到 2030 年快速原型市场预测 - 按类型、形状、材料、功能、技术、最终用户和地区进行的全球分析
市场调查报告书
商品编码
1359041

到 2030 年快速原型市场预测 - 按类型、形状、材料、功能、技术、最终用户和地区进行的全球分析

Rapid Prototyping Market Forecasts to 2030 - Global Analysis By Type (Proof-of-Concept Prototype, Visual Prototype, Functional Prototype, User Experience Prototype and Other Types), Form, Material, Function, Technology, End-User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据Stratistics MRC预测,2023年全球快速原型市场规模将达到142.5亿美元,预计2030年将达到376.9亿美元,预测期内年复合成长率为14.9%。

快速原型製作采用多种技术,利用三维电脑辅助设计资料快速创建实体项目或连接的比例模型。根据使用者回馈和分析,我们在短时间内进行多次迭代,以建立产品模拟,以便在产品开发过程中进行测试和检验。儘管在快速原型製造中使用了多种製造技术,但积层製造是普及的。快速原型设计的好处包括降低整体产品开发成本以及缩短设计和开发时间。

根据国际汽车工业协会(OICA)预测,2020年全球汽车产量将比2019年下降16%。预计这将在中短期内对市场成长产生重大影响。

製造业需求增加

一种称为快速原型製作的新製造方法可以快速建立使用 3D 电脑辅助软体建立的电脑模型。快速原型设计的主要最终用户包括汽车、航太和国防等製造业。快速原型技术因其优点在北美和欧洲很受欢迎。快速原型製作可以作为一种快速且经济实惠的技术,用于製作设计概念原型、进行多次设计更改以及对设计进行物理检验,并且可以显着减少产品开发所需的时间。

材料和製程高成本

快速原型设计工具需要大量的初始设定成本。快速原型製作的价格由多种因素决定,包括原型的类型、材料、最终特性以及原型设计的目的和性质。用于快速原型製作的陶瓷和智慧材料比热塑性塑胶更昂贵。对合格劳动力和现代技术的需求增加了工作的整体成本。

扩大产品开发和客製化

快速原型製作使公司能够快速且经济地创建新产品和组件的工作原型。这可以实现快速测试和迭代,从而缩短产品开发週期并增加创新。快速原型製作使公司能够在投入全面生产之前测试新的设计概念、检验想法并获得相关人员的回馈。透过采用快速原型设计,公司可以创建满足特定市场群体需求或独特客户偏好的客製化版本产品。这使得企业能够提供独特的客製化产品,提高客户满意度和忠诚度。

标准和品质保证

随着快速原型製作业务的不断发展和壮大,很难确保不同技术、材料和生产商的品质一致。缺乏标准化以及不同快速原型技术的输出品质差异可能会影响原型的可靠性和性能。为了维持品管,公司必须仔细评估和选择可靠的服务供应商或进行内部投资。

COVID-19 的影响:

由于供应链中断、劳动力短缺和严格的运输要求而导致製造活动的生产延迟,COVID-19大流行的爆发对快速原型产业产生了各种影响。由于原材料短缺导致製造活动暂时推迟,快速原型行业的主要参与者在 2020-2021 财年经历了销售额下降。然而,随着全球经济开始好转,主要市场参与企业正在逐渐减少研发预算,并将重点转向下一代技术,以应对 COVID-19 的负面影响。

热塑性塑胶领域预计将在预测期内成为最大的领域

热塑性塑胶领域预计将出现良好的成长。这是因为热塑性塑胶提供了各种具有不同特性的材料的预测,允许创建具有不同机械、热和化学能力的原型。聚乳酸 (PLA)、PETG(聚对苯二甲酸乙二醇酯)、尼龙、聚碳酸酯和聚丙烯是一些用于原型製作的常见热塑性塑胶。其他材料包括 ABS(丙烯腈-丁二烯-苯乙烯)、PLA(聚乳酸)和 PETG。与用于原型製作的其他材料(例如金属和陶瓷)相比,热塑性塑胶通常价格实惠。热塑性长丝的可用性和成本使其成为快速原型设计专案的实用选择。这些因素正在推动该细分市场的成长。

预计航太和国防领域在预测期内年复合成长率最高

航太和国防领域预计将在预测期内实现最快的年复合成长率,因为快速原型製作使航太和国防公司能够快速将数位设计和 CAD 模型转换为实体原型以检验概念。这使得工程师和设计师能够在开始大规模生产之前评估新飞机和防御系统想法的可行性和功能。这些要素正在推动该细分市场的成长。

