for food packaging goods, such as trays, cutlery, and cups, is a very demanding and significant use of bio-based polymers.

Threat:

Bioplastics separation and processing

On agricultural ground, the biodegradable bioplastics can be digested, composted, or biodegraded. The kind of product, market size, infrastructure for collection, recovery, laws, and pricing all influence the processing method that is used for bioplastics (PET, PA, and PE) A large number of bioplastics are not biodegradable. Despite coming from renewable, plant-based sources, these materials behave in marine settings in a manner that is comparable to those of plastics derived from fossil fuels. These plastics can be harmful to animals if they consume them and are difficult to degrade into micro plastics. Even biodegradable polymers (PLA) take a long time to disintegrate, necessitating industrial composting.

COVID-19 Impact:

The new corona virus (COVID-19) pandemic outbreak has resulted in stock market instability, strict border controls, and a worldwide lockdown, forcing big businesses, governments, and the plastics industry to replenish supply chains. The COVID-19 epidemic is having a significant impact on the social and financial sectors across the world, and all major businesses are suffering difficulties. The corona virus pandemic has had an uneven effect on the bio-based industry. While some businesses are helping with technical solutions to stop the epidemic, others seem to be witnessing a rise in demand for biodegradable takeout containers.

The biodegradable segment is expected to be the largest during the forecast period

The biodegradable segment is estimated to have a lucrative growth, due to its properties which include microorganisms quickly break down biodegradable polymers, ensuring that the environmental effect of both the original biodegradable polymer and its byproducts is minimised. Enzymes produced by microorganisms are used in enzyme-catalyzed processes to split these polymers into smaller pieces. They gradually deteriorate and are eaten by the soil and other elements of nature. Less pollution will occur from this natural process since no forced chemical reaction is required to initiate the process.

The textiles segment is expected to have the highest CAGR during the forecast period

The textiles segment is anticipated to witness the highest CAGR growth during the forecast period, due to its use in the textile industry for operations ranging from fibre assembly to colouring. Even if engineered polymers are more effective than biopolymers in terms of qualities, the development has absorbed a lot of energy due to the expensive resources needed to assemble produced polymers and the growing demand for using eco-friendly materials in various projects. Additionally, biopolymers provide a variety of advantages when it comes to manufacturing materials, such as lower assembly costs and lightweight textures.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period owing to widely used much like conventional polymers. Due to the government's growing emphasis on sustainability and helpful green procurement regulations, the market for bio-based polymers is expected to have significant growth prospects in applications for consumer items. Additionally, a major expansion of the packaging application is planned. Biodegradable mulch films have a variety of applications in agriculture. Food packaging products including trays, cutlery, and cups represent a particularly demanding and important application for bio-based polymers.

Region with highest CAGR:

Europe is projected to have the highest CAGR over the forecast period; owing to Europe is a prominent user of biopolymers in the global biopolymers market because of its strict application of Law and Order. According to local rules and regulations, Europe is predicted to maintain its dominance throughout the hypothetical time period. This neighbourhood is expected to have significant growth throughout the projection time range. This is mostly attributed to the areas' rapid industrialisation, the necessity to prevent contamination from produced polymers and artificial plastics, and the need to allocate resources to biopolymers' pioneering work at the time.

Key players in the market:

Some of the key players profiled in the Biopolymers Market include: BASF, Braskem, Total Corbion, Novamont, Mitsubishi Chemical Holding Corporation, Biome Bioplastics, NatureWorks, Biotec, Toray Industries, Plantic Technologies, Mitsubishi Chemical Group Corporation, Biotec Biologische Naturverpackungen GmbH & Co., Dupont de Nemours Inc, BioBag International AS, Danimer Scientific Inc, Eastman Chemical Company, Rodenburg Biopolymers BV, Innovia Films Ltd and Solanyl Biopolymers Inc

Key Developments:

In November 2022, TotalEnergies Corbion announced a long-term collaboration with BGF. Both companies entered into arrangement for application development and the supply of Luminy PLA.

In October 2022, Braskem announced to expand it I'm greenTM biopolymer production capacity by 30%. The company is investing USD 60 million to expand the capacity. Braskem and SCG chemicals are the partners for the project. This partnership helps to double the current capacity for I'm greenTM products.

In June 2021, BASF launched COSMOS-approved texturizing biopolymer Hydagen. The cold processable rheology modifier obtained from the tuber of the konjac plant native to Southwest China is suitable for aqueous systems such as gels, fluids, serums, and novel formats such as patches, jellies, and peel-off formulations.

Product Types Covered:

  • Non-Biodegradable
  • Biodegradable
  • Polyurethanes
  • Polysaccharide Polymers
  • Other Product Types

Raw Materials Covered:

  • Potato
  • Corn Starch
  • Wheat
  • Cassava
  • Switchgrass
  • Sugar Cane/ Sugar Beet
  • Other Raw Materials

Molding Processes Covered:

  • Extrusion
  • Injection
  • Melt Compounding
  • Other Molding Processes

Applications Covered:

  • Automotive Interiors & Exteriors
  • Bottles
  • Circuit Boards
  • Fibers
  • Films
  • Insulators
  • Laminates
  • Medical Implants
  • Paper & Cardboard Coatings
  • Seed Coating
  • Vehicle Components
  • Other Applications

End Users Covered:

  • Automotive & Transport
  • Agriculture & Horticulture
  • Building & Construction
  • Coatings & Adhesives
  • Electronics & Electricals
  • Food & Beverage
  • Medical & Healthcare
  • Aerospace
  • Textiles
  • Packaging
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Biopolymers Market, By Product Type

  • 5.1 Introduction
  • 5.2 Non-Biodegradable
    • 5.2.1 Bio-Polyethylene (Bio-PE)
    • 5.2.2 Bio-Polypropylene (Bio-PP)
    • 5.2.3 Bio-Polyethylene terephthalate (PET)
    • 5.2.4 Polytrimethylene terephthalate (PTT)
    • 5.2.5 Polyethylene Furanoate (PEF)
    • 5.2.6 Bio-Based Polyolefins
    • 5.2.7 Bio-Based Polyamides (Bio-PA)
      • 5.2.7.1 Homopolyamides
      • 5.2.7.2 Bio-Polyamides (PA) 6
      • 5.2.7.3 Bio-Polyamides (PA) 11
      • 5.2.7.4 Copolyamides
      • 5.2.7.5 Other Bio-Based Polyamides (Bio-PA)
    • 5.2.8 Others Non-Biodegradable
  • 5.3 Biodegradable
    • 5.3.1 Polylactic Acid (PLA)
    • 5.3.2 Polybutylene Adipate Terephthalate (PBSA)
    • 5.3.3 Polyhydroxyalkanoates
    • 5.3.4 Polybutylene Succinate (PBS)
    • 5.3.5 Cellulose Films
    • 5.3.6 Starch Based
    • 5.3.7 Others Biodegradable
  • 5.4 Polyurethanes
  • 5.5 Polysaccharide Polymers
    • 5.5.1 Cellulose-Based Polymers
    • 5.5.2 Starch-Based Polymers
  • 5.6 Other Product Types

6 Global Biopolymers Market, By Raw Material

  • 6.1 Introduction
  • 6.2 Potato
  • 6.3 Corn Starch
  • 6.4 Wheat
  • 6.5 Cassava
  • 6.6 Switchgrass
  • 6.7 Sugar Cane/ Sugar Beet
  • 6.8 Other Raw Materials

7 Global Biopolymers Market, By Molding Process

  • 7.1 Introduction
  • 7.2 Extrusion
  • 7.3 Injection
  • 7.4 Melt Compounding
  • 7.5 Other Molding Processes

8 Global Biopolymers Market, By Application

  • 8.1 Introduction
  • 8.2 Automotive Interiors & Exteriors
  • 8.3 Bottles
  • 8.4 Circuit Boards
  • 8.5 Fibers
  • 8.6 Films
  • 8.7 Insulators
  • 8.8 Laminates
  • 8.9 Medical Implants
  • 8.10 Paper & Cardboard Coatings
  • 8.11 Seed Coating
  • 8.12 Vehicle Components
  • 8.13 Other Applications

9 Global Biopolymers Market, By End User

  • 9.1 Introduction
  • 9.2 Automotive & Transport
  • 9.3 Agriculture & Horticulture
  • 9.4 Building & Construction
  • 9.5 Coatings & Adhesives
  • 9.6 Electronics & Electricals
  • 9.7 Food & Beverage
  • 9.8 Medical & Healthcare
  • 9.9 Aerospace
  • 9.10 Textiles
  • 9.11 Packaging
    • 9.11.1 Flexible Packaging
    • 9.11.2 Rigid Packaging