比最大的地区

由于全球最大的航太市场是美国,预计北美在预测期内将占据最大的市场占有率。加拿大的航太产业正处于一个转捩点,预计未来 20年度将在全球范围内实现显着成长。预计这将对航太业中使用的市场研究的消耗产生重大影响。加拿大在民用飞行模拟方面处于世界领先地位,民用引擎产量排名第三,民用飞机产量排名第四。此外,快速原型技术最大的最终用户之一是医疗产业,该技术用于製造各种产品,包括手术器械、植入物、组织工程支架、支架和植入物。无可否认,美国医疗保健产业是世界上最发达的产业之一。北美是每个领域类别中唯一进入前五名的国家。

复合年复合成长率最高的地区:

由于快速原型技术、材料和工艺的显着进步,预计亚太地区在预测期内将出现最高的年复合成长率。由于其精度、速度和成本效益的提高,快速原型技术现在正在更多领域得到应用。目前,快速原型设计已应用于亚太地区汽车、汽车、航太、医疗保健、消费品和消费品等多种产业的产品开发流程。亚太地区强大的製造基础和不断增长的技术力促进了快速原型技术的采用。

免费客製化服务:

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和年复合成长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第1章执行摘要

第2章前言

  • 概述
  • 利害关係人
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 调查来源
    • 主要调查来源
    • 二次调查来源
    • 先决条件

第3章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 最终用户分析
  • 新兴市场
  • 新型冠状病毒感染疾病(COVID-19)的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第5章全球快速原型市场:按类型

  • 概念验证(PoC) 原型
  • 视觉原型
  • 功能原型
  • 使用者体验原型
  • 其他类型

第6章全球快速原型市场:依形状分类

  • 灯丝
  • 粉末
  • 墨水

第7章全球快速原型市场:依材料分类

  • 金属和合金
  • 陶瓷製品
  • 石膏
  • 液体硅橡胶(LSR)
  • 淀粉
  • 聚合物
  • 热塑性塑料
  • 其他材料

第8章全球快速原型市场:按功能

  • 功能原型
  • 概念模型

第9章全球快速原型市场:依技术分类

  • 科技
  • 立体光固成型(SLA)
  • 熔融沉积建模(FDM)
  • 数位光处理 [DLP]
  • 选择性雷射烧结(SLS)
  • 电子束熔炼 [EBM]
  • 多射流融合 (MJF)

第10章全球快速原型市场:依最终用户分类

  • 航太和国防
  • 汽车
  • 电影和动画
  • 消费品和电子设备
  • 建筑学
  • 交通设施
  • 医学
  • 其他最终用户

第11章全球快速原型市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第12章进展

  • 合约、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第13章公司简介

  • 3D Systems Corporation
  • Stratasys, Ltd.
  • EOS GmbH Electro Optical Systems
  • Materialise NV
  • Golden Plastics
  • Arcam AB
  • LPW Technology Ltd.
  • Sandvik AB
  • Tethon 3D
  • Lithoz GmbH
  • Arkema SA
  • Royal DSM NV
  • CRP Group
  • Oxford Performance Materials
  • Renishaw PLC
  • Hoganas AB
  • GKN PLC
  • Carpenter Technology Corporation
  • 3D Ceram
  • Fathom Digital Manufacturing Corporation
Product Code: SMRC23913

According to Stratistics MRC, the Global Rapid Prototyping Market is accounted for $14.25 billion in 2023 and is expected to reach $37.69 billion by 2030 growing at a CAGR of 14.9% during the forecast period. Rapid prototyping is the employing of a variety of techniques to rapidly produce a scale model of a physical item or connection using three-dimensional computer-aided design data. It generates several iterations over a short period of time based on user feedback and analysis to build product simulations for testing and validation during the product development process. While many different manufacturing techniques are used in rapid prototyping, layered additive manufacturing is the most prevalent. The advantages of rapid prototyping include reduced overall product development costs and reduced design and development time.

According to International Organization of Motor Vehicle Manufacturers (OICA), global production of vehicles, declined by 16% in 2020 when compared to 2019. This is expected to significantly impact the market growth in the short to medium-term.

Market Dynamics:

Driver:

Increasing demand for the manufacturing sector

A new manufacturing method called rapid prototyping enables the quick creation of computer models created with 3D computer-aided software. The primary end-users of fast prototyping include manufacturing sectors like automotive, aerospace, defence, and other industries. Because of its benefits, rapid prototyping is highly sought-after in North America and Europe. It can be used as a quick and affordable technique for prototyping design concepts, several design modifications, and physical validation of designs, greatly lowering the time period required for product development.

Restraint:

High cost of materials and the processes

Rapid prototyping tools have a significant initial setup cost. The price of rapid prototyping is determined by a variety of elements, such as the type of prototype, the material, the final properties, and the purpose and nature of the prototype design. In comparison to thermoplastics, quick-prototyping ceramic materials and smart materials are more expensive. The overall cost of the operation rises due to the need for qualified labour and modern technology.

Opportunity:

Product development and increased customization

Rapid prototyping enables businesses to quickly and affordably create working prototypes of new products or components. Because of the quicker testing and iterations made possible by this, product development cycles are shortened, and innovation is raised. Before spending money on full-scale production, businesses can use rapid prototyping to test new design concepts, validate ideas, and get feedback from stakeholders. Companies can employ rapid prototyping to make customised versions of their products to meet the needs of particular market groups or unique client preferences. This gives businesses the chance to provide distinctive and customised products, increasing client pleasure and loyalty.

Threat:

Standards and quality assurance

It can be difficult to ensure uniform quality across various technologies, materials, and producers as the rapid prototyping business continues to develop and grow. The dependability and performance of prototypes can be impacted by a lack of standardisation and variations in the output quality of various rapid prototyping technologies. To maintain quality control, businesses must carefully assess and choose dependable service suppliers or make internal investments.

COVID-19 Impact:

The outbreak of the COVID-19 pandemic had a mixed impact on the rapid prototyping industry, due to production delays in manufacturing activities caused by supply chain interruptions, a labour shortage, and stringent transportation requirements. Major participants in the fast prototyping industry experienced a reduction in sales for the fiscal years 2020 to 2021 as a result of a temporary delay in manufacturing activities caused by a lack of raw materials. The leading market participants, however, have moderately reduced their R&D budgets and redirected their focus to next-generation technologies in reaction to COVID-19's negative consequences when the world economy started to improve.

The thermoplastics segment is expected to be the largest during the forecast period

The thermoplastics segment is estimated to have a lucrative growth, because thermoplastics provide a broad range of material prospects with a variety of properties, enabling the creation of prototypes with different mechanical, thermal, and chemical capabilities. Polylactic acid (PLA), PETG (polyethylene terephthalate glycol), nylon, polycarbonate, and polypropylene are a few examples of common thermoplastics used in prototyping. Other materials include ABS (acrylonitrile butadiene styrene), PLA (polylactic acid), and PETG. In comparison to other materials used for prototyping, such as metals or ceramics, thermoplastics are typically more affordable. Thermoplastic filaments are a practical option for quick prototyping projects due to their accessibility and cost. These elements are propelling the segment growth.

The Aerospace & Defence segment is expected to have the highest CAGR during the forecast period

The Aerospace & Defence segment is anticipated to witness the fastest CAGR growth during the forecast period, because the rapid prototyping allows aerospace and defence companies to quickly transform digital designs and CAD models into physical prototypes to validate concepts. By doing this, engineers and designers can assess the viability and functionality of new aircraft or defence system ideas before committing to large-scale production. These factors are accelerating the segment growth.

Region with largest share:

North America is projected to hold the largest market share during the forecast period owing to the world's largest aerospace market is in the United States. The aerospace industry in Canada is at a turning point, and over the next 20 years, exponential growth is envisaged for the industry globally. This is anticipated to have a substantial impact on the consumption of market research for use in the aerospace industry. Canada is the world leader in civil flight simulation, third in the production of civil engines, and fourth in the production of civil aircraft. Additionally, one of the largest end users of rapid prototyping technology is the medical industry, which uses it to create a variety of products, including surgical instruments, implants, scaffolds for tissue engineering, stents, and implants. The American healthcare industry is unquestionably one of the most developed in the world. North America is the only country to place in the top five in each important sector category.

Region with highest CAGR:

Asia-Pacific region is projected to have the highest CAGR over the forecast period, owing to its rapid prototyping technologies, materials, and processes have made significant advancements. A wider number of sectors may now use rapid prototyping because of improvements in accuracy, speed, and cost-effectiveness. Rapid prototyping is now being used for product development processes in a variety of industries, including electronics, automotive, aerospace, healthcare, consumer products, and consumer packaged goods in Asia pacific region. Rapid prototyping technology adoption has been made easier by the region's robust manufacturing base and expanding technological capabilities.

Key players in the market:

Some of the key players profiled in the Rapid Prototyping Market include: 3D Systems Corporation, Stratasys, Ltd., EOS GmbH Electro Optical Systems, Materialise NV, Golden Plastics, Arcam AB, LPW Technology Ltd., Sandvik AB, Tethon 3D, Lithoz GmbH, Arkema S.A., Royal DSM N.V., CRP Group, Oxford Performance Materials, Renishaw PLC, Hoganas AB, GKN PLC, Carpenter Technology Corporation, 3D Ceram and Fathom Digital Manufacturing Corporation

Key Developments:

In September 2021, 3D System Corporation expended its material portfolio with the launch of Certified Scalmalloy (A) and Certified M789 (A). This material will be used to develop high strength part for energy, mold making, automotive, electronics, aerospace and defense application. Also, the consumer can use direct metal printing platform to develop part with the help of Scalmalloy (A) and M789 (A).

In November 2021, Desktop Metal, Inc. completed its acquisition of the ExOne Company. This acquisition reinforces Desktop Metal's leadership in additive manufacturing (AM) for mass production. ExOne extends Desktop Metal's product platforms with complementary solutions to create an unparalleled AM portfolio that offers industry-leading throughput, flexibility, and materials breadth, providing customers with a variety of options to address their specific application.

Types Covered:

  • Proof-of-Concept (PoC) Prototype
  • Visual Prototype
  • Functional Prototype
  • User Experience Prototype
  • Other Types

Forms Covered:

  • Filament
  • Powder
  • Ink

Materials Covered:

  • Metals and Alloys
  • Ceramic
  • Plaster
  • Liquid Silicone Rubber (LSR)
  • Starch
  • Polymer
  • Thermoplastics
  • Other Materials

Functions Covered:

  • Functional Prototype
  • Conceptual Model

Technologies Covered:

  • Stereolithography (SLA)
  • Fused Deposition Modeling (FDM)
  • Digital Light Processing [DLP]
  • Selective Laser Sintering (SLS)
  • Electron Beam Melting [EBM]
  • Multi Jet Fusion (MJF)

End Users Covered:

  • Aerospace & Defense
  • Automotive
  • Film & Animation
  • Consumer Goods and Electronics
  • Architecture
  • Transportation
  • Medical
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Rapid Prototyping Market, By Type

  • 5.1 Introduction
  • 5.2 Proof-of-Concept (PoC) Prototype
  • 5.3 Visual Prototype
  • 5.4 Functional Prototype
  • 5.5 User Experience Prototype
  • 5.6 Other Types

6 Global Rapid Prototyping Market, By Form

  • 6.1 Introduction
  • 6.2 Filament
  • 6.3 Powder
  • 6.4 Ink

7 Global Rapid Prototyping Market, By Material

  • 7.1 Introduction
  • 7.2 Metals and Alloys
  • 7.3 Ceramic
  • 7.4 Plaster
  • 7.5 Liquid Silicone Rubber (LSR)
  • 7.6 Starch
  • 7.7 Polymer
  • 7.8 Thermoplastics
  • 7.9 Other Materials

8 Global Rapid Prototyping Market, By Function

  • 8.1 Introduction
  • 8.2 Functional Prototype
  • 8.3 Conceptual Model

9 Global Rapid Prototyping Market, By Technology

  • 9.1 Introduction
  • 9.2 Technology
  • 9.3 Introduction
  • 9.4 Stereolithography (SLA)
  • 9.5 Fused Deposition Modeling (FDM)
  • 9.6 Digital Light Processing [DLP]
  • 9.7 Selective Laser Sintering (SLS)
  • 9.8 Electron Beam Melting [EBM]
  • 9.9 Multi Jet Fusion (MJF)

10 Global Rapid Prototyping Market, By End User

  • 10.1 Introduction
  • 10.2 Aerospace & Defense
  • 10.3 Automotive
  • 10.4 Film & Animation
  • 10.5 Consumer Goods and Electronics
  • 10.6 Architecture
  • 10.7 Transportation
  • 10.8 Medical
  • 10.9 Other End Users

11 Global Rapid Prototyping Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 3D Systems Corporation
  • 13.2 Stratasys, Ltd.
  • 13.3 EOS GmbH Electro Optical Systems
  • 13.4 Materialise NV
  • 13.5 Golden Plastics
  • 13.6 Arcam AB
  • 13.7 LPW Technology Ltd.
  • 13.8 Sandvik AB
  • 13.9 Tethon 3D
  • 13.10 Lithoz GmbH
  • 13.11 Arkema S.A.
  • 13.12 Royal DSM N.V.
  • 13.13 CRP Group
  • 13.14 Oxford Performance Materials
  • 13.15 Renishaw PLC
  • 13.16 Hoganas AB
  • 13.17 GKN PLC
  • 13.18 Carpenter Technology Corporation
  • 13.19 3D Ceram
  • 13.20 Fathom Digital Manufacturing Corporation

List of Tables

  • Table 1 Global Rapid Prototyping Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Rapid Prototyping Market Outlook, By Type (2021-2030) ($MN)
  • Table 3 Global Rapid Prototyping Market Outlook, By Proof-of-Concept (PoC) Prototype (2021-2030) ($MN)
  • Table 4 Global Rapid Prototyping Market Outlook, By Visual Prototype (2021-2030) ($MN)
  • Table 5 Global Rapid Prototyping Market Outlook, By Functional Prototype (2021-2030) ($MN)
  • Table 6 Global Rapid Prototyping Market Outlook, By User Experience Prototype (2021-2030) ($MN)
  • Table 7 Global Rapid Prototyping Market Outlook, By Other Types (2021-2030) ($MN)
  • Table 8 Global Rapid Prototyping Market Outlook, By Form (2021-2030) ($MN)
  • Table 9 Global Rapid Prototyping Market Outlook, By Filament (2021-2030) ($MN)
  • Table 10 Global Rapid Prototyping Market Outlook, By Powder (2021-2030) ($MN)
  • Table 11 Global Rapid Prototyping Market Outlook, By Ink (2021-2030) ($MN)
  • Table 12 Global Rapid Prototyping Market Outlook, By Material (2021-2030) ($MN)
  • Table 13 Global Rapid Prototyping Market Outlook, By Metals and Alloys (2021-2030) ($MN)
  • Table 14 Global Rapid Prototyping Market Outlook, By Ceramic (2021-2030) ($MN)
  • Table 15 Global Rapid Prototyping Market Outlook, By Plaster (2021-2030) ($MN)
  • Table 16 Global Rapid Prototyping Market Outlook, By Liquid Silicone Rubber (LSR) (2021-2030) ($MN)
  • Table 17 Global Rapid Prototyping Market Outlook, By Starch (2021-2030) ($MN)
  • Table 18 Global Rapid Prototyping Market Outlook, By Polymer (2021-2030) ($MN)
  • Table 19 Global Rapid Prototyping Market Outlook, By Thermoplastics (2021-2030) ($MN)
  • Table 20 Global Rapid Prototyping Market Outlook, By Other Materials (2021-2030) ($MN)
  • Table 21 Global Rapid Prototyping Market Outlook, By Function (2021-2030) ($MN)
  • Table 22 Global Rapid Prototyping Market Outlook, By Functional Prototype (2021-2030) ($MN)
  • Table 23 Global Rapid Prototyping Market Outlook, By Conceptual Model (2021-2030) ($MN)
  • Table 24 Global Rapid Prototyping Market Outlook, By Technology (2021-2030) ($MN)
  • Table 25 Global Rapid Prototyping Market Outlook, By Technology (2021-2030) ($MN)
  • Table 26 Global Rapid Prototyping Market Outlook, By Introduction (2021-2030) ($MN)
  • Table 27 Global Rapid Prototyping Market Outlook, By Stereolithography (SLA) (2021-2030) ($MN)
  • Table 28 Global Rapid Prototyping Market Outlook, By Fused Deposition Modeling (FDM) (2021-2030) ($MN)
  • Table 29 Global Rapid Prototyping Market Outlook, By Digital Light Processing [DLP] (2021-2030) ($MN)
  • Table 30 Global Rapid Prototyping Market Outlook, By Selective Laser Sintering (SLS) (2021-2030) ($MN)
  • Table 31 Global Rapid Prototyping Market Outlook, By Electron Beam Melting [EBM] (2021-2030) ($MN)
  • Table 32 Global Rapid Prototyping Market Outlook, By Multi Jet Fusion (MJF) (2021-2030) ($MN)
  • Table 33 Global Rapid Prototyping Market Outlook, By End User (2021-2030) ($MN)
  • Table 34 Global Rapid Prototyping Market Outlook, By Aerospace & Defense (2021-2030) ($MN)
  • Table 35 Global Rapid Prototyping Market Outlook, By Automotive (2021-2030) ($MN)
  • Table 36 Global Rapid Prototyping Market Outlook, By Film & Animation (2021-2030) ($MN)
  • Table 37 Global Rapid Prototyping Market Outlook, By Consumer Goods and Electronics (2021-2030) ($MN)
  • Table 38 Global Rapid Prototyping Market Outlook, By Architecture (2021-2030) ($MN)
  • Table 39 Global Rapid Prototyping Market Outlook, By Transportation (2021-2030) ($MN)
  • Table 40 Global Rapid Prototyping Market Outlook, By Medical (2021-2030) ($MN)
  • Table 41 Global Rapid Prototyping Market Outlook, By Other End Users (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

List of Figures

Figure 1 Rapid Prototyping - Market Segmentation

Figure 2 Research Methodology

Figure 3 Data Mining

Figure 4 Data Analysis

Figure 5 Data Validation

Figure 6 Research Pipeline

Figure 7 Research Approach

Figure 8 Research Sources

Figure 9 Rapid Prototyping Market Scenario, Technology (2023) (% Market Share)

Figure 10 Rapid Prototyping Market Scenario, End User (2023) (% Market Share)

Figure 11 Rapid Prototyping Market Scenario, Emerging Markets (2023) (% Market Share)

Figure 12 Porter's Five Forces Analysis - Rapid Prototyping

Figure 13 Global Rapid Prototyping Market Analysis & Projection, By Type (2023 VS 2030) (US$MN)

Figure 14 Global Rapid Prototyping Market Analysis & Projection, By Proof-of-Concept (PoC) Prototype (2023 VS 2030) (US$MN)

Figure 15 Global Rapid Prototyping Market Analysis & Projection, By Visual Prototype (2023 VS 2030) (US$MN)

Figure 16 Global Rapid Prototyping Market Analysis & Projection, By Functional Prototype (2023 VS 2030) (US$MN)

Figure 17 Global Rapid Prototyping Market Analysis & Projection, By User Experience Prototype (2023 VS 2030) (US$MN)

Figure 18 Global Rapid Prototyping Market Analysis & Projection, By Other Types (2023 VS 2030) (US$MN)

Figure 19 Global Rapid Prototyping Market Analysis & Projection, By Form (2023 VS 2030) (US$MN)

Figure 20 Global Rapid Prototyping Market Analysis & Projection, By Filament (2023 VS 2030) (US$MN)

Figure 21 Global Rapid Prototyping Market Analysis & Projection, By Powder (2023 VS 2030) (US$MN)

Figure 22 Global Rapid Prototyping Market Analysis & Projection, By Ink (2023 VS 2030) (US$MN)

Figure 23 Global Rapid Prototyping Market Analysis & Projection, By Material (2023 VS 2030) (US$MN)

Figure 24 Global Rapid Prototyping Market Analysis & Projection, By Metals and Alloys (2023 VS 2030) (US$MN)

Figure 25 Global Rapid Prototyping Market Analysis & Projection, By Ceramic (2023 VS 2030) (US$MN)

Figure 26 Global Rapid Prototyping Market Analysis & Projection, By Plaster (2023 VS 2030) (US$MN)

Figure 27 Global Rapid Prototyping Market Analysis & Projection, By Liquid Silicone Rubber (LSR) (2023 VS 2030) (US$MN)

Figure 28 Global Rapid Prototyping Market Analysis & Projection, By Starch (2023 VS 2030) (US$MN)

Figure 29 Global Rapid Prototyping Market Analysis & Projection, By Polymer (2023 VS 2030) (US$MN)

Figure 30 Global Rapid Prototyping Market Analysis & Projection, By Thermoplastics (2023 VS 2030) (US$MN)

Figure 31 Global Rapid Prototyping Market Analysis & Projection, By Other Materials (2023 VS 2030) (US$MN)

Figure 32 Global Rapid Prototyping Market Analysis & Projection, By Function (2023 VS 2030) (US$MN)

Figure 33 Global Rapid Prototyping Market Analysis & Projection, By Functional Prototype (2023 VS 2030) (US$MN)

Figure 34 Global Rapid Prototyping Market Analysis & Projection, By Conceptual Model (2023 VS 2030) (US$MN)

Figure 35 Global Rapid Prototyping Market Analysis & Projection, By Technology (2023 VS 2030) (US$MN)

Figure 36 Global Rapid Prototyping Market Analysis & Projection, By Stereolithography (SLA) (2023 VS 2030) (US$MN)

Figure 37 Global Rapid Prototyping Market Analysis & Projection, By Fused Deposition Modeling (FDM) (2023 VS 2030) (US$MN)

Figure 38 Global Rapid Prototyping Market Analysis & Projection, By Digital Light Processing [DLP] (2023 VS 2030) (US$MN)

Figure 39 Global Rapid Prototyping Market Analysis & Projection, By Selective Laser Sintering (SLS) (2023 VS 2030) (US$MN)

Figure 40 Global Rapid Prototyping Market Analysis & Projection, By Electron Beam Melting [EBM] (2023 VS 2030) (US$MN)

Figure 41 Global Rapid Prototyping Market Analysis & Projection, By Multi Jet Fusion (MJF) (2023 VS 2030) (US$MN)

Figure 42 Global Rapid Prototyping Market Analysis & Projection, By End-Use Industry (2023 VS 2030) (US$MN)

Figure 43 Global Rapid Prototyping Market Analysis & Projection, By Aerospace & Defense (2023 VS 2030) (US$MN)

Figure 44 Global Rapid Prototyping Market Analysis & Projection, By Automotive (2023 VS 2030) (US$MN)

Figure 45 Global Rapid Prototyping Market Analysis & Projection, By Film & Animation (2023 VS 2030) (US$MN)

Figure 46 Global Rapid Prototyping Market Analysis & Projection, By Consumer Goods and Electronics (2023 VS 2030) (US$MN)

Figure 47 Global Rapid Prototyping Market Analysis & Projection, By Architecture (2023 VS 2030) (US$MN)

Figure 48 Global Rapid Prototyping Market Analysis & Projection, By Transportation (2023 VS 2030) (US$MN)

Figure 49 Global Rapid Prototyping Market Analysis & Projection, By Medical (2023 VS 2030) (US$MN)

Figure 50 Global Rapid Prototyping Market Analysis & Projection, By Other End User Industries (2023 VS 2030) (US$MN)

Figure 51 Global Rapid Prototyping Market Analysis & Projection, By Geography (2023 VS 2030) (US$MN)

Figure 52 Global Rapid Prototyping Market Analysis & Projection, By Country (2023 VS 2030) (US$MN)

Figure 53 Global Rapid Prototyping Market Analysis & Projection, By North America (2023 VS 2030) (US$MN)

Figure 54 Global Rapid Prototyping Market Analysis & Projection, By Europe (2023 VS 2030) (US$MN)

Figure 55 Global Rapid Prototyping Market Analysis & Projection, By Asia Pacific (2023 VS 2030) (US$MN)

Figure 56 Global Rapid Prototyping Market Analysis & Projection, By South America (2023 VS 2030) (US$MN)

Figure 57 Global Rapid Prototyping Market Analysis & Projection, By Middle East & Africa (2023 VS 2030) (US$MN)

Figure 58 3D Systems Corporation - Swot Analysis

Figure 59 Stratasys, Ltd. - Swot Analysis

Figure 60 EOS GmbH Electro Optical Systems - Swot Analysis

Figure 61 Materialise NV - Swot Analysis

Figure 62 Golden Plastics - Swot Analysis

Figure 63 Arcam AB - Swot Analysis

Figure 64 LPW Technology Ltd. - Swot Analysis

Figure 65 Sandvik AB - Swot Analysis

Figure 66 Tethon 3D - Swot Analysis

Figure 67 Lithoz GmbH - Swot Analysis

Figure 68 Arkema S.A. - Swot Analysis

Figure 69 Royal DSM N.V. - Swot Analysis

Figure 70 CRP Group - Swot Analysis

Figure 71 Oxford Performance Materials - Swot Analysis

Figure 72 Renishaw PLC - Swot Analysis

Figure 73 Hoganas AB - Swot Analysis

Figure 74 GKN PLC - Swot Analysis

Figure 75 Carpenter Technology Corporation - Swot Analysis

Figure 76 3D Ceram - Swot Analysis

Figure 77 Fathom Digital Manufacturing Corporation - Swot Analysis