9..12 Other End Users

10 Global Biopolymers Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 BASF
  • 12.2 Braskem
  • 12.3 Total Corbion
  • 12.4 Novamont
  • 12.5 Mitsubishi Chemical Holding Corporation
  • 12.6 Biome Bioplastics
  • 12.7 NatureWorks
  • 12.8 Biotec
  • 12.9 Toray Industries
  • 12.10 Plantic Technologies
  • 12.11 Mitsubishi Chemical Group Corporation
  • 12.12 Biotec Biologische Naturverpackungen GmbH & Co.
  • 12.13 Dupont de Nemours Inc
  • 12.14 BioBag International AS
  • 12.15 Danimer Scientific Inc
  • 12.16 Eastman Chemical Company
  • 12.17 Rodenburg Biopolymers BV
  • 12.18 Innovia Films Ltd
  • 12.19 Solanyl Biopolymers Inc

List of Tables

  • Table 1 Global Biopolymers Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Biopolymers Market Outlook, By Product Type (2021-2030) ($MN)
  • Table 3 Global Biopolymers Market Outlook, By Non-Biodegradable (2021-2030) ($MN)
  • Table 4 Global Biopolymers Market Outlook, By Bio-Polyethylene (Bio-PE) (2021-2030) ($MN)
  • Table 5 Global Biopolymers Market Outlook, By Bio-Polypropylene (Bio-PP) (2021-2030) ($MN)
  • Table 6 Global Biopolymers Market Outlook, By Bio-Polyethylene terephthalate (PET) (2021-2030) ($MN)
  • Table 7 Global Biopolymers Market Outlook, By Polytrimethylene terephthalate (PTT) (2021-2030) ($MN)
  • Table 8 Global Biopolymers Market Outlook, By Polyethylene Furanoate (PEF) (2021-2030) ($MN)
  • Table 9 Global Biopolymers Market Outlook, By Bio-Based Polyolefins (2021-2030) ($MN)
  • Table 10 Global Biopolymers Market Outlook, By Bio-Based Polyamides (Bio-PA) (2021-2030) ($MN)
  • Table 11 Global Biopolymers Market Outlook, By Homopolyamides (2021-2030) ($MN)
  • Table 12 Global Biopolymers Market Outlook, By Bio-Polyamides (PA) 6 (2021-2030) ($MN)
  • Table 13 Global Biopolymers Market Outlook, By Bio-Polyamides (PA) 11 (2021-2030) ($MN)
  • Table 14 Global Biopolymers Market Outlook, By Copolyamides (2021-2030) ($MN)
  • Table 15 Global Biopolymers Market Outlook, By Other Bio-Based Polyamides (Bio-PA) (2021-2030) ($MN)
  • Table 16 Global Biopolymers Market Outlook, By Others Non-Biodegradable (2021-2030) ($MN)
  • Table 17 Global Biopolymers Market Outlook, By Biodegradable (2021-2030) ($MN)
  • Table 18 Global Biopolymers Market Outlook, By Polylactic Acid (PLA) (2021-2030) ($MN)
  • Table 19 Global Biopolymers Market Outlook, By Polybutylene Adipate Terephthalate (PBSA) (2021-2030) ($MN)
  • Table 20 Global Biopolymers Market Outlook, By Polyhydroxyalkanoates (2021-2030) ($MN)
  • Table 21 Global Biopolymers Market Outlook, By Polybutylene Succinate (PBS) (2021-2030) ($MN)
  • Table 22 Global Biopolymers Market Outlook, By Cellulose Films (2021-2030) ($MN)
  • Table 23 Global Biopolymers Market Outlook, By Starch Based (2021-2030) ($MN)
  • Table 24 Global Biopolymers Market Outlook, By Others Biodegradable (2021-2030) ($MN)
  • Table 25 Global Biopolymers Market Outlook, By Polyurethanes (2021-2030) ($MN)
  • Table 26 Global Biopolymers Market Outlook, By Polysaccharide Polymers (2021-2030) ($MN)
  • Table 27 Global Biopolymers Market Outlook, By Cellulose-Based Polymers (2021-2030) ($MN)
  • Table 28 Global Biopolymers Market Outlook, By Starch-Based Polymers (2021-2030) ($MN)
  • Table 29 Global Biopolymers Market Outlook, By Other Product Types (2021-2030) ($MN)
  • Table 30 Global Biopolymers Market Outlook, By Raw Material (2021-2030) ($MN)
  • Table 31 Global Biopolymers Market Outlook, By Potato (2021-2030) ($MN)
  • Table 32 Global Biopolymers Market Outlook, By Corn Starch (2021-2030) ($MN)
  • Table 33 Global Biopolymers Market Outlook, By Wheat (2021-2030) ($MN)
  • Table 34 Global Biopolymers Market Outlook, By Cassava (2021-2030) ($MN)
  • Table 35 Global Biopolymers Market Outlook, By Switchgrass (2021-2030) ($MN)
  • Table 36 Global Biopolymers Market Outlook, By Sugar Cane/ Sugar Beet (2021-2030) ($MN)
  • Table 37 Global Biopolymers Market Outlook, By Other Raw Materials (2021-2030) ($MN)
  • Table 38 Global Biopolymers Market Outlook, By Molding Process (2021-2030) ($MN)
  • Table 39 Global Biopolymers Market Outlook, By Extrusion (2021-2030) ($MN)
  • Table 40 Global Biopolymers Market Outlook, By Injection (2021-2030) ($MN)
  • Table 41 Global Biopolymers Market Outlook, By Melt Compounding (2021-2030) ($MN)
  • Table 42 Global Biopolymers Market Outlook, By Other Molding Processes (2021-2030) ($MN)
  • Table 43 Global Biopolymers Market Outlook, By Application (2021-2030) ($MN)
  • Table 44 Global Biopolymers Market Outlook, By Automotive Interiors & Exteriors (2021-2030) ($MN)
  • Table 45 Global Biopolymers Market Outlook, By Bottles (2021-2030) ($MN)
  • Table 46 Global Biopolymers Market Outlook, By Circuit Boards (2021-2030) ($MN)
  • Table 47 Global Biopolymers Market Outlook, By Fibers (2021-2030) ($MN)
  • Table 48 Global Biopolymers Market Outlook, By Films (2021-2030) ($MN)
  • Table 49 Global Biopolymers Market Outlook, By Insulators (2021-2030) ($MN)
  • Table 50 Global Biopolymers Market Outlook, By Laminates (2021-2030) ($MN)
  • Table 51 Global Biopolymers Market Outlook, By Medical Implants (2021-2030) ($MN)
  • Table 52 Global Biopolymers Market Outlook, By Paper & Cardboard Coatings (2021-2030) ($MN)
  • Table 53 Global Biopolymers Market Outlook, By Seed Coating (2021-2030) ($MN)
  • Table 54 Global Biopolymers Market Outlook, By Vehicle Components (2021-2030) ($MN)
  • Table 55 Global Biopolymers Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 56 Global Biopolymers Market Outlook, By End User (2021-2030) ($MN)
  • Table 57 Global Biopolymers Market Outlook, By Automotive & Transport (2021-2030) ($MN)
  • Table 58 Global Biopolymers Market Outlook, By Agriculture & Horticulture (2021-2030) ($MN)
  • Table 59 Global Biopolymers Market Outlook, By Building & Construction (2021-2030) ($MN)
  • Table 60 Global Biopolymers Market Outlook, By Coatings & Adhesives (2021-2030) ($MN)
  • Table 61 Global Biopolymers Market Outlook, By Electronics & Electricals (2021-2030) ($MN)
  • Table 62 Global Biopolymers Market Outlook, By Food & Beverage (2021-2030) ($MN)
  • Table 63 Global Biopolymers Market Outlook, By Medical & Healthcare (2021-2030) ($MN)
  • Table 64 Global Biopolymers Market Outlook, By Aerospace (2021-2030) ($MN)
  • Table 65 Global Biopolymers Market Outlook, By Textiles (2021-2030) ($MN)
  • Table 66 Global Biopolymers Market Outlook, By Packaging (2021-2030) ($MN)
  • Table 67 Global Biopolymers Market Outlook, By Flexible Packaging (2021-2030) ($MN)
  • Table 68 Global Biopolymers Market Outlook, By Rigid Packaging (2021-2030) ($MN)
  • Table 69 Global Biopolymers Market Outlook, By Other End Users (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